3304/009/97

A1 Land at Joint Service Command College, Watchfield, Oxfordshire

> Agricultural Land Classification February 1997

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 3304\009\97 MAFF Reference EL 33/01614 LUPU Commission 03043

AGRICULTURAL LAND CLASSIFICATION REPORT

LAND AT JOINT SERVICE COMMAND COLLEGE, WATCHFIELD, OXFORDSHIRE

INTRODUCTION

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 58 hectares of land located around the Joint Service Command College at Watchfield in Oxfordshire The survey was carried out during February 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with an *ad-hoc* planning application. The results of this survey supersede any previous ALC information for this land

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA) Reading The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey most of the agricultural land on this site was in arable use (cereal stubble ploughed land and winter cereal) together with an area of permanent pasture to the east of the site The areas shown as Other Land comprise woodland scrub and recreational land

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	95	17.9	16.4
- 3a	156	29 4	26 9
3b	27 9	52 7	48 1
Other Land	50		86
Total surveyed area	53 0	100 0	10 10 I I I I I I I I I I I I I I I I I
Total site area	58 0		100 0

Table 1 Area of grades and other land

7 The fieldwork was conducted at an average density of one boring per hectare A total of 56 borings and four soil pits were described

8 Approximately half of the land on this site has been classified as best and most versatile Grade 2 and Subgrade 3a Grade 2 (very good quality) land occurs in the south of the site All of this land is limited by minor soil wetness and/or workability limitations Land classified as Subgrade 3a (good quality) is limited by soil wetness These profiles are similarly drained to those assigned to Grade 2 However they have heavier topsoils which means that the resulting soil wetness limitations are slightly more severe Land on the lower slopes immediately to the east of Homeleaze Road is also limited by soil wetness. Here the subsoils contain significant amounts of limestone fragments set in a clay matrix these profiles are also moderately well drained

9 Land between Majors Road and Bower Green is classified as Subgrade 3b (moderate quality) This land is limited by significant soil droughtiness arising from relatively shallow heavy clay loam soils developed in brashy limestone. The interaction between the soil characteristics and the local climate leads to a restriction in water availability for plants in most years. Consequently Subgrade 3b is appropriate on the basis of soil droughtiness.

10 The lower-lying land flanking the Bower Brook and land adjacent to Meadow Road has also been classified as Subgrade 3b This land is subject to significant soil wetness and workability limitations In comparison to land classified as Grade 2 and Subgrade 3a the clay occurs at much shallower depths within the soil profile thereby impeding soil drainage This results in more severe restrictions on the flexibility of cropping stocking and cultivations

Factors Influencing ALC Grade

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given overleaf in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

Factor	Units	Values	Values
Grid reference	N/A	SU 247 905	SU 255 900
Altitude	m, AOD	100	90
Accumulated Temperature	day°C (Jan June)	1413	1424
Average Annual Rainfall	mm	665	663
Field Capacity Days	days	146	146
Moisture Deficit, Wheat	mm	104	105
Moisture Deficit, Potatoes	mm	95	96

Table 2 Climatic and altitude data

15 The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations At this locality the climate is relatively dry in regional terms As a result the likelihood of soil droughtiness problems will be enhanced whilst soil wetness limitations may be reduced No local climatic factors such as exposure or frost risk, are believed to adversely affect the land quality on the site This site is climatically Grade 1

Site

16 The highest land on the site around Watchfield Folly lies at an altitude of 105 m AOD The land on the site is level to gently sloping $(0-3^{\circ})$ and typically falls in a southerly or south easterly aspect to Bower Brook The Brook is the lowest point on the site and lies at an altitude of just below 90 m AOD Nowhere on the site do gradient or microrelief affect agricultural land quality

Geology and soils

17 The published geology map (BGS 1971) shows the lower lying land flanking the Bower Brook to be underlain by Corallian Beds of clay the slightly higher land in this area is shown to be underlain by Corallian Beds of sand The latter is also shown on the higher land around Watchfield Folly with the lower land shown to be underlain by Corallian Beds of clay The land in the north of the site between Meadow Road and Bower Green is shown to be underlain by Corallian Beds of limestone

18 The most detailed published soil map for this area (SSEW 1973) maps four soil types across the site Soils of the Kingston Series are shown in areas approximate to those underlain by the Corallian Beds of clay These soils are described as Slowly permeable seasonally waterlogged fine loamy over clayey soils and similar soils with slowly permeable subsoils and slight seasonal waterlogging (SSEW 1973) Soils of the Shrivenham Series equate with land underlain by the Corallian Beds of sand These soils are described as Well drained loamy ferritic ferruginous loams (SSEW 1973) A very thin strip of land immediately adjoining the Bower Brook is mapped as the Hatford Kelmscot complex The Hatford Series is described as Very calcareous and humose mottled silty and/or loamy over peat soils (SSEW 1973) The Kelmscot Series is described as mottled gravelly silty or loamy or loamy over gravelly calcareous soils (SSEW 1973) Soils of the Sherborne Series are mapped in association with the Corallian Beds of limestone These soils are described as Shallow calcareous brown loam, clay loam or clay soils over Jurassic limestone (SSEW 1973)

