1508-156-96

A1 New Forest District Local Plan -Omission Site 30 Land East of Hightown Trading Estate, Ringwood, Hampshire Agricultural Land Classification ALC Map and Report November 1996

A1 New Forest District Local Plan -Omission Site 30 Land East of Hightown Trading Estate, Ringwood, Hampshire Agricultural Land Classification ALC Map and Report November 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

ADAS Reference 1508/156/96 MAFF Reference EL 15/00315 LUPU Commission 02768

AGRICULTURAL LAND CLASSIFICATION REPORT

NEW FOREST DISTRICT LOCAL PLAN OMISSION SITE 30 LAND EAST OF HIGHTOWN TRADING ESTATE, RINGWOOD

INTRODUCTION

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 10 6 hectares of land between the Hightown Trading Estate and Crow Lane to the east of Ringwood in Hampshire The survey was carried out during November 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the New Forest District Local Plan The results of this survey supersede a previous ALC survey (ADAS Ref 1508/026/82) carried out in 1982 prior to the revision of the ALC system (MAFF 1988)

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land towards the south of the site was permanent grassland with grazing horses To the north of the site the land was in a grass ley The area mapped as Other Land towards the south of the site comprises a dwelling and garden

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Grade/Other land	Area (hectares)	% site area	% surveyed area
2 Other Land	10 5 0 1	99 1 0 9	100 0
Total surveyed area	10 5		100 0
Total site area	10 6	100 0	

Table 1 Area of grades and o	other 1	land
------------------------------	---------	------

7 The fieldwork was conducted at an average density of approximately 1 boring per hectare of agricultural land A total of 11 borings and two soil pits were described

8 The agricultural land at this site has been classified as Grade 2 (very good quality) on the basis of a soil droughtiness limitation

9 The soils on the site were found to be of two types Over the majority of the site they comprise slightly stony clay loam and medium sandy loam topsoils and upper subsoils overlying very stony sandy clay loams at moderate depth. The second soil type present on the site comprises slightly to moderately stony medium sandy loam and medium sandy silt loam topsoils and upper subsoils overlying very stony loamy medium sands at depth. In the local climate these soil textures and stone contents combine to cause a slight restriction in available water to plants leading to a Grade 2 classification being most appropriate

FACTORS INFLUENCING ALC GRADE

Climate

10 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

11 The key climatic variables used for grading this site are given in Table 2 below and were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

12 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Factor	Units	Values
Grid reference	N/A	SU 160 046
Altıtude	m AOD	20
Accumulated Temperature	day°C	1543
Average Annual Rainfall	mm	849
Field Capacity Days	days	176
Moisture Deficit, Wheat	mm	109
Moisture Deficit Potatoes	mm	104

Table 2	Climatic	and	altitude	data
---------	----------	-----	----------	------

13 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

14 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk, are not believed to significantly affect the site The site is climatically Grade 1

Geology and soils

16 The published geological information for the area (BGS 1976) shows the entire site to be underlain by valley gravel drift deposits

therefore there are no slopes of sufficient gradient to affect agricultural land quality

The site lies at an altitude of approximately 20m AOD The land is flat overall and

17 The most detailed published soils information for the area (SSEW 1983) shows the entire site to comprise soils of the Hucklesbrook Association These are described as being Well drained coarse loamy and some sandy soils commonly over gravel Some similar permeable soils affected by groundwater Usually on flat land (SSEW 1983) The soils encountered at the site were found to be similar to those described

Agricultural Land Classification

18 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

19 The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III

Grade 2

20 Land of very good quality extends across all of the agricultural land at this site The principal limitation in this area is soil droughtiness

