CHAPTER 5

AMPHIBIAN HABITAT CHARACTERISTICS

5.1 Introduction

An important objective of the Herptile Sites project is to derive habitat management guidelines for each of the five species. Requests for such information now come from many quarters: eg, conservation bodies involved in nature reserve and SSSI management, farming and forestry organisations attempting more environmentally sensitive land husbandry, industrial companies restoring derelict land, and, not least, garden pond owners.

The task of identifying essential habitat components may be approached by detailed population studies, or by comparing habitat variables associated with the presence or absence of each species. The first approach is being adopted, for example, in a NERC/AFRC/SSRC Joint Agriculture and Environment Programme project, based at De Montfort University, in which the utilisation of farmland habitats by toads and crested newts is being investigated using trapping programmes and radio-tracking techniques. Due to their labour-intensive nature however, few such studies can be undertaken. The National Survey provides information from throughout mainland Britain, and the descriptive data supplied by the volunteer recorders allows the second approach to be applied.

5.2 Aims and objectives

The aim of the data analysis was to identify habitat features associated with presence or absence of each species in different land-use types. The overall objective was to provide guidelines for the management of both aquatic and terrestrial landscape components, for amphibians.

5.3 Methods

5.3.1 Data preparation

5.3.1.1 Data selection

The data presented in this chapter were obtained from amphibian survey pond questionnaires (Swan and Oldham 1989); style "A" (Appendix 21) requested data on aquatic characteristics only, while style "B" (Appendix 7) requested pond-type identification, and surrounding terrestrial habitat descriptions.

Analysis was restricted to static water-bodies whose length and width were recorded, and where susceptibility to desiccation and the presence or absence of fish were known. For crested newts, sites in counties known to be outside the normal range of the species (see Chapter 3) were excluded. This did not apply to the smooth or palmate newts, whose national distribution ranges are not so clearly defined.

In this chapter, only species presence or absence are considered, rather than count data, for three reasons:firstly, the range of recorder ability was probably so wide that count data could not be regarded as representing population size accurately over the whole sample; secondly, counts made by inexperienced recorders surveying at inappropriate parts of the breeding season or in poor climatic conditions could provide data which poorly reflected population sizes. The use of invalid indicators of population sizes could obscure true habitat relationships or create false ones. The possibility still exists with simple presence/absence data when false negatives are presented, but at least the significance of unrepresentative low counts will be reduced. Thirdly, simplifying the data to "presence" or "absence" allows the use of information from tadpole observation, spawn searches and netting, maximising sample size.

5.3.1.2 Water-body description

The water-body descriptions comprise site dimensions, (length and width) and a range of options with which to describe depth, shading, the amount of emergent and submerged vegetation coverage, tendency to desiccate and the presence or absence of fish.

A total sample size of 2,987 pond descriptions were analyzed, combining data from both questionnaire styles. Because of the probability of artificial introduction and maintenance of amphibians in garden ponds, these were regarded as a special category and excluded from some of the analyses. In order to deselect garden ponds, samples were limited to the later pond questionnaires (Appendix 7) in which garden ponds could readily be recognised. The resultant non-garden sample size was 1,503. The set of water-bodies excluding gardens will hereafter be referred to as "field" sites.

5.3.1.3 Terrestrial habitat description

The land-use descriptive section of type "B" questionnaires (Appendix 7) gives a selection of 14 land-uses from which the recorders identified those predominant within each of a range of four distances from sites. Recorders were also asked to choose from seven landscape features potentially affecting amphibians (hedges, roads etc), again at each of a range of four distances from each pond. Land uses or features listed under the "other" category were either entered into existing categories or allocated new ones. The complete list of amended land use categories and habitat features can be found in Appendix 22. For the purpose of the following analysis some categories were combined (Appendix 23).

The range of distances delimiting the terrestrial habitat "bands" around ponds were 0-10 (band 4), 10-100 (band 3), 100-500 (band 2) and 500-1000 (band 1) metres from sites. However, in practice, few surveyors attempted to record the habitats

and features present over 500m from ponds. Therefore analysis was restricted to habitat bands within 500m.

In order to derive a data set amenable to analysis, the terrestrial habitat categories were given numerical values relating to their extent and proximity. A ranking system was devised, based on assumptions of increasing influence of each land-use type or habitat feature on sites. It was assumed that the larger the area of coverage by a particular land-use type and the closer it was to the pond, the greater its influence. The scoring system and habitat "bands" are illustrated in Table 5.1.

Some categories, such as "scrub" were presented as options in both the "land use" and "habitat features" sections (Appendix 7), in which case extra "scores" differentiate between the different extent of coverage implied by the terms "predominant land use" and "habitat feature". For example, a "predominant land use" in band 3 will have a higher score than a"habitat feature" at the same distance.

5.3.2 Data analysis

The samples were analyzed initially using the Chi² test (Siegel 1956), where the actual frequency of occurrence of each species in the presence of particular land-use types or habitat features was compared to that expected overall. For example, the overall percentage occurrence of frogs at ponds in all habitats was 58%, but when the sample was divided into several land use types, frog frequency ranged from 39% of ponds in arable land to 82% in gardens. To test the significance of these apparently substantial deviations, the expected frequencies were calculated as 58% of the total number of arable and garden sites. Subsequently, the sample was divided still further in order to examine the effects of particular features within specific land-uses. For example, in predominantly arable landscapes, frog pond frequency overall was 39%, but in the sub-set of "arable" ponds where woodland was present within 500 metres, the species was found in 58% of

Table 5.1

System devised for allocating numerical values to terrestrial habitat variables, incorporating the relative extent of each listed category and its proximity to sites.

D	ISTANCE FRO	SCORE	SCORE			
0 - 10 (band 4)	10 - 100 (band 3)	100 - 500 (band 2)	category listed in pond questionnaire in:-			
				<i>both</i> land-use <i>and</i> feature sections	<i>either</i> land-use or feature sections	
	pa			1	l	
		- hf		2	2	
		LU		3	2	
	- hf			4	3	
÷	LU			5	د	
LU hf				6	4	
LU hf	- hf			7	5	
LU hf	LU			8	2	
LU	LU	LU			6	

LU - land-use (assumes extensive coverage) hf - habitat feature

* data inconsistent so not used

sites. Chi² was used to test whether the association between woodland presence and the above average incidence of frog populations was significant. The overall "arable" percentage occurrence figure of 39% was used to calculate the expected frequency of frog populations - ie, 0.39 X total number of ponds which had woodland within 500m.

Finally, aquatic and terrestrial variables thus identified as being associated with variations in percentage occupancy of ponds by amphibians were then entered into Discriminant Analysis (Manly 1986). This procedure was used to investigate further the relevance of selected habitat features as predictors of species presence, and to ascertain their relative importance.