Agricultural Land Classification

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

20 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Grade 2

Grade 2 very good quality land occurs to the south of the College This land is limited by minor soil wetness and workability Approximately half of the profiles have heavy clay loam topsoils some of which are calcareous These overlie similarly textured and clay subsoils which are permeable and moderately structured These subsoils tend to be brownish in colour though some profiles are paler and gleyed at depth All of these profiles are well drained and have been assigned to Wetness Class I (see Appendix II) The heavy topsoils at this relatively dry locality means that this land will be limited by slight soil workability Elsewhere the profiles have slightly lighter topsoils of medium clay loam However these profiles overlie poorly structured plastic clay lower subsoils at approximately 60-65 cm depth The clay is slowly permeable and acts to impede drainage such that Wetness Class II is appropriate The interaction between the soil drainage and the lighter topsoils at this locality acts to impart both minor soil wetness and workability limitations All of the Grade 2 land will be subject to slight restrictions on the flexibility of cropping stocking and cultivations

Subgrade 3a

22 All of the land classified as Subgrade 3a good quality land is limited by soil wetness and workability Many of the profiles have non-calcareous heavy clay loam topsoils These overlie clay heavy clay loam and sandy clay upper subsoils The upper subsoils are permeable moderately structured and tend to be brownish in colour At approximately 60-75 cm depth these pass into plastic clay lower subsoils which are poorly structured and slowly permeable These profiles are assessed as being moderately well drained (Wetness Class II) as indicated by gleying from approximately 45-70 cm depth These profiles are represented by Pits 1 and 4 (see Appendix III) The interaction between these soil drainage characteristics and the heavy topsoils with the relatively dry local climate means that Subgrade 3a is appropriate Elsewhere the topsoils are lighter comprising medium clay loams However in these profiles the plastic clay occurs at shallower depths typically 40-60 cm, with gleying being present from between 30-45 cm depth These profiles are imperfectly drained (Wetness Class III) Although slightly less well drained the lighter topsoils means that this land is also classified as Subgrade 3a This land will have some restrictions on the flexibility of cropping stocking and cultivations

The land on the lower slopes of the Bower Brook immediately east of Homeleaze Road is limited by both soil wetness and droughtiness Profiles comprise heavy clay loam topsoils These overlie clay subsoils which contain limestone fragments Upper subsoils tend to be moderately stony (approximately 34% total stone) lower subsoils are slightly stonier (approximately 50% total stone) Such profiles are represented by Pit 3 Profiles are gleyed within 40 cm but the limestone fragments improve the soil drainage such that the clay is not slowly permeable. These profiles are assigned to Wetness Class II the heavy topsoils mean that Subgrade 3a is appropriate because of soil wetness limitations. However, soil droughtiness is equally limiting. The interaction between the soil characteristics (soil texture and stone content) and the relatively dry climate results in the amount of soil water being inadequate to fully meet crop needs in some years. This may cause crops to suffer drought stress and thereby adversely affect yield potential.

Subgrade 3b

Land between Majors Road and Bower Green is classified as Subgrade 3b moderate quality This land is limited by significant soil droughtiness arising from relatively shallow heavy clay loam soils developed in brashy limestone Topsoils are moderately stony containing 12% of hard limestone fragments larger than 2 cm and 20% total hard limestone fragments Upper subsoils are very stony containing 55% total hard limestone fragments From Pit 2 which represents such profiles roots were observed to 50 cm depth Below this depth the limestone becomes less fragmented consequently it has been assumed that roots would not be able to significantly penetrate below this depth The interaction between the soil characteristics (but in particular the restricted rooting) and the relatively dry local climate leads to a restriction in water availability for plants in most years Consequently Subgrade 3b is appropriate on the basis of soil droughtiness This land will be subject to lower and less consistent crop yields

The lower-lying land flanking the Bower Brook and land adjacent to Meadow Road has also been classified as Subgrade 3b This land is subject to significant soil wetness and workability limitations Topsoils comprise heavy clay loams or clays These often overlie similarly textured permeable upper subsoils Slowly permeable layers generally begin at between 20 cm and 38 cm depth these profiles are poorly drained (Wetness Class IV) In some profiles the slowly permeable layers occur slightly deeper between 40 cm and 60 cm these profiles are imperfectly drained (Wetness Class III) The interaction between both soil drainage characteristics and the heavy topsoils with the local climate results in soil wetness

Soil wetness can adversely affect seed germination and survival and can inhibit the development of a good root system. It also influences the sensitivity of soil to structural damage and is therefore a major factor in determining the number of days when cultivation, trafficking or grazing can take place. Subgrade 3b land is capable of producing moderate yields of a narrow range of crops such as cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

> Gillian Iles Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No 253 Abingdon 1 63 360 BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1973) Sheet 253 1 63 360 and accompanying legend. SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

ΑΡΡΕΝΟΙΧ ΙΙ

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
V	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in *Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land* (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR		Scrub	CFW	Conife	rous Woodland
DCW	Deciduous Wood				
нтн	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Cro	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			_

Soil Pits and Auger Borings

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 **MOTTLE ABUN** Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 **STONE LITH** Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH grav	el with non-porous (hard) stones
MSST	soft medium grained sandston	GS grav	el with porous (soft) stones
SI	soft weathered igneous/metamor	phic rock	