The soils at this site were found to be of two main types The most common extends over the north and east of the site These were found to comprise a slightly stony (up to 8% v/v total flints including up to 3% > 2cm) medium clay loam or medium sandy loam topsoil This passes to a similarly stony medium clay loam upper subsoil. The lower subsoil horizons show some variability They are commonly of medium sandy loam medium or heavy clay loam or sandy clay loam texture occasionally gleyed and they contain up to 46% v/v total flints where penetrable in the pit observation 1P which is representative of this soil type Where the horizons were stony they were impenetrable to the soil auger from between 75cm and 105cm

22 The second soil type encountered was found towards the south and west of the site the pit observation 2P is representative The soils in this area comprise a slightly stony (up to 8% v/v total flints including up to 3% > 2cm) medium sandy loam topsoil This passes to a similarly stony (up to 15% v/v total flints) medium sandy loam or medium sandy silt loam upper subsoil The lower subsoil horizons are commonly very stony (up to 47% v/v total flints) as measured in the pit observation, 2P and are either medium sandy loam or loamy medium sand textures These observations were commonly impenetrable to the soil auger between 85 and 110cm due to the flints in the profile

Site

15

23 The textures and subsoil stone content of the majority of the profiles examined cause the water retaining capability of the soil to be reduced to a level where given the local climatic factors Grade 2 is appropriate due to a soil droughtiness limitation which can affect plant growth and yield Occasional observations on this site were of a slightly worse quality but were of too few a number and too scattered a distribution to justify separate mapping

> M Larkın Resource Plannıng Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet 314 Ringwood Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

ΑΡΡΕΝΟΙΧ Π

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
Ш	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
v	The soil profile is wet within 40 cm depth for 211-335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

I

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

2

1 GRID REF national 100 km grid square and 8 figure grid reference

;	USE 1	Land use at the time of s	survey Th	e following abbreviations	are used	
	ARA	Arable	WHT	Wheat	BAR	Barley
	CER	Cereals	OAT	Oats	MZE	Maize
	OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
	РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
	LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
	PGR	Permanent Pasture	LEY	Ley Grass	RGR	Rough Grazing
	SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
	нтн	Heathland	BOG	Bog or Marsh	FLW	Fallow
	PLO	Ploughed	SAS	Set aside	ОТН	Other
	HRT	Horticultural Crops				

3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer

4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers

- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness

8 If any of the following factors are considered significant Y will be entered in the relevant column MREL Microrelief limitation FLOOD Flood risk EROSN Soil erosion risk EXP Exposure limitation FROST Frost prone DIST Disturbed land Chemical limitation CHEM

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ĒR	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stoniness				-

Soil Pits and Auger Borings

1

TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts
P - 41 -				. 1	• •

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)

C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described F few <2% C common 2 20% M many 20-40% VM very many 40% +
- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft colitic or dolimitic limestone
СН	chalk	FSST	soft, fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphi	c rock	
Stone contents (>2cm, >6cm and total) are given in percentages (by volume)			

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation
degree of development
WK weakly developed
MD moderately developed

degree of development	WK weakly developed	MD moderately develop
-	ST strongly developed	
ped size	F fine	M medium
	C coarse	VC very coarse
ped shape	S single grain	M massive
	GR granular	AB angular blocky
	SAB sub angular blocky	PR prismatic
	PL platy	-

9 CONSIST Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extreme	ely firm	EH extremely	hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0 5% biopores >0 5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column