5.4 Results

5.4.1 Water-body characteristics

5.4.1.1 Distributions of amphibians with respect to water-body characteristics

5.4.1.1.(i) Amphibians in general

Overall, amphibians were found in water-bodies encompassing a wide range of sizes, from 0.5 to 2 X 10^6 m² in this sample. There was no significant relationship between percentage occupancy by "amphibians" in general and pond area, probably because opposite trends exhibited by different species cancelled each other out (Table 5.2), (eg toads were recorded at low frequency in small ponds whereas frogs occupied a high proportion of them). Overall, however, animals were found less frequently in ponds less than 0.5m deep (p<0.01, Chi² test, 1df) and percentage occupancy decreased with increasing shade, (p<0.005). Amphibians also avoided extremes of vegetation coverage, occurring significantly less frequently in ponds containing either no emergent vegetation at all, or over 75% surface coverage (p<0.01). A complete lack of submerged

vegetation also was correlated with lowered population frequency (p<0.001), although amphibians appear not to be averse to complete substrate coverage; ponds in the over-75% submerged cover range were not associated with lower than expected frequencies. In the complete sample, fish presence was associated with higher than expected amphibian frequencies (p<0.01), but when garden ponds were excluded, fish had no effect on amphibian presence overall. Amphibians were found in lower than expected frequency in ponds which desiccated annually (p<0.001).

Animals were recorded in 77% of all surveyed sites, and 74% of field ponds. It must, however, be remembered that most of these sites did not form part of a systematically surveyed sample in which all water-bodies within a given area are investigated. Many were recorded as single sites, probably selected as containing, or being likely to contain, animals; therefore percentage figures are not representative of the actual status of each species; there is a tendency to over estimate species percentage occurrence, as indicated by reference to Chapter 4 in which the systematic data sets were reviewed. For example, frogs were found in 47% of systematically surveyed ponds (section 4.4) but in 58% in the present sample.

5.4.1.1.(ii) Frog

In the total sample, frogs were found in greater than expected frequency in ponds $\leq 25m^2$ in area (p<0.001), but for the field ponds alone, water-body area had no effect on percentage occupation (p>0.05) (Table 5.2). Percentage occupancy was significantly reduced in ponds with over 25% surface shading, the species preferring completely unshaded sites (p<0.001). Frequency of occurrence was also significantly reduced in the complete absence of emergent or submerged vegetation (p<0.01 and p<0.001 respectively). In the all-inclusive data set, ponds containing fish were preferred (p<0.005), whereas in the field sample no such preference was exhibited. Ponds

Table 5.2

Percentage occupancy of ponds with respect to size, structure and vegetation characteristics. (Rt-frog; Bb-toad; Tv-smooth newt; Th-palmate newt; Tc-crested newt; ANY- any amphibian species; N-total sample size; n-crested newt sample size, excluding sites outside species range)