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 **STRUCT** the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
<u>ped sıze</u>	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	 S single grain GR granular SAB sub-angular blocky PL platy 	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extrem	nely firm	EH extremel	y hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- **MBP** moisture balance potatoes

1

Site Nam	ie WAT	CHFIEL	.D SHI	RIVE	INHAM		Pit	Number	1	Р				
Grid Ref	erence	SU249	09050	A F L S	Iverage / Iccumulat Teld Caj Land Use Slope and	Annua ted " pacif d Asj	al Ra Tempe ty Le pect	ainfall erature evel	0 Cer	0 mm 0 degree days reals degrees	days			
HORIZON	TEXTU	RE	COLOU	R	STONES	>2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	SCL	1	0YR44	58	1			1	HR					
30- 50	HCL	1	0YR44	00	0			0		F	MDCSAB	FR	м	
50- 58	SCL	1	0YR56	00	0			0		С	MDCSAB	FR	M	
58- 68	HCL	2	25Y 63	00	0			0		Ċ	WDCSAB	FM	P	
68 -120	С	C)5GY61	00	0			0		С	WDCAB	FM	Р	
Wetness	Grade	2		٢	letness (Clas	5	II						
				(aleying			058	cm					
				5	SPL			068	cm					
Drought	Grade	1		,	APW 13	7mm	MBI	N 3	12 mm					
				ł	APP 11	2mm	MBI	וי	6 mm					
FINAL AL	.C GRADE	2												
MAIN LIM	ITATION	Wet	tness											

Site Na	me WAT	CHFIELD) SHRI	VENHAM	I	Pit N	umber	- 2	2P				
Grid Re	ference	SU2580	9080	Avera Accum Field Land Slope	ige Ann Nu lated I Capac Use 1 and A	ual Rai Temper ity Lev spect	nfal] ature el	Cer 01	0 mm 0 degree) days reals degrees S	days			
HORIZON 0- 26 26- 50	textu HCL HCL	RE C 10 10	XOLOUR 19844 0 19846 0	STO 0 0	NES >2 12 0	TOT S 20 55	Tone	LITH HR HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC Y Y
Wetness	Grade	2		Wetne Gleyi SPL	ss Cla ng	SS	I No	cm SPL					
Drought	Grade	38		APW APP	57 mm 57 mm	mbw MBP	-4 -3	8 mm 9 mm					
FINAL A	LC GRADE	3B											

MAIN LIMITATION Droughtiness

Site Nam	e WAT	CHFIELD	SHRI	VENHAM		Pit I	Number	• 3	3P				
Grid Ref	erence	SU25338	3990	Avera	ge Annu	ial Ra	infall	l	0 mm				
				Accum	ulated	Temper	rature)	0 degree	days			
				Field	Capaci	ity Lev	vel	() days				
				Land	Use			Cer	reals				
				Slope	and As	pect		01	degrees S	SE .			
HORTZON	TEXTU	RF CI	JLOUR	STO	NES 52	тот я	STONE	і ттн	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	
0- 30	HCL	10)	(R43 0)	טוט ר	1	101 4	3	HĐ		OTKOOTORE	00/010/	CODOTINOTORE	
30- 55	C	10)	(R53 0)	י ר	'n	34	1	HR	м	WKCSAB	FM	Р	v
55- 80	c	25)	/ 52 0	5	0	50	כ	HR	M		FM	P	Ŷ
idetness (Grade	34		Hotno	ee (lae	e	TT						
				Glavi	33 C123		030	~					
				SPL			No	SPL					
Drought (Grade	3B		APW	82 mm	MBW	-2	2 mm					
				APP	85 mm	MBP	-1	0 mm					
FINAL ALC	C GRADE	3A											

MAIN LIMITATION Soil Wetness/Droughtiness

Site Name	B WATCHI	FIELD SHRI	VENHAM	F	it Numbe	r 4	IP							
Grid Refe	erence Sl	J25709020	Average	Annua	l Rainfal	1	0 mm							
			Accumula	ated Te	mperatur	e	0 degree	days						
			Field Ca	pacity	/ Level	c) days							
			Land Use	•										
Slope and Aspect 01 degrees SE														
HORIZON	TEXTURE	COLOUR	STONES	5 >2 1	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC			
0- 30	HCL	10YR42 0	0 0		0									
30- 40	С	10YR43 0	0 O		0			MDCSAB	FR	м				
40- 60	С	10YR53 5	4 0		0		м	MDCSAB	FR	M				
60- 85	С	25Y 62 0	0 0		0		м	WKCOAB	FM	P				
Wetness (arade 3/	4	Wetness	Class	11									
			Gleying		060	cm								
			SPL		050	Cm								
Drought (Grade		APW	mm	MBW	0 mm								
			APP	mm	MBP	0 mm								
FINAL ALC	GRADE	3A												