15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name											
Grid Refe	irence S	U16100460	Ao Fii La			154 176 Per	8 mm 5 degree - days manent Gr degrees				
HORIZON	TEXTURE	COLOUR	2	STONES >2	tot stone	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MCL	10YR42		3	6	HR					
30- 65	MCL	10YR43		Ō	3	HR		MDCSAB	FR	м	
65-86	SCL	10YR64		0	40	HR	С		FR	м	
86-120	SCL	10YR53		0	46	HR	С		FR	M	
Wetness G	irade 2		We	tness (las	s I						
			GI	eying	65	cm					
			SP			cm					
Drought G FINAL ALC	GRADE	2	AP AP	P 110mm	МВР	9 mm 6 mm					
	GRADE	2 Soil Wetr	AP ness/		MBP						
FINAL ALC	GRADE	2 Soil Wetr	AP ness/ [L PI	P 110mm Droughtine	MBP	6 mm	2P				
FINAL ALC MAIN LIMI Site Name	GRADE TATION	2 Soil Wetr SOI	AP ness/ IL PI SITE Av	P 110mm Droughtine T DESCRIP 30 verage Annu	MBP 255	6 mm	2P 18 mm 15 degree	days			
FINAL ALC MAIN LIMI Site Name	GRADE TATION	2 Soil Wetr SOI	AP ness/ IL PI SITE Av Ac	P 110mm Droughtine T DESCRIP 30 verage Annu ccumulated weld Capac	MBP ess FION Pit Number ual Rainfal Temperature	6 mm - 2 1 84 3 154 176	18 mm 15 degree 5 days				
FINAL ALC MAIN LIMI Site Name	GRADE TATION	2 Soil Wetr SOI	AP ness/ IL PI SITE Av Ac	P 110mm Droughtine T DESCRIP 30 verage Annu ccumulated	MBP ess FION Pit Number ual Rainfal Temperature	6 mm - 2 1 84 3 154 176	18 mm 15 degree				
FINAL ALC MAIN LIMI Site Name	GRADE TATION	2 Soil Wetr SOI	AP ness/ IL PI SITE Av Ac En La	P 110mm Droughtine T DESCRIP 30 verage Annu ccumulated weld Capac	MBP ess TION Pit Number ual Rainfall Temperature ity Level	6 mm - 2 1 84 3 154 176	18 mm 15 degree 5 days				
FINAL ALC MAIN LIMI Site Name	GRADE TATION	2 Soil Wetr SOI OREST LP S SUI5900460	AP ness/ IL PI SITE Av Ac Fn La SI	P 110mm Droughtine T DESCRIP 30 verage Annu xcumulated weld Capac and Use lope and As	MBP ess TION Pit Number ual Rainfall Temperature ity Level	6 mm 6 mm 1 84 e 154 176 Per	18 mm 15 degree 5 days manent Gr degrees	ass	CONSIST	SUBSTRUCTURE	CALC
FINAL ALC MAIN LIMI Site Name Grid Refe HORIZON 0- 26	C GRADE (TATION MEW F Prence S TEXTURE MSL	2 Son 1 Wetr SOI SOREST LP S SUI 5900460 E COLOUI 10YR42	AP ness/ IL PI SITE Av Av Ac Fi La SI C Q0	P 110mm Droughtine T DESCRIP 30 verage Annu xcumulated weld Capac and Use lope and As	MBP Pit Number Val Rainfal Temperature Ity Level Spect TOT STONE 8	6 mm 6 mm 84 € 154 176 Per LITH HR	18 mm 15 degree 5 days manent Gr degrees	STRUCTURE			CALC
FINAL ALC MAIN LIMI Site Name Grid Refe HORIZON 0- 26 26- 55	E GRADE TATION NEW F erence S TEXTURE MSL MSL	2 Son 1 Wetr SO COREST LP S SUI 5900460 E COLOUI 10YR42 10YR44	AP ness/ IL PI SITE Av Av Ac Fn La SI R 00 00	P 110mm Droughtine T DESCRIP 30 verage Annu ccumulated weld Capac and Use lope and As STONES >2 3 2	MBP ess FION Pit Number ual Rainfall Temperature ity Level spect TOT STONE 8 10	6 mm 6 mm 84 9 154 176 Per LITH HR HR	18 mm 15 degree 5 days manent Gr degrees MOTTLES	Tass STRUCTURE MDCSAB	FR	м	CALC
FINAL ALC MAIN LIMI Site Name Grid Refe HORIZON 0- 26	C GRADE (TATION MEW F Prence S TEXTURE MSL	2 Son 1 Wetr SOI SOREST LP S SUI 5900460 E COLOUI 10YR42	AP ness/ IL PI SITE Av Ac Fn La SI R 00 00 00 00	P 110mm Droughtine T DESCRIP 30 verage Annu cumulated veld Capac and Use lope and As STONES >2 3	MBP Pit Number Val Rainfal Temperature Ity Level Spect TOT STONE 8	6 mm 6 mm 84 € 154 176 Per LITH HR	18 mm 15 degree 5 days manent Gr degrees	STRUCTURE			CALC