POND CHARACTERISTICS

PERCENTAGE OCCUPANCY

Line Line <thline< th=""> Line Line <thl< th=""><th></th><th></th><th></th><th>incl</th><th>udin</th><th>a a:</th><th>rdens</th><th></th><th></th><th></th><th></th><th>excl</th><th>udin</th><th>a a</th><th>ardens</th><th>1</th><th></th></thl<></thline<>				incl	udin	a a:	rdens					excl	udin	a a	ardens	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ANY	Rt						n	ANY	Rt						<u>n</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$area(m^2)$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		88	77	25	30	12	697	6	680	73	56	14	16	٦4	147	7	130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-								
$\begin{array}{c} 251-500 & 75 & 58 & 23 & 25 & 15 & 269 & 15 & 257 & 74 & 57 & 22 & 21 & 42 & 212 & 15 & 191 \\ 501-750 & 76 & 53 & 36 & 20 & 10 & 145 & 9 & 136 & 77 & 64 & 39 & 24 & 10 & 80 & 11 & 65 \\ 1501-2000 & 69 & 60 & 38 & 17 & 10 & 99 & 12 & 91 & 63 & 59 & 41 & 15 & 10 & 59 & 17 & 46 \\ 2001-5000 & 81 & 66 & 49 & 22 & 7 & 215 & 7 & 194 & 77 & 63 & 48 & 19 & 6 & 134 & 7 & 109 \\ 501-100 & 00 & 81 & 56 & 24 & 14 & 88 & 83 & 74 & 57 & 42 & 21 & 19 & 47 & 10 & 40 \\ 501-10 & 00 & 81 & 56 & 24 & 14 & 88 & 8 & 374 & 57 & 42 & 21 & 19 & 47 & 10 & 40 \\ 501-10 & 00 & 81 & 58 & 50 & 24 & 14 & 88 & 8 & 374 & 57 & 42 & 21 & 19 & 47 & 10 & 40 \\ \hline \begin{array}{c} sold & -50 & 08 & 16 & 32 & 31 & 14 & 1492 & 14 & 1436 & 78 & 61 & 31 & 28 & 16 & 742 & 17 & 656 \\ \hline \begin{array}{c} sold & -52 & 0 & 81 & 63 & 32 & 31 & 14 & 1492 & 14 & 1436 & 78 & 61 & 31 & 28 & 16 & 742 & 17 & 656 \\ \hline scl & -0 & 77 & 60 & 43 & 21 & 9 & 393 & 10 & 360 & 72 & 55 & 45 & 21 & 8 & 233 & 11 & 197 \\ \hline \begin{array}{c} shade(\frac{1}{3}) & 0 & 368 & 26 & 24 & 15 & 1068 & 8 & 1017 & 79 & 65 & 28 & 20 & 14 & 501 & 10 & 409 \\ 1-25 & 80 & 62 & 32 & 30 & 11 & 836 & 13 & 799 & 77 & 59 & 31 & 30 & 10 & 406 & 16 & 369 \\ 51-75 & 70 & 54 & 28 & 23 & 19 & 266 & 13 & 259 & 69 & 53 & 30 & 27 & 11 & 138 & 16 & 129 \\ \hline \begin{array}{c} south shade \\ \hline ytes & 72 & 58 & 28 & 25 & 13 & 678 & 11 & 635 & 67 & 61 & 30 & 24 & 12 & 259 & 13 & 841 \\ 2-55 & 80 & 63 & 32 & 27 & 13 & 143 & 11 & 157 & 75 & 75 & 58 & 49 & 18 & 11 & 9 & 304 & 6 & 276 \\ \hline \begin{array}{c} south shade \\ \hline ytes & 72 & 58 & 28 & 25 & 13 & 678 & 11 & 635 & 77 & 57 & 57 & 45 & 18 & 13 & 9 & 447 & 6 & 45 \\ 7-6-100 & 72 & 57 & 19 & 22 & 9 & 210 & 11 & 199 & 72 & 54 & 19 & 20 & 8 & 145 & 13 & 129 \\ \hline \begin{array}{c} south shade \\ 2-55 & 82 & 67 & 31 & 31 & 12 & 488 & 12 & 470 & 84 & 67 & 31 & 33 & 15 & 233 & 18 & 264 \\ 51-75 & 80 & 63 & 32 & 27 & 13 & 1413 & 11 & 155 & 75 & 57 & 45 & 18 & 13 & 9 & 447 & 6 & 455 \\ 7-6-100 & 72 & 57 & 19 & 22 & 9 & 210 & 11 & 199 & 72 & 54 & 19 & 20 & 8 & 145 & 13 & 129 \\ \hline \begin{array}{c} south shade \\ 51-75 & 80 & 67 & 33 & 33 & 18 & 328 & 16 & 10 & 1082 & 76 & 6$																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	501-750	70	51	34	29	17	187	22	111	69	52	34	28	16	112	23	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751-1000	. –		39	21	9	145	-	83		65	38		9	89	9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-									
$\begin{array}{c} \text{Soul-10,000} 81 58 50 24 14 88 8 83 74 57 42 21 19 47 10 40 \\ \text{sl0,000} 74 60 49 11 7 168 3 149 74 61 49 10 8 123 4 96 \\ \hline \begin{array}{c} \textbf{depth(m)} \\ \textbf{c0.5} 72 60 18 19 11 1102 6 1058 66 55 16 16 9 538 7 469 \\ \textbf{0.5-2.0} 81 63 32 31 14 1492 14 1436 78 61 31 28 16 742 17 656 \\ \textbf{>2.0} 77 60 43 21 9 393 10 360 72 55 45 21 8 233 11 197 \\ \hline \begin{array}{c} \textbf{shade(k)} \\ \textbf{0} \\ \hline \begin{array}{c} \textbf{0} \\ \textbf{0} \\ \textbf{0} \\ \textbf{8} \\ \textbf{0} 62 32 62 24 15 1068 8 1017 79 65 28 20 14 501 10 409 \\ \textbf{1-25 } 80 62 32 30 11 836 13 799 77 59 31 30 10 466 16 369 \\ \textbf{25-50 } 74 60 30 29 13 470 11 451 68 54 28 23 16 229 13 208 \\ \textbf{51-75 } 70 54 28 23 9 266 13 259 69 53 30 27 1 138 16 129 \\ \textbf{76-100 } 64 48 23 13 10 347 9 328 60 44 21 12 10 229 8 207 \\ \hline \begin{array}{c} \textbf{south shade} \\ \textbf{YES } 77 55 28 28 25 13 678 11 635 67 61 30 24 12 529 13 841 \\ \textbf{MO } 79 63 28 25 12 2309 10 2219 76 52 25 21 13 974 12 461 \\ \hline \begin{array}{c} \textbf{smercent vegetation (k)} \\ 0 67 57 58 249 18 11 9 304 6 276 \\ 1-25 80 63 32 27 17 13 131 12 488 12 470 84 67 31 33 15 233 18 204 \\ 51-75 82 67 28 31 16 67 67 757 58 49 18 11 9 304 6 276 \\ 1-25 81 65 30 27 13 11 136 10 1082 76 60 31 25 25 25 12 508 14 13 59 477 15 148 15 160 \\ 1-25 81 65 30 27 7 17 15 148 15 102 \\ 1-25 81 65 30 27 11 11 136 10 1082 76 65 37 17 75 148 15 102 \\ 1-25 81 65 30 27 11 11 136 10 1082 76 65 37 17 15 148 15 102 \\ 1-25 81 65 30 27 17 15 148 15 102 \\ 1-25 81 65 37 33 31 18 328 18 315 86 77$																	
$\begin{array}{c} >10,000 & 74 & 60 & 49 & 11 & 7 & 168 & 3 & 149 & 74 & 61 & 49 & 10 & 8 & 123 & 4 & 96 \\ \hline \\ \hline \\ \hline \\ c0.5 & 72 & 60 & 18 & 19 & 11 & 1102 & 6 & 1058 & 66 & 55 & 16 & 16 & 9 & 538 & 7 & 469 \\ \hline \\ c0.5 & 2.0 & 77 & 60 & 43 & 21 & 9 & 393 & 10 & 360 & 72 & 55 & 45 & 21 & 8 & 233 & 11 & 197 \\ \hline \\ $																	
$ \begin{array}{c} \frac{depth(m)}{c0.5} & 72 & 60 & 18 & 19 & 11 & 1102 & 6 & 1058 \\ c0.5 - 2.0 & 81 & 63 & 32 & 31 & 14 & 1492 & 14 & 1436 \\ 78 & 61 & 31 & 28 & 16 & 742 & 17 & 656 \\ rack red red red red red red red red red red$								-									
$ \begin{array}{c} \hline c 0.5 \\ \hline c 0.5 $	FT0,000	/4	00	49	71	'	100	ç	T#3	/*1	ο1	49	ΤŬ	0	123	4	96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>depth(m)</u>																
$\begin{array}{c} >2.0 & 77 & 60 & 43 & 21 & 9 & 393 & 10 & 360 & 72 & 55 & 45 & 21 & 8 & 233 & 11 & 197 \\ \hline \\ $	<0.5	72	60	18	19	11	1102	6	1058	66	55	16	16	9	538	7	469
$ \frac{\text{shade}(\$)}{0} & 83 & 68 & 26 & 24 & 15 & 1068 & 8 & 1017 \\ 1-25 & 80 & 62 & 32 & 30 & 11 & 836 & 13 & 799 \\ 1-25 & 80 & 62 & 32 & 30 & 11 & 836 & 13 & 799 \\ 25-50 & 74 & 60 & 30 & 29 & 13 & 470 & 11 & 451 & 68 & 54 & 28 & 23 & 16 & 229 & 13 & 208 \\ 51-75 & 70 & 54 & 28 & 23 & 9 & 266 & 13 & 259 & 69 & 53 & 30 & 27 & 11 & 138 & 16 & 129 \\ 76-100 & 64 & 48 & 23 & 13 & 10 & 347 & 9 & 328 & 60 & 44 & 21 & 12 & 10 & 229 & 8 & 207 \\ \hline \frac{\text{south shade}}{\text{NO}} & 79 & 63 & 28 & 25 & 12 & 2309 & 10 & 2219 & 76 & 52 & 25 & 21 & 13 & 974 & 12 & 481 \\ \hline \frac{\text{emergent vegetation}}{\text{NO}} & 79 & 63 & 28 & 25 & 12 & 2309 & 10 & 2219 & 76 & 52 & 25 & 21 & 13 & 974 & 12 & 481 \\ \hline \frac{\text{emergent vegetation}}{1-25 & 80 & 63 & 32 & 27 & 13 & 1413 & 11 & 1350 & 75 & 58 & 34 & 23 & 13 & 674 & 13 & 584 \\ 26-50 & 82 & 67 & 31 & 11 & 24 & 88 & 12 & 470 & 84 & 67 & 31 & 31 & 52 & 33 & 16 & 244 \\ 51-75 & 82 & 67 & 28 & 31 & 16 & 276 & 12 & 258 & 78 & 62 & 24 & 30 & 16 & 147 & 14 & 129 \\ \hline 0 & 0 & 72 & 57 & 19 & 22 & 9 & 210 & 11 & 199 & 72 & 54 & 19 & 20 & 8 & 145 & 13 & 129 \\ \hline \frac{\text{submerged vegetation}(\$)}{0} & 1 & 48 & 736 & 5 & 703 & 57 & 45 & 18 & 13 & 9 & 447 & 6 & 405 \\ 1-25 & 81 & 65 & 30 & 27 & 11 & 1136 & 10 & 1082 & 76 & 60 & 31 & 25 & 12 & 568 & 12 & 502 \\ 26-50 & 85 & 64 & 36 & 34 & 15 & 478 & 12 & 461 & 86 & 66 & 38 & 31 & 19 & 204 & 17 & 184 \\ 51-75 & 83 & 67 & 27 & 24 & 20 & 309 & 12 & 293 & 78 & 65 & 27 & 17 & 15 & 148 & 15 & 108 \\ \hline \frac{\text{fish presence}}{\text{YES}} & 83 & 67 & 43 & 26 & 9 & 1193 & 6 & 1146 & 79 & 64 & 50 & 23 & 12 & 455 & 7 & 396 \\ \text{NOV} & 74 & 58 & 18 & 25 & 14 & 1794 & 14 & 1708 & 71 & 55 & 19 & 23 & 13 & 1048 & 15 & 926 \\ \hline \frac{\text{desiccation}}{\text{NEVER}} & 80 & 63 & 33 & 28 & 12 & 2078 & 10 & 1980 & 75 & 59 & 36 & 23 & 14 & 902 & 11 & 788 \\ \text{DROUGHT} & 80 & 61 & 22 & 29 & 14 & 375 & 18 & 355 & 78 & 59 & 23 & 30 & 13 & 341 & 18 & 314 \\ \text{EVERY YEAR} & 64 & 55 & 13 & 13 & 12 & 534 & 7 & 519 & 60 & 51 & 7 & 11 & 7 & 26 & 8 \\ \end{array}$	0.5-2.0	81	63	32	31	14	1492	14	1436	78	61	31	28	16	742	17	656