MAIN LIMITATION Wetness

program ALCO12 LIST OF BORINGS HEADERS 17/04/97 WATCHFIELD SHRIVENHAM

SAMP	LE	A	SPECT				WET	NESS	-WH	EAT-	-P0	TS-	M	REL	EROSN	FR	OST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	DIST	LIMIT		COMMENTS
1	SU25509080	CER	S	01			1	2	47	-61	47	-52	4					DR	3B	Imp35 see2P
1P	SU24909050	CER			058 0	68	2	2	137	32	112	16	1					WE	2	In 3a unit
2	SU25609080	CER	S	02			1	2	46	-59	46	-50	4					DR	3B	Imp30 see2P
2P	SU25809080	CER	S	01			1	2	57	-48	57	-39	3B					DR	38	TO 50
3	SU25709080	CER	S	02			1	2	43	-60	43	-51	4					DR	38	Imp30 see2P
3P	SU25338990	CER	SE	01	030		2	3A	82	-22	85	-10	3B					WD	3A	Pit to 80
4	SU25809080	CER	S	02			1	2	49	-54	49	-45	4					DR	3B	Imp35 see 2P
4A	SU25829066	CER	Ε	01			1	3A	62	-43	62	-34	3B					DR	3B	Imp40 see 2P
4P	SU25709020	STB	SE	01	060 0	60	2	3A		0		0						WE	3A	Plastic C 60
5	SU25909080	CER			030		2	2	65	-40	65	-31	3B					DR	3B	Imp40 see 2P
_																				
6	SU26009080	CER					1	2	57	-48	57	-39	38					ÐR	38	Imp35 see 2P
7	SU25009070	CER	Ε	02	045 0	60	2	3A		0		0						WE	3A	Plastic C 60
8	SU25409070	CER			070		1	2	152	47	111	15	1					WK	2	Sandyish
9	SU25509070	CER	_				1	2	78	-27	78	-18	38					DR	3B	Imp47 see 2P
10	SU25609070	CER	S	01			1	1	83	-22	91	-5	3B					DR	3A	I60 sl deeper
										_										
11	SU25909070	CER			035		2	38		0		0						WE	3B	Impen 60
12	SU24909060	CER	SE	02	035 0	55	3	34		0		0						WE	3A	Plastic 55
13	SU25009060	CER	N	02	045 0	45	3	38		0		0						WE	3B	Plastic 50
14	2022103000	SAS	SE	02	0.0	25	4	38		0		0	-					WE	3B	
15	2022203000	SAS					1	2	141	36	117	21	1					WE	2	
16	51125400050	CEn	-	00				•	~~	40	~ ~		20							
10	5025409060	CEN	E.	02				2	63	-42	03	-33	38					DR	38	Imp3/ see 2P
10	5025509000		1.1		065.0	<i></i>	1	2	67	-38	0/	-29	38					DR	38	Imp42 see 2P
10	5024909050	STD	W	Ψī	005 0	20	2	3A DD		0		0						WE	3A 20	Plastic 65
20	SU25309055	CED			035 0	72	4	20		0		0						WE	38	160 gravelly
20	3023303033	CCK			040 0	40	3	AC NC		v		U						WE	AL	SI gleyed 35
22	\$125909050	PCp			030		1	2	141	36	111	15	1					ЦК	2	SI alaund 20
23	SU24709040	CEP	ŝ	02	060 0	60	2	34	141			1.5	•						2	Sigleyed SU
24	SU24809040	CFP	SW	02	070 0	70	2	28		0		n						ᄣ	20	Si gleyed 50
25	SU24909040	CER	F	02	0.00		1	30		ň		ň						ᄣ	30	Si gleyed 55
26	SU25909040	PCP	-	vL	048.0	55	2	2		ň		ň							2	Disetic 55
							-	-		v		•						HL.	•	
27	SU26009040	PGR			035 0	60	3	38		0		0						WF	3B	Plastic 60
28	SU24809030	CER	SW	02	065		1	2	123	18	113	17	2					WK	2	Sl aleved 65
29	SU25809030	PGR	SE	01	045 0	90	1	1	145	40	116	20	-					nn.	-	Si aleved 45
30	SU25909030	PGR			040 0	50	3	34		0		0	·					WF	34	Plastic 50
31	SU25709020	STB	SE	01	045 0	60	2	3A		Ō		0						WF	34	Plastic 60
							-			-		-							••••	
32	SU25809020	PGR	SE	02	040 04	40	3	3A		0		0						WE	34	Plastic 40
33	SU25509010	PLO	SE	02	-		1	2	151	46	120	24	1					WK	2	
34	SU25609010	STB	s	02	045 0	70	2	3A	-	0	_	0						WE	3A	Plastic 70
35	SU25709010	ЅТВ	SE	01	027 0	50	3	3B		0		0						WE	3B	Plastic 50
36	SU25809010	STB			027 03	35	4	3B		0		0						WE	3B	Plastic 35
37	SU25909010	PL.O			020 02	20	4	38		ο		0						WE	3B	Plastic 20
38	SU25238998	CER	S	03	065 06	65	2	3A		0		0						WE	3A	Plastic 65