Wetness Grade 1 Wetness Class I Gleying 55 cm SPL cm Drought Grade 3A APW 105mm MBW 5 mm APP 95 mm MBP 9 mm

FINAL ALC GRADE 3A MAIN LIMITATION Droughtiness

program ALCO12

Ī

LIST OF BORINGS HEADERS 28/11/96 NEW FOREST LP SITE 30

SAMP	E	ASPECT				WETI	NESS	-WH	EAT-	-PC	TS-	M	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000	EX	P DIST	LIMIT		COMMENTS
							•		-			•					•	
1	SU15900470	LEY				1	2	117		115	11	2				WD	2	IMP FLINTS 85
1P	SU16100460	LEY		65		1	2	129	19	110	6	2				WD	2	PIT 90 AUG 110
2	SU16000470	LEY		85		1	1	157	47	107	3	2				DR	2	
2P	SU15900460	LEY		55		1	1	105	-5	95	-9	3A				DR	3A	PIT 90 AUG 110
3	SU16100470	LEY				۱	1	117	7	108	4	2				DR	2	IMP FLINTS 85
4	SU16200470	LEY		70		1	1	131	21	108	4	2				DR	2	IMP 105 SLGL50
5	SU15900460	LEY		55		1	1	106	-4	102	-2	3A				DR	3A	IMP 85 SEE 2P
6	SU16000460	LEY				1	1	135	25	109	5	2				DR	2	IMP FLINTS 110
7	SU16100460	LEY		70		1	2	118	8	112	8	2				WD	2	IMP 90 SEE 1P
8	SU15900450	PGR		55		1	1	146	36	108	4	2				DR	2	
9	SU16000450	PGR				1	1	118	8	108	4	2				DR	2	IMP FLINTS 85
10	SU16090450	PGR		50		1	1	102	-8	108	4	3A				DR	2	IMP FLINTS 75
11	SU16100442	PGR		55		1	1	100	-10	105	1	3A				DR	2	IMP FLINTS 80