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>2.0	77	60	43	21	9	393	10	360	72	55	45	21	8	233	11	197
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u> </u>					~		20	~ -		~ ~				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												_					
$\begin{array}{c} \begin{array}{c} 51-75 \\ 76-100 \\ 64 \\ 48 \\ 23 \\ 13 \\ 10 \\ 347 \\ 9 \\ 328 \\ 60 \\ 44 \\ 21 \\ 12 \\ 10 \\ 21 \\ 10 \\ 22 \\ 11 \\ 10 \\ 22 \\ 11 \\ 10 \\ 22 \\ 11 \\ 10 \\ 22 \\ 10 \\ 21 \\ 10 \\ 22 \\ 10 \\ 21 \\ 10 \\ 22 \\ 10 \\ 21 \\ 10 \\ 22 \\ 10 \\ 22 \\ 10 \\ 10$. –														
76-100 64 48 23 13 10 347 9 328 60 44 21 12 10 229 8 207 south shade YES 72 58 28 25 13 678 11 635 67 61 30 24 12 529 13 841 NO 79 63 28 25 12 2309 10 2219 76 52 25 21 13 841 mo 67 54 19 15 11 600 7 577 58 49 18 11 9 304 6 276 1-25 80 63 32 27 13 1413 11 1350 75 58 49 18 11 9 304 6 276 26-50 82 67 28 31 16 276 12 258 78 62 24 30 16 147 14 129 14 129 26 14 <td></td>																	
$\begin{array}{c} \underline{\text{south shade}}\\ \underline{\text{YES}}\\ YES\\ NO\\ 79\\ 63\\ 28\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$						-										_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-								•	
NO79632825122309102219765225211397412481emergent vegetation(%)06754191511600757758491811930462761-258063322713141311135075583423136741358426-5082673131124881247084673133152331820451-7582672831162761225878622430161471412976-1007257192292101119972541920814513129submerged vegetation0614919148736570357451813944764051-258165302711113610108276603125125681250226-5085643634154781246186663831192041718451-758670333318328183158670<																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
0 67 54 19 15 11 600 7 577 58 49 18 11 9 304 6 276 1-25 80 63 32 27 13 1413 11 1350 75 58 34 23 13 674 13 584 26-50 82 67 31 31 12 488 12 470 84 67 31 33 15 233 18 204 51-75 82 67 28 31 16 276 12 258 78 62 24 30 16 147 14 129 76-100 72 57 19 22 9 210 11 199 72 54 19 20 8 145 13 129 submerged vegetation (%)	NO	79	63	28	25	12	2309	10	2219	76	52	25	21	13	974	12	481
0 67 54 19 15 11 600 7 577 58 49 18 11 9 304 6 276 1-25 80 63 32 27 13 1413 11 1350 75 58 34 23 13 674 13 584 26-50 82 67 31 31 12 488 12 470 84 67 31 33 15 233 18 204 51-75 82 67 28 31 16 276 12 258 78 62 24 30 16 147 14 129 76-100 72 57 19 22 9 210 11 199 72 54 19 20 8 145 13 129 submerged vegetation (%)	emergent ve	aneta	tion	(8)													
1-25 80 63 32 27 13 1413 11 1350 75 58 34 23 13 674 13 584 26-50 82 67 31 31 12 488 12 470 84 67 31 33 15 233 18 204 51-75 82 67 28 31 16 276 12 258 78 62 24 30 16 147 14 129 76-100 72 57 19 22 9 210 11 199 72 54 19 20 8 145 13 129 submerged vegetation (%) 0 61 49 19 14 8 736 5 703 57 45 18 13 9 447 6 405 1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 168 12 502 <					15	11	600	7	577	58	49	18	11	9	304	6	276
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•															-	
76-100 72 57 19 22 9 210 11 199 72 54 19 20 8 145 13 129 submerged vegetation (%) 0 61 49 19 14 8 736 5 703 57 45 18 13 9 447 6 405 1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 12 568 12 502 26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 <		82	67	31		12					67						
Submerged vegetation (%) 0 61 49 19 14 8 736 5 703 57 45 18 13 9 447 6 405 1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 12 568 12 502 26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence YES 83 67 43 26 9 1193 6 1146 79 64 50 23	51-75	82	67	28	31	16	276	12	258	78	62	24	30	16	147		129
0 61 49 19 14 8 736 5 703 57 45 18 13 9 447 6 405 1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 12 568 12 502 26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence	76-100	72	57	19	22	9	210	11	199	72	54	19	20	8	145	13	129
0 61 49 19 14 8 736 5 703 57 45 18 13 9 447 6 405 1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 12 568 12 502 26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence					、												
1-25 81 65 30 27 11 1136 10 1082 76 60 31 25 12 568 12 502 26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence 7 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 <						Q	776	5	703	57	45	10	+ - >	0	4 4 17	r	105
26-50 85 64 36 34 15 478 12 461 86 66 38 31 19 204 17 184 51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence YES 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 </td <td>•</td> <td></td>	•																
51-75 86 70 33 33 18 328 18 315 86 70 32 37 14 136 27 123 76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence YES 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314																	
76-100 83 67 27 24 20 309 12 293 78 65 27 17 15 148 15 108 fish presence YES 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220 <td></td>																	
YES 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220 </td <td>76-100</td> <td>83</td> <td>67</td> <td>27</td> <td>24</td> <td>20</td> <td>309</td> <td>12</td> <td>293</td> <td>78</td> <td>65</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	76-100	83	67	27	24	20	309	12	293	78	65						
YES 83 67 43 26 9 1193 6 1146 79 64 50 23 12 455 7 396 NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220 </td <td><i></i></td> <td></td>	<i></i>																
NO 74 58 18 25 14 1794 14 1708 71 55 19 23 13 1048 15 926 desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220			~ 7	4.5	26	~	1100	~	2246	-	~ •	F ^	~~			***	
desiccation NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220																	
NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220	NO	/4	20	T0	20	7.4	1/34	14	T108	11	25	ТА	23	کـل	1048	12	926
NEVER 80 63 33 28 12 2078 10 1980 75 59 36 23 14 902 11 788 DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220	desiccation	ı															
DROUGHT 80 61 22 29 14 375 18 355 78 59 23 30 13 341 18 314 EVERY YEAR 64 55 13 13 12 534 7 519 60 51 7 11 7 260 8 220	NEVER		63	33	28	12	2078	10	1980	75	59	36	23	14	902	11	788
		80			29	14		18		78		23	30				
TOTAL 2,987 2,854 1,503 1,322	EVERY YEAR	64	55	13	13	12	534	7	519	60	51	7	11	7	260	8	220
	TOTAL					2	,987	:	2,854					3	L,503	1	, 322