LIST OF BORINGS HEADERS 07/04/97 WATCHFIELD SHRIVENHAM

SAMPL	E	AS	SPECT				WETN	IESS	-WHI	EAT-	-P0	TS-	M	REL	EROSN	FROS	т	CHEM	ALC	
NO	GRID REF	USE	(GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00	D E	XP	DIST	LIMIT		COMMENTS
39	SU25309000	CER	S	03	060	060	2	3A		0		0						WE	3A	Plastic 60
40	SU25409000	CER	S	03	052	052	2	3A		0		0						WE	ЗA	Plastic 52
41	SU25509000	PLO	SE	02	040	040	3	38		0		0						WE	3B	Plastic 40
42	SU25609000	PLO			035	035	4	38		0		0						WE	3B	Wat table60
43	SU25709000	PL0			030	040	3	38		0		0						WE	3B	Plastic 40
44	SU25809000	PL0			025	025	4	38		0		Ð						WE	3B	Plastic 25
45	SU25909000	PL0			045	065	2	2	137	32	114	18	1					WE	2	Some CS 65
46	SU26009000	PL0			040	040	3	3A		0		0						WE	3A	Plastic 40
47	SU25238990	CER	SE	01			1	2	60	-45	60	-36	3B					WD	3A	Imp35 see 3P
48	SU25308990	CER					1	2	65	-40	65	-31	3B					WD	3A	Imp40 see 3P
49	SU25408990	CER	SE	02			1	2	93	-12	102	6	3A					DR	3A	Imp62 see 3P
50	SU25508990	RGR			025	025	4	38		0		0						WE	3B	Plastic 25
51	SU25608990	CER	N	01	030	062	3	3A		0		0						WE	3A	Plastic 62
52	SU25708990	PL0			058	058	2	2	138	33	115	19	2					WE	2	Plastic 58
53	SU25808990	PL0					1	1	138	33	115	19	1						1	Sandyish
54	01125500000	~CD	N	01	040	040	2	20		•		0						ыс	20	51 alayad 29
34 66	SU22200380		ni N	01	040	040	3 1	30 2	142	20	110	22	1					WE	ათ ი	Sigleyeo ∠o
55	SU25008980		(N) 1.1	01	075	075	ו י	2	143	38	119	23	I					WK.	2	S1 alound 59
20	2022208310	UEK	M	U I	075	0/5	۷	-AC		U		U						WE	-SA	Si gieyed 56

rogram ALCO11

COMPLETE LIST OF PROFILES 17/04/97 WATCHFIELD SHRIVENHAM

---- MOTTLES---- PED ----STONES---- STRUCT/ SUBS MPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0-28 hc1 10YR44 00 4 0 HR 18 1 55 28-35 hc1 25Y 63 62 0 0 HR Μ Y Imp35 1st frags 1P 0-30 10YR44 58 1 OHR scl 1 psd=sc1 hand=hc1 10YR44 00 10YR56 00 F 0 0 30-50 hc1 0 MDCSAB FR M 50-58 10YR56 00 10YR68 00 C S 0 0 0 MDCSAB FR M scl \$1 gleyed 0 WDCSAB FM P 25Y 63 00 10YR58 00 C Y 0 0 58-68 hc1 Y 0 0 05GY61 00 75YR58 00 C 0 WDCAB FM P Y 68–120 c Y 2 0-25 hc1 10YR44 00 2 0 HR 12 Y 25-30 10YR46 00 0 0 HR 20 Imp35 1st frags hcì м Y 2P 0-26 10YR44 00 12 6 HR 20 hc1 26-50 hc] 10YR46 00 0 0 HR 55 Y Q bedrock 50 M 3 0-25 hc1 10YR44 00 12 0 HR 20 25-30 hc1 10YR44 46 0 0 HR 25 м Y R 0-30 hc1 10YR43 00 1 0 HR 3 10YR53 00 10YR58 00 M 00MN00 00 Y 0 O HR 34 WKCSAB FM P 30-55 с Y wet sieved 25Y 52 00 10YR58 00 M 00MN00 00 Y 0 0 HR 55-80 50 FM P Y С wet sieved ۵ 0-25 hc1 10YR44 00 12 0 HR 20 Y 25-35 10YR46 00 0 0 HR 25 hc1 м Y Imp35 1st frags 4A 0-32 10YR43 00 3 0 HR 5 С 32-40 10YR44 00 0 O HR 20 с м Y Imp40 1st frags ΔP 0-30 10YR42 00 0 0 n hc1 30-40 10YR43 00 0 0 0 MDCSAB FR M С 40-60 10YR53 54 75YR58 00 M 10YR62 00 Y 0 0 0 MDCSAB FR M С Friable 60-85 С 25Y 62 00 75YR68 00 M Y 0 0 0 WKCOAB FM P Y Y Plastic 5 0-30 hc1 10YR44 00 4 0 HR 7 Y 10YR53 00 75YR56 00 C 10YR52 00 Y 0 0 HR 30-40 10 с М Y Imp40 1st frags 6 0-30 hc] 10YR43 53 2 0 HR 8 Y 30-35 10YR54 00 0 0 HR 10 м ۷ Imp35 1st frags С 0-25 10YR36 00 0 0 HR 7 hc1 1 25-45 10YR36 00 0 0 0 С M 45-60 10YR53 00 10YR56 00 M 0 0 0 С v Μ Friable 60-80 05Y 51 00 10YR56 00 M Y 0 0 0 Ρ Y Plastic С 8 0-25 hc1 10YR44 00 0 0 HR 2 25-35 hc1 10YR44 46 0 0 HR 2 М 35-70 sc1 10YR46 00 0 0 HR 2 М 10YR46 00 75YR46 00 C COMINOO 00 S 0 0 0 70-120 sc Μ Q spl