page 1

program ALCO11

COMPLETE LIST OF PROFILES 28/11/96 NEW FOREST LP SITE 30

page 1

progr	din P												FURE	51 LP 51 					page 1
																_			
	-						S							STRUCT/				~~~~	
- SAMPL	E DE	РТН	TEXTURE	COLOUR	ωL	ABUN	CONT	ωL	GLEY	>Z	>0	LIIP	1 101	CONSIST	218	PUR	IMP SPL	CALC	
1	c)-35	mc]	10YR42 5	2					2	0	HR	6						
	35	5-65	mcl	10YR42 0						0	0	HR	2		м				
	65	5-78	ms l	10YR43 0	0					0	0	HR	2		G				
	78	8-85	lms	10YR53 0	0					0	0	HR	20		M				IMP FLINTS 85
1	P (mcl	10YR42 5							0		6						PIT 🔁 BORING 7
) 65	mc]	10YR43 0			_				0			MDCSAB					
		5-86	scl	10YR64 0						0			40		FRM				
-	86	5-120	scl	10YR53 0	UIUIK	58 00 0			Ŷ	U	0	HK	46		FRM				IMP 110 WET SIEVED
2 2)-35	ms)	10YR42 5	2					2	0	HR	6						
		5-75	mc]	10YR42 0							ō		10		м				
-		5-85	msl	10YR43 0							Ō		2		G				
			ms 1	10YR64 0		58 00 0	2		Y		0		5		Ğ				
- 2	P ()-26	msl	10YR42 0	0					3	0	HR	8						PIT @ BORING 5
-	26	5-55	ms l	10YR44 0	0					2	0	HR	10	MDCSAB	FRM				WET SIEVED
	55	5-75	nns l	10YR53 0	0 10YR	56 00 (2		Ŷ	20	0	HR	46	WKCSAB	FR G				WET SIEVED
	75	5 120	lms	10YR54 0	0				Ŷ	0	0	HR	47		M				IMP FLINTS 110
_										_									
3			กร ไ	10YR42 5							0		8						
		5 65	mcl	10YR42 0							0		8		M				
	63	5 85	<u> ส</u> รไ	10YR44 0	U					U	0	HR	2		G				IMP FLINTS 85
4		35	ms]	10YR42 5	2					2	0	HR	8						
		5 50	mcl	10YR42 0							Ō		10		м				
)-70	hc1	10YR53 0		58 00 (2		S		0		2		M				SLIGHTLY GLEYED
	70	0-105	mc]	10YR64 0	0 10YR	58 00 (2		Y	0	0	HR	2		м				IMP FLINTS 105
5	i (30	msl	10YR41 0	0					2	0	HR	8						2P LOCATION
) 55	msl	10YR44 5						0	0	HR	15		G				
	55	580	ms l	10YR53 0					Y	0			30		G				
	80	85	lms	10YR42 5	2 10YR	56 00 (2		Ŷ	0	0	HR	60		м				IMP FLINTS 85
6		30	ms]	10YR41 0						0		HR	10						
-		50	msz]	10YR42 4						0		HR	5		M				
)-70)-100	msz] msi	10YR44 5		se oo a	.			0		hr Hr	10 25		M G				
			nnsi nnsi	107R54 0		50 00 r				-	0		25 50		G				IMP FLINTS 110
-			11.31	101835 0	•					Ŭ	Ū		~		ŭ				
	, c	35	mcl	10YR42 5	2					2	0	HR	8						PIT 1 LOCATION
		5 70	mcl	10YR42 0						0	0	HR	5		м				
-	70	90	mc l	10YR64 0	0 10YR	58 00 0	;		Y	0	0	HR	10		М				IMP FLINTS 90
8)-30	ms1	10YR41 0						2	0	HR	10						
)~55	ms l	10YR54 0						0		HR	10		G				
_			ms 1	10YR54 5					Y	0		HR	10		G				
			msl ,	10YR54 5					Y	0		HR	30		G				
	85	5 120	msl	10YR64 0	U IOYR	ob UD (Ŷ	0	0	HR	35		G				

program ALCO11

COMPLETE LIST OF PROFILES 28/11/96 NEW FOREST LP SITE 30

				MOTTLE	S	PED			-S'	TONES	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT CONSIST	STR POR IMP SPL CALC	
9	0-35	ms l	10YR41 00					2	0	HR	10		
-	35-80	nsi nsi	10YR44 00					_	-	HR	10	G	
	80-85	ണടി	10YR54 44								15	G	IMP FLINTS 85
	00 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Ť	Č			-	
10	0-28	msl	10YR41 00					0	0	HR	5	-	
	28-50	mcl	10YR54 00					0	0	HR	5	м	
	50-75	ണടി	10YR53 54	10YR58 00 0	;		Y	0	0	HR	10	м	IMP FLINTS 75
11	0-30	สรไ	10YR42 00					2	0	HR	10		
	30-55	ncl	10YR44 00					0	0	HR	5	М	
	55-70	scl	10YR52 00	10YR58 00 0	:		Y	0	Q	HR	10	M	
	70-80	scl	10YR52 51	10YR58 00 M	ı 0	OMNOO C	90 Y	0	0	HR	50	М	IMP FLINTS 80

page 2