sample, this observed tendency was not significant (p>0.05). Thus, frogs appear to be catholic in choice of ponds, breeding in water-bodies exhibiting a wide range of sizes and successional stages. Sites devoid of either emergent or submerged vegetation are avoided as are those for which over a quarter of their water surfaces are shaded. Preference for ponds with fish in the sample which included garden ponds may reflect the species' prevalence in gardens where a high proportion of available water-bodies are stocked.

5.4.1.1.(iii) Toad

Toads were seldom encountered in the smaller ponds; they were found in less than expected frequency in sites smaller than $500m^2$ and shallower than 0.5m, (p<0.001 in both cases) (Table 5.2). They occurred in lower than expected frequency in completely unshaded ponds but also in those where over 75% of the water-surface was shaded (p<0.05). This indicates perhaps the necessity for pond-edge cover which incidentally casts shadows, but avoidance by toads of heavily shaded sites. An absence of either emergent or submerged vegetation coincided with lower than expected frequencies of toad occupancy (p<0.001 in both cases). In the field ponds, emergent vegetation covering over 50% of the water-surface was also associated with a lowered frequency (p<0.001). Toads were found in much higher than expected frequencies in sites containing fish (p<0.001) and occurrence of populations was reduced in ponds known to dry out either every year or only in drought (p<0.001).

Thus, pond size and permanence (fish presence would indicate a water-body which dries out very infrequently) are important determinants of toad presence. Aquatic vegetation cover is also necessary but ponds should not be excessively overgrown.

5.4.1.1.(iv) Smooth newt

In the all-inclusive data set, smooth newts occurred at higher than expected frequency in sites less than $750m^2$ (p<0.001), but

this relationship was not significant in the field pond sample (p>0.05) (Table 5.2). In both data sets, though, newts were found at reduced frequency in ponds less than 0.5m deep (p<0.01). Sites with no shading at all, or where it extended over 75% or more of the surface were associated with reduced frequency of smooth newt occupation (p<0.001). Those which also exhibited extremes of emergent and submerged vegetation cover (none at all or over 75% coverage) were less likely to contain the species (p<0.001 in both cases). Permanent waterbodies and those which desiccated only during drought had higher than expected frequencies of newt occupancy (p<0.001).

Smooth newts therefore occupy the full range of pond sizes, but are able to utilise smaller sites in gardens. Aquatic and pond edge vegetation cover is required, but excessive terrestrial shading or aquatic plant growth are inimical. Fish presence does not appear to affect species presence. Occasional site desiccation does not prevent species persistence.

5.4.1.1.(v) Palmate newt

As with the smooth newts, palmates were found in higher than expected frequencies in smaller ponds (up to $750m^2$) in the garden inclusive sample (p<0.05), but not in the field-only data-set (p>0.05) (Table 5.2). They also occurred less frequently in sites less than 0.5m deep (p<0.005) and in those with no submerged vegetation (p<0.001). In the all-inclusive data set, they were found in greater than expected frequency in sites without fish (p<0.001), but without the garden data no such relationship persisted. Conversely, site desiccation apparently had no effect on newt distribution within the garden-inclusive data-set but excluding gardens, newts were found more frequently in sites which never dried out (p<0.01).

Palmate newts therefore inhabit a wide range of pond sizes, but like the smooths are able to utilise smaller ones in gardens. Relatively unshaded ponds are preferred, with some submerged vegetation, but emergent vegetation apparently has

little effect, possibly reflecting its paucity in many of the oligotrophic water-bodies in which the species is found. Ponds which desiccate annually are seldom populated, but the species' relationship to fish is ambivalent, newts preferring non-fish sites in the total sample, but fish presence apparently not affecting their distribution in the field.

5.4.1.1.(vi) Crested newt

Crested newts tended not to breed either in very small or very large ponds, (Table 5.2). They were found in lower than expected frequencies in sites less than 26m² and larger than $750m^2$ in both data-sets (p<0.001 and p<0.005 respectively). Sites less than 0.5m deep were also unlikely to support populations (p<0.01). Ponds with up to 25% shading were preferred to those with either none, or with over 75% of the surface affected (p<0.025), suggesting the need for some, but not excessive pond edge cover. Frequencies of occupation were less where either emergent or submerged vegetation cover was zero (p<0.025 and p<0.001 respectively); in the field sample, the frequency of occupation was greatly elevated where submerged vegetation covered from 50 to 75% of the bottom substrate (p<0.001). Frequencies of occurrence were lower in sites containing fish (p<0.001) but higher at those which desiccated during drought (p<0.001), which two factors may have been related.

Crested newts therefore occupy the size range "small" to "medium", encompassing ponds approximately between $25m^2$ to $750m^2$. They do not generally populate very small sites, even in gardens. A modicum of terrestrial shade is apparently necessary, although this perhaps simply indicates the presence of pond edge vegetation cover, the actual determinant of newt presence. Ponds without emergent or submerged vegetation are avoided, and those with high levels of the latter seem particularly preferred. Fish presence is inimical, possibly reflected in the species preference for sites which desiccate occasionally, thus preventing fish persistence.

5.4.1.2 Comparisons of water-body characteristics between land-use types

Before investigating the effects of broad land-use types, it is necessary to compare the aquatic characteristics of the water-bodies they contain. If ponds vary greatly between different landscapes, aquatic rather than terrestrial factors may be responsible for observed differences.

5.4.1.2.(i) Water-body sizes

The median areas of all ponds in different habitats, and those used as breeding sites by each species are presented in Table 5.3. Water-bodies did not differ significantly in size between any of the land-use types (p>0.05, Mann-Whitney U-test), except garden ponds which were significantly smaller than those in each of the other categories (p<0.001 in each case). The areas of the breeding sites of each species were also smaller in gardens than in the other habitats (p<0.001 in each case), between which they did not vary significantly (p>0.05).

To test whether breeding ponds were selected on the basis of size, breeding and non-breeding pond areas were compared within each land-use type.

In most land-use types, the sizes of frog breeding ponds did not vary significantly from those from which they were absent (p>0.05); except in gardens, where breeding sites were smaller than non-breeding ponds (p<0.0003), and rough grassland where breeding ponds were larger (p<0.05). Smooth newts exhibited no differences at all. For toads, palmate and crested newts, garden ponds used as breeding sites were larger than those not supporting the species (p<0.05, p<0.02 and p<0.01respectively). In the non-garden habitats, crested newt breeding sites did not differ significantly in area from nonnewt sites. Palmates apparently occupied the smaller ponds, breeding sites being significantly smaller than non-breeding sites in improved grassland and built-up areas (p<0.02 and p<0.03 respectively). Toads however were highly selective,

Table 5.3

Areas of water-bodies in different predominant land-use types.