program ALCO11

COMPLETE LIST OF PROFILES 07/04/97 WATCHFIELD SHRIVENHAM

page 2

					10 TTLES		PED		_		-ST	ONES		STRUCT/	SURS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GL	EY >	2 >	»6	LITH	TOT	CONSIST	STR	POR IMP	SPL	CALC	
9	0-30	hc1	10YR43 00							0	Û	HR	3					Y	
	30-47	с	10YR42 43							0	0	HR	8		Μ			Y	Imp47 1st frags
10	0-25	mcl	10YR44 00							3	0	HR	12					Y	
	25-60	С	10YR46 00							0	0	HR	10		М			Y	Imp60 1st frags
										_	_								
11	0-35	c	10YR43 53							0	0	HR	1						
	35-48	С	10YR53 00	75YR58	3 00 C	1	COMINCO	00	Y	0	0		0		M				
	48-60	C	25Y 64 00	10YR56	00 C	I	OOMNOU	00	Y	O	U	HR	15		M			Y	
10	0.25	1	100046 00							^	•	un	-						
12	0-23 25 25	SCI	101046 00							0	0	nĸ	۱ ۸		м				
	20-30	SC	101K40 00	100054	5 00 M			,	~	0	٥ ٥		0		т м				Estable
	55-55	50	05V 01 00	107256	500 0				, v	0	٥ ٨		Ň		D		v		
	55-70	C	051 01 00	TOTAG					•	Ŭ	Č		v		г		1		Flastic
13	0-25	hc]	10YR44 00							1	٥	HR	1						
10	25-35	c	10YR44 00							ò	õ		Ó		м				
	35-45	c	25Y 54 00							0	0		0		M				
	45-50	c	25Y 53 00	75YR56	5 00 C				Y	Ó	0		0		Ρ		Y		Firm
	50-70	с	05Y 51 00	10YR56	5 00 M				Y	0	0		0		Р		Y		Plastic
14	0-25	с	10YR53 00	10YR56	500 C			•	Y	0	0	HR	2						
	25-35	с	10YR53 54	10YR58	3 00 M	I	OOMNOO	00	Y	0	0		0		Ρ		Y		Plastic
	35-70	c	10YR53 52	10YR68	3 00 M	I	00mn00	00	Y	0	0		0		Ρ		Y		Plastic
15	0-30	hc]	10YR43 33							0	0	HR	1						
	30-50	с	10YR44 00							0	0	HR	1		M				
	50-75	c	10YR44 00	10YR46	00 F				_	0	0	HR	1		M				
	75-120	c	109844 00	IUYR5	5 UU C				5	U	U	нк	1		м				Qspi
16	0.33	h-l	100042 00							2	0	цр	F					v	
10	33_37		107843 00							0	0	HR	5		м			v	Tmo37 let franc
	55-57	C								Ŭ	Č		•					•	Impor (at fraga
17	0-30	hcl	10YR43 00							5	3	HR	10					Y	
	30-42	c	10YR44 00							0	0	HR	5		м			Ŷ	Imp42 lst frags
		-											•					•	
18	0-28	hc1	10YR44 00							0	0		0						
	28-45	hc1	10YR44 00	000000	00 F					0	0		0		м				
	4565	sc	25Y 56 00	10YR46	5 00 C				s	0	0		0		м				Friable
	65-120	с	10Y 06 00	10YR56	5 00 C				Y	0	0		0		Ρ	Y	Y		Plastic
19	0-25	c	10YR53 00	75YR58	300 F					0	0	HR	2						
	25-35	с	10YR44 00	75YR58	3 00 C				S	0	0	HR	2		Μ				Q sp1
	35-55	с	10YR52 53	75YR58	3 00 C		00mn00		Y	0	0		0		Ρ		Y		Firm
	55-60	с	10YR52 53	75YR58	3 00 C		00min00		Y	0	0	HR	20		Ρ		Y	Y	Imp60 gravelly
	A A-		-							~	~								
20	U-23	nc I	10VR43 00				0048100	~~		0	0	nk ND	4					Y	
	23-35	C	107844 UU		2 00 0		OOMNOO	00	c	0	U n	กห บอ	4		M M			Ŧ	bauge 12
	33-40 48-85	- -	107843 44	107050	3 00 0		nominon	00	v	0	n	HR	د ۱		P		v		Firm
	85-100	~ c	10YR53 00	10YR5	3 00 C			00	Y	õ	õ	HR	5		P		Ý		Firm
		-			~~ ~				•	-	-	-	-		•				

ogram ALCO11

					MOTTLES	;	PED			;	STONES	S	STRUCT/	SUBS			
AMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	Y >2	2 >1	5 LITH	і тот	CONSIST	STR POR	IMP S	PL CALC	
22	0-30	hc]	10YR43 53						c) () hr	10				Y	
	30-40	c	10YR54 00	75YR4	6 00 C			s	. () (HR	10		м		Y	S1 gleyed
_	40-80	hc1	10YR52 00	75YR4	6 00 C			Y	· () () HR	2		M			
2	80-120	¢	10YR44 00	75YR4	600 C			S	. () (3	0		M			\$1 gleyed
23	0-30	hcl	10YR43 00						C)	2	0					
-	30-50	¢	10YR44 00						0) () hr	2		M			
	50-60	c	10YR44 00	10YR5	8 00 C			S	. () (D HR	2		M			S1 gleyed
	60-80	¢	10YR53 00	75YR5	B 00 M		0011100	00 Y	<u> </u>) ()	0		P	`	Y	Plastic
24	0-30	¢	10YR43 00						C	5 () hr	۱					
	30-50	c	10YR44 00	10YR5	6 00 F				() (2	0		M			
_	50-70	scl	10YR54 00	10YR5	8 00 C			S	i (יכ	0	0		M			S1 gleyed
	70-90	C	05Y 71 00	75YR5	8 00 C			Y	() ()	0		Ρ	`	Y	
25	0-30	c	10YR44 00						C) () hr	1					
	30-55	c	10YR36 00						C) (כ	0		M			
	55-80	c	10YR46 00	10YR5	6 00 C		00MN00	00 S	6	0 (0	0		M			S1 gleyed
I	80-120	\$C	10YR45 00	10YR5	600C		COMNOO	00 S	. (וכ	0	0		М			Sl gleyed
26	0-30	ncl	10YR43 00						C) (נ	0					
	30-48	c	10YR44 00	10YR5	6 00 F		00MN00	00	() (כ	0		м			
-	48-55	¢	10YR53 54	75YR5	8 00 C			Y	() (כ	0		м			
	55-80	c	10YR53 00	75YR5	B 00 M			Y	() (0	0		P	`	Ŷ	
27	0-27	hc1	10YR43 00						(5 (0	0					
_	27-35	¢	10YR54 56						0) ()	0		M			
	35-60	c	25Y 53 00	75YR5	6 00 C		00MN00	00 Y	<u> </u>) (כ	0		м			Friable
	60-90	¢	25Y 63 00	75YR5	8 00 M		10YR61	00 Y	· () ()	0		Ρ	`	Y	Plastic
28	0-30	hc1	10YR46 00						1	1 (n R	1					
	30-65	scl	10YR44 00						0) ()	0		M			
-	65-90	scl	10YR56 00	10YR5	268C		OOMNOO	00 S	0) ()	0		M			S1 gleyed
29	0-25	mcl	10YR44 00						C) () hr	2					
	25-45	hc1	10YR46 00						C) ()	0		M			
	45-65	hcl	10YR56 00	10YR6	B 00 C			S	C) ()	0		M			S1 gleyed
	65-90	hcl	25Y 52 00	75YR5	B 00 C		00MN00	90 Y	C) ()	0		M			
	90-120	C	25Y 62 00	75YR5	558 M			Y	0) ()	0		Р	•	Ý	Plastic
30	0-28	mcl	10YR36 00						C) ()	0					
	28-40	hcl	10YR54 00	10YR5	500F				0) ()	0		M			
•	40-50	C	25Y 54 00	75YR5	5 00 C			Y	C) ()	0		M			Friable
1	50-80	¢	25Y 53 62	75YR50	5 00 M		00 mn 00	00 Y	C) ()	0		٩	١	Y	Plastic
31	0-30	hcl	10YR43 00						C) ()	0					
	30-45	c	10YR44 46	75YR40	5 00 F		00mn00	00	C) ()	0		M			
1	45-60	C	10YR52 00	75YR5	5 00 C			Y	C) ()	0		м			Friable
1	60-80	¢	10YR53 00	75YR68	B 00 M			Y	C) ()	0		Ρ	۲	4	Plastic