(a) total sample (including amphibian-free sites)

	all	grass	sland			built-up	garden
^	(non-garden)	improved	unimproved	arable	woodland	area	pond
međ(m ²)	360	278	245 ,	345	228	310	6
max	1.3x10⁷	2.0x10 ^b	2.0x10 ^b ∶	1.2x10 ⁵	4.0x10 ⁵	2.0x10⁰	5.4×10^{4}
min	0.75	0.75	3.00	1.00	1.00	2.25	0.50
N	1,503	240	312	51	230	50	425

(b) frog

	all			built-up	garden		
	(non-garden)	improved	unimproved	arable	woodland	area	pond
med(m ²)	400 ,	262.5	300 ,	427	250	225	6
max	1.2x10 ^b	6.5x10 ⁴	8.2x10 ³ :	1.2x10 ⁵	2.9x10 ⁵	1.3x10 ⁴	5.4×10^4
min	1.00	2.50	3.00	6.00	4.00	9.00	0.50
N	869	126	182	20	141	25	349

(c) toad

	all	grass	sland			built-up	garden
•	(non-garden)	improved	unimproved	l arable	woodland	area	pond
med(m ²)	900 /	1,000	1,000	600	1,150	600	8.
max	2.0x10 ^b	2.0x10 ⁶	2.0×10^{6}	4.5x10 ³	4.0x10 ⁵	2.0x10 ⁵	$4.0x10^{3}$
min	1.00	16.00	20.00	24.00	1.00	12.00	0.50
N	421	31	91	14	74	10	144

(d) smooth newt

	all	grass	sland			built-up	garden
•	(non-garden)	improved	unimproved	arable	woodland	area	pond
med(m ⁴)	300 _	225	210	102	150	238	6
max	1.0x10 ⁵	1.4×10^{4}	1.0x10 ⁵	4.5x10 ³	1.0×10^{5}	1.3×10^{4}	2.2×10^3
min	1.00	15.00	8.00	6.00	22.50	12.00	0.50
N	342	45	91	11	36	13	163

(e) palmate newt

	all	grass	sland			built-up	garden
-	(non-garden)	improved	unimproved	arable	woodland	area	pond
$med(m^2)$	300 -	150	200 _		200	162	12
max	1.2x10 ³	7.6x10 ¹	6.7x10 ⁵		1.2×10^{5}	5.6×10^3	1.0×10^{3}
min	1.00	1.00	15.00	-	16.00	2.25	0.75
N	186	19	31	2	43	12	47

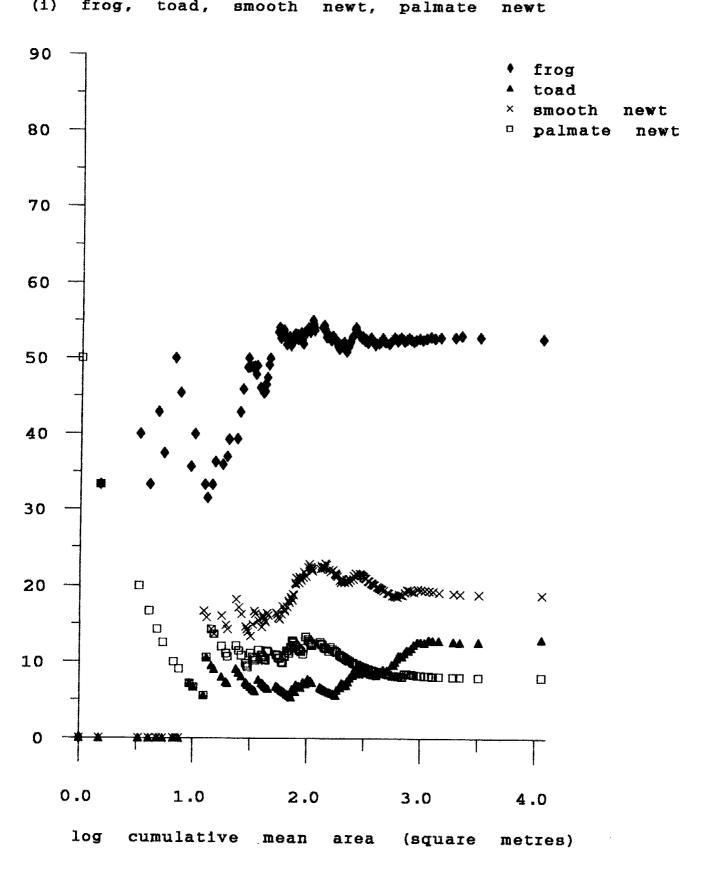
(f) crested newt

	all	grass	sland			built-up	garden
•	(non-garden)	improved	unimproved	arable	woodland	area	pond
med(m ²)	300 ,	144 ,	242.5	176	212.5	201	12.5
max	6.0x10 ⁴	$6.0x10^{4}$	6.0x10 ⁴	4.5x10 ³	4.5×10^{3}	8.0×10^{3}	2.2×10^{3}
min	6.30	20.00	12.00	48.00	24.00	56.00	0.75
N	168	23	40	4	22	5	37

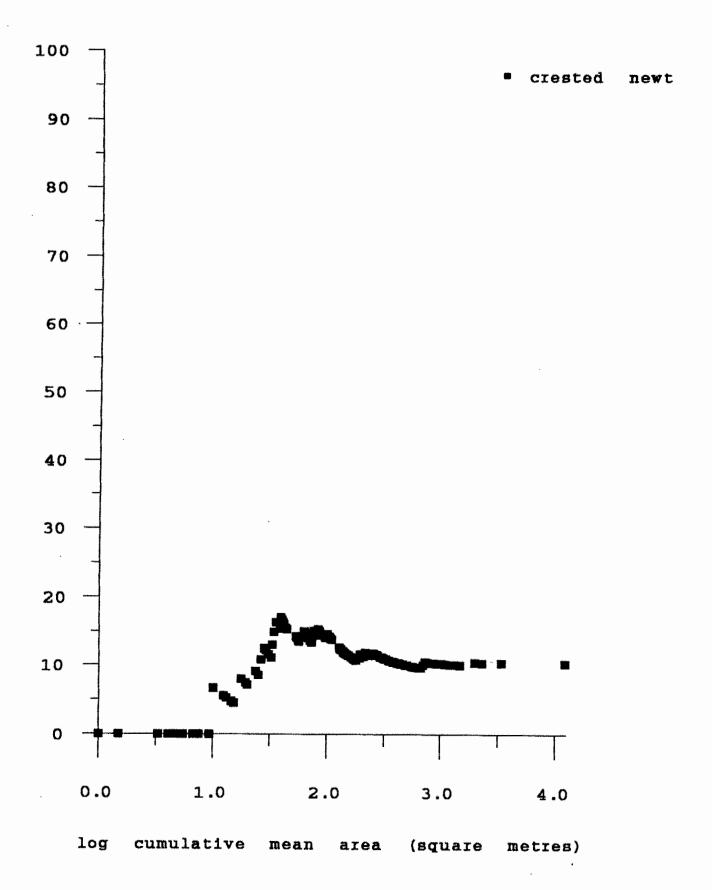
breeding sites being larger than non-breeding sites in all habitats (p<0.001 in all cases) except for arable land (p>0.05). This suggests that factors other than pond size may be important determinants in arable land.

Figures 5.1 (a) to (e) show the relationships between amphibian percentage frequencies of occupation and cumulative mean pond areas within five land-use types. Each of the five species was found more frequently in very small ponds (less than $10m^2$) in gardens than in the other habitats, apart from the palmate newt which also inhabited small ponds in improved grassland.

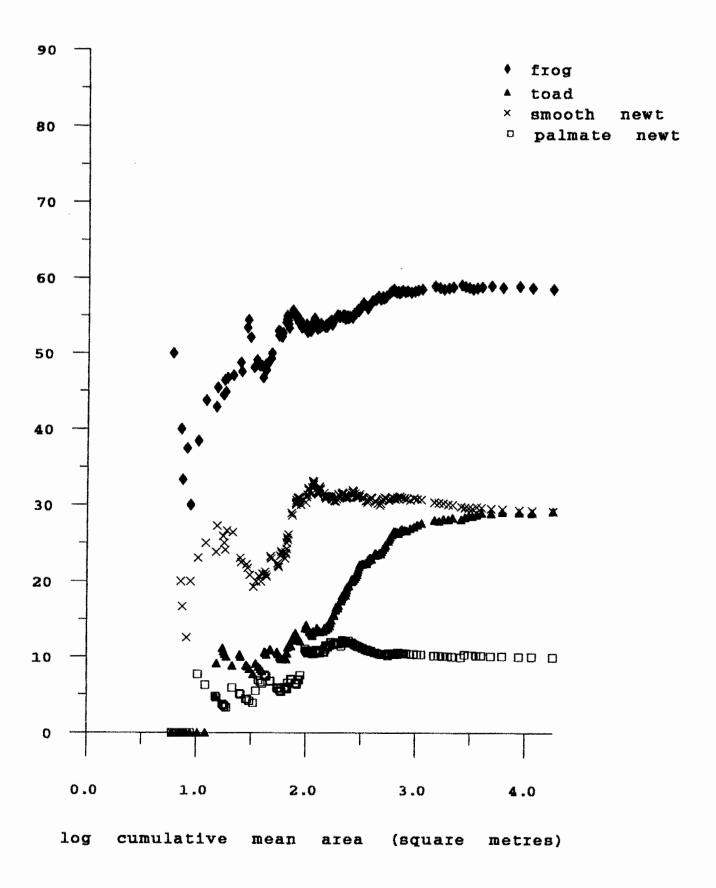
In both improved and unimproved grassland, and in woodland, the maximum percentage occupancy of ponds by frogs was approached when the cumulative mean pond area was approximately $75m^2$, (Figs 5.1(a)(i), (b)(i) and (d)(i)). In improved grassland, there was no further increase in frequency of occupation with the mean area, whereas in the other two habitats it rose gradually to a maximum at about $1,000m^2$. In arable land (Fig 5.1(c)), maximum occupation frequencies occurred between means of 25 and $75m^2$, decreasing to a minimum in the range 250 to $750m^2$, then rising again until the cumulative mean approached $1,000m^2$. Thus, no clear relationship between occupation frequency and pond size was apparent in arable land.

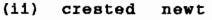

Toads were found very infrequently in ponds below $100m^2$ except in woodland and gardens. In all but arable land and gardens, maximum occupation frequency was attained when the average pond size reached $1,000m^2$, (Figs 5.1(a)(i), (b)(i) and (d)(i)). Within arable land, as with the frogs, maximum occupancy rates occurred in ponds averaging areas of between 250 and 750m² and at $1,000m^2$ (Fig 5.1(c)). In gardens, toads were found relatively frequently in ponds between seven and $10m^2$ (Fig 5.1(e)(i)).

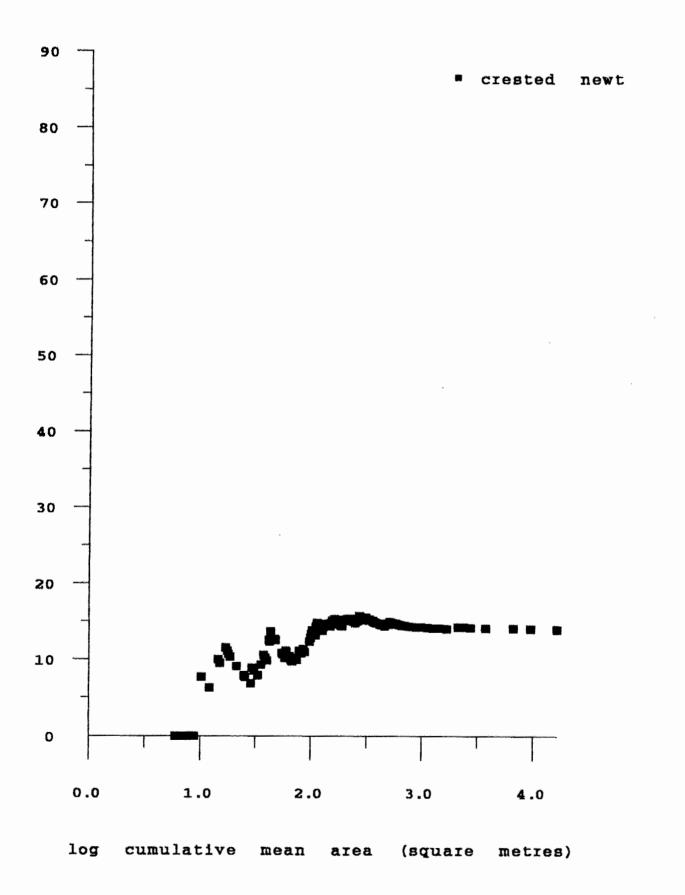
The two small newt species both showed clear peaks of optimum pond size ranges. Within improved grassland, these both

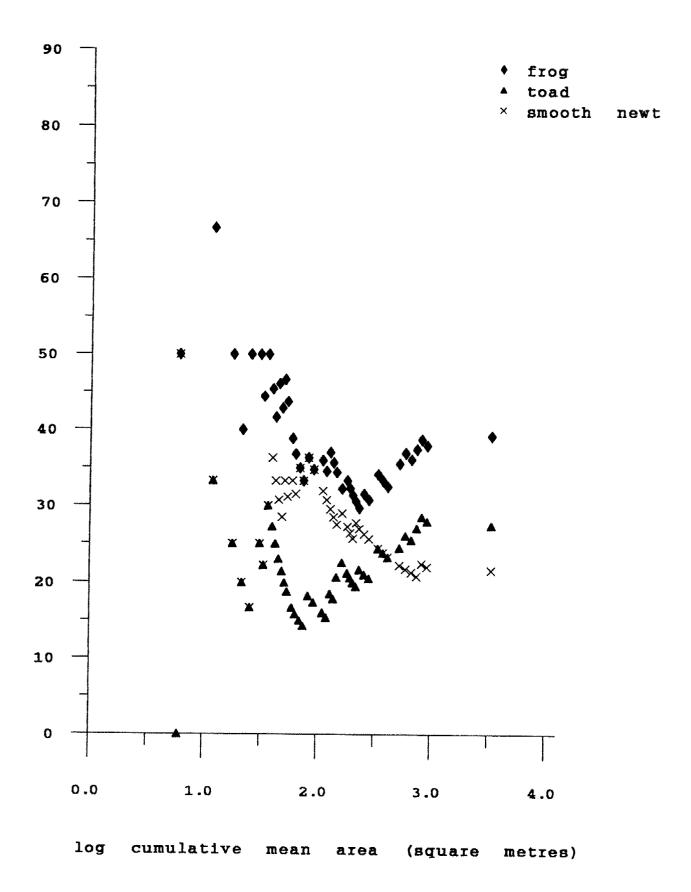

Fig 5.1

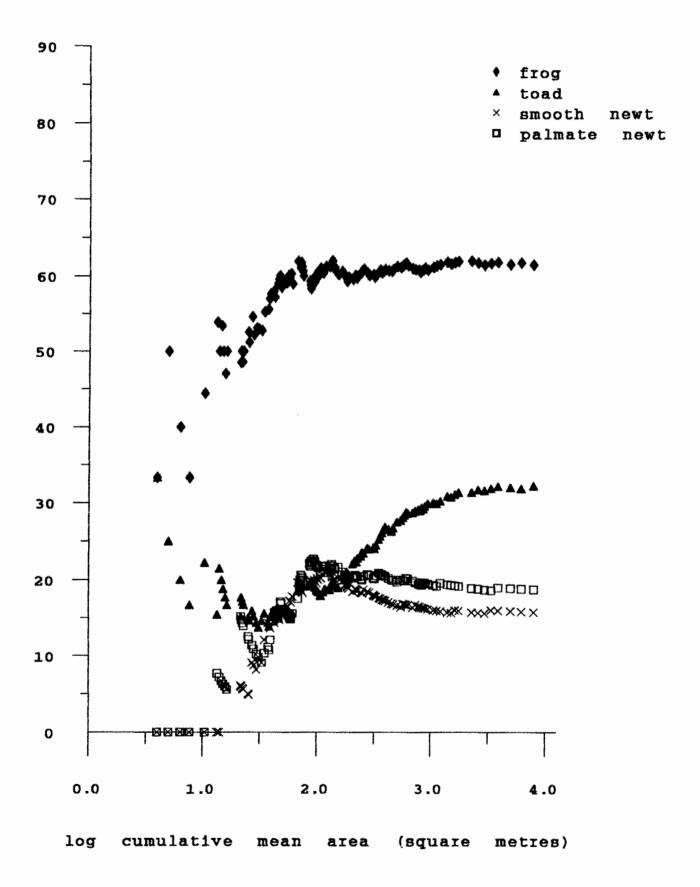
Percentages of ponds occupied by amphibians with increasing cumulative mean water-body areas, in different base land-use types.

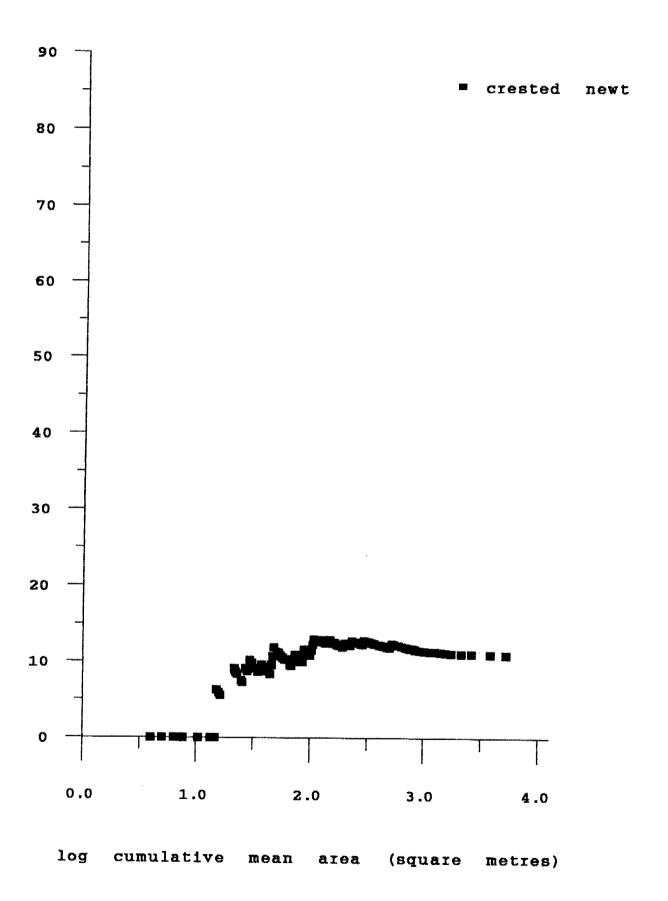

(a) IMPROVED GRASSLAND(i) frog, toad, smooth newt, palmate ne

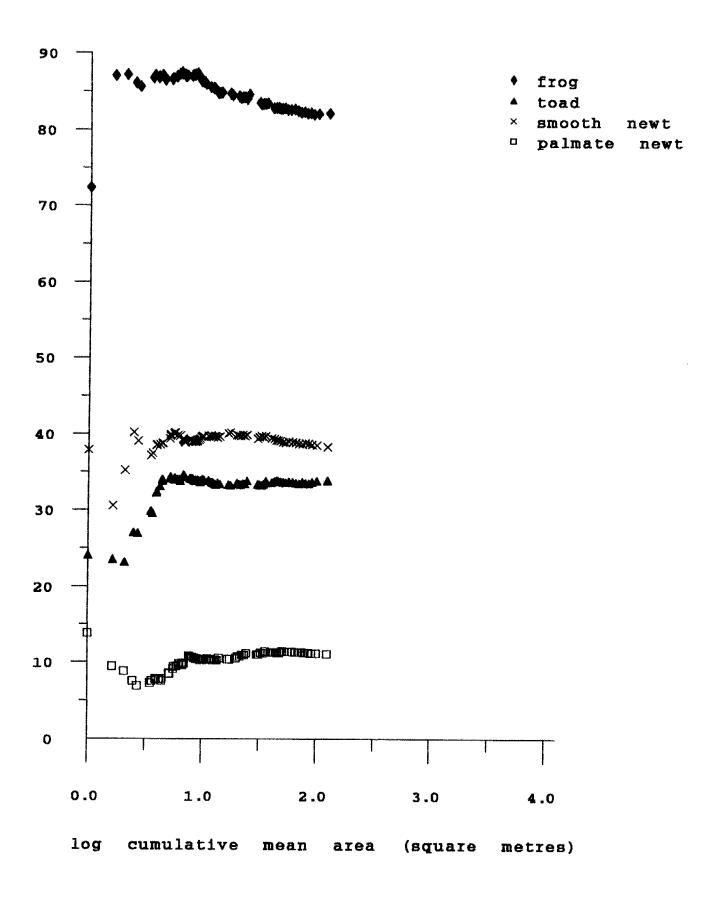

(a)	IMPROVED	GRASSLAND
(11)	crested	newt




(b) UNIMPROVED GRASSLAND (1) frog, toad, smooth newt, palmate newt


(b) UNIMPROVED GRASSLAND




(d)	WOODLA	AND				
(1)	fiog,	toad,	smooth	newt,	palmate	newt

(đ) (11) WOODLAND

crested newt

(e) GARDEN PONDS (11) crested newt