program ALCO11

COMPLETE LIST OF PROFILES 07/04/97 WATCHFIELD SHRIVENHAM

					MOTTLES		PED				FONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH TOT	CONSIST	STR POR	IMP SPL CALC	
32	0-20	നലി	10YR43 00						0	0	0				
	20-30	hcl	10YR44 00						0	Ō	0		м		
	30-40	c	10YR44 00						0	0	0		M		
	40-70	с	25YR52 51	75YR5	8 00 M	C	DOMINOO	00 Y	0	0	0		Ρ	Y	Plastic
33	0-40	hc1	10 YR44 46						0	0	0				
	40-85	hc]	75YR46 56						0	0	0		м		
	85-120	c	75YR46 56						0	0	0		M		
34	0-32	hc]	10YR36 00						0	0	D				
•••	32-45	c	10YR34 00						Ō	Ō	ů 0		м		
	45-70	c	10YR53 54	10YR5	8 00 C			Y	Ō	ō	0		M		Friable
	70-90	c	25Y 54 00	75YR6	8 00 M		25 Y52	00 Y	Ō	Ō	0		P	Y	Plastic
_															
35	0-27	hc1	10YR43 00						0	0	0				
	27-50	c	10YR53 00	75YR4	6 00 C			Ŷ	0	0	0		м		Friable
	50-75	c	10YR63 00	75YR5	8 00 M			Ŷ	0	0	0		P	Y	Plastic
36	0-27	hc1	10YR34 00						0	0	0				
	27-35	c	10YR53 00	10YR4	6 00 C			Ŷ	0	0	0		м		Friable
	35-60	с	25Y 42 00	10YR4	6 00 M			Y	0	0	0		Ρ	Y	Plastic
37	0-20	mcl	10YR44 00						0	0	HR 2				
	20-60	c	25Y 51 00	10YR6	858M			Y	0	0	HR 2		Ρ	Y	Plastic
38	0-30	hc1	10YR44 00						0	0	HR O				
	30-65	hc1	10YR56 00						0	0	0		м		
	65-120	с	25Y 61 00	75YR6	858M			Y	0	0	0		Ρ	Y	Plastic
39	0-30	hc1	10YR44 00						0	o	0				
	30-40	hc1	10YR46 00						0	0	0		м		
	40-60	с	10YR46 00						0	0	0		м		
	60-80	c	25Y 61 00	75YR6	858M			Y	0	0	0		Ρ	Y	Plastic
40	0-30	hcl	10YR44 00						0	0	o				
	30-52	hc]	10YR46 00						0	0	0		м		
	52-60	c	25Y 52 00	75YR6	8 00 M			Ŷ	0	0	0		Р	Y	Plastic
	60-80	c	05Y 62 00	10YR5	8 00 M			Ŷ	0	0	0		Ρ	Y	Plastic
41	0.05	L_ 1	100044 00						•	•	•				
41	0-25 25 40	nci	107R44 00						0	0	0		м		
	20-40	-	257 52 00	10706	0 50 M		204400	00 V	0	0	0		гч D	v	Plactic
	40-50 50-70	c c	05Y 62 00	107R6	8 00 M	,	501-11400	υυ τ Υ	0	0	0		г Р	Y	Plastic
	/V	•						•	v	•	v			•	
42	0-35	hc1	10YR31 32	10/0-	0.00.11		0000000	00 V	0	0	HR 1				1
	32-00	c	UDY 61 62	IUYR5	6 UU M	l	JUMNUU	UU Y	U	Ų	U		۲	Ŧ	WAT TADIE DU+
43	0-30	hcl	10YR43 00						0	0	0				
	30-40	с	10YR53 00	10YR5	8 00 C			Y	0	0	0		м		Friable
	40-70	c	25Y 62 00	10YR5	8 00 M	(DOMINOO	00 Y	0	0	0		Р	Ŷ	Plastic

page 4

program ALCO11

COMPLETE LIST OF PROFILES 17/04/97 WATCHFIELD SHRIVENHAM

					MOTTLES	3	PED			ST	ONES	:	STRUCT/	SUBS			
AMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR PO	r imp si	PL CALC	
4 4	0-25	hcl	10YR44 00						0	0		0					
	25-60	c	25Y 51 00	10yr6	M 00 B			Y	0	0		0		Ρ	`	4	Plastic
4 5	0-25	mcl	10YR44 00						0	0	HR	2					
	25-45	mc]	10YR56 00						0	0	HR	2		м			
	45-65	hc1	10YR53 54	10YR6	800 M	(OOMINOO	00 Y	0	0		0		M			
_	65-120	с	25Y 51 00	10YR6	8 58 M	(00minco	00 Y	0	0		0		Ρ	`	4	Plastic
46	0-28	mcl	10YR44 00						0	0	HR	2					
-	28-40	mcl	10YR56 00						0	0		0		M			
	40-70	c	257 51 00	10YR6	8 00 M			Y	0	0		0		Ρ	١	4	Plastic
47	0-35	hcl	10YR43 00						0	0	HR	5				Y	Imp35 lst frags
48	0-35	с	10YR43 00						0	0	HR	4				Y	
	35-40	с	10YR44 00						0	0	HR	10		M		Y	Imp40 1st frags
4 9	0-30	hcl	10YR43 00						0	0	HR	4				¥	
	30-62	c	10YR44 00						0	0	HR	2		м		Ŷ	Imp62 lst frags
	0_25	~	107243 44						n	0	нр	2					
	25-60	c	10YR51 44	10YR5	18 00 M			Y	0	0	T IIX	0		ρ	١	4	Plastic
•	0.00		10/024 00						•	•		•					
51	06-0	MC I	10YK34 00	JEVNE	E 00 0				0	0		0		м			T . .
	30-62 62-90	c c	257 03 52 257 53 51	75YR5	600C			Y	0	0		0		ri p	,	~	Plastic
-	02 50	-	201					•	-	•		•		•			
5 2	0-35	mcl	10YR43 44						0	0		0					
	35-58	hc1	10YR43 00	75YR5	8 00 C	1	OOMNOO	00 S	0	0		0		м			S1 gleyed
-	58-120	c	25Y 62 00	75YR5	8 00 M	(00min00	00 Y	0	0		0		P	Y	Y	Plastic
53	0-30	mcl	75YR54 00						0	0		0					
	30-60	hcl	75YR56 00						0	0		0		м			
_	60-120	c	75YR54 00	75YR5	8 00 M	t	000000	00 S	0	0		0		P			S) gleyed
54	0-28	hc1	10YR44 00						0	0		0					
-	28-40	с	75YR56 66	75YR6	8 00 C			S	0	0		0		M			S1 gleyed
	40-70	c	25Y 61 00	75YR6	8 00 M			Y	0	0		0		Ρ	,	1	
55	0-35	hc1	10YR44 00						0	0		0					
	35-45	hc1	10YR46 00						0	0		0		м			
	45–120	с	75YR56 00	00 mi n0	0 00 C				0	0		0		м			
5 6	0-35	hc]	10YR44 00						0	0		0					
	35-58	hc1	10YR46 00						0	0		0		м			
	58-75	SC	10YR46 00	10YR5	6 00 C	c	DOMINOO	00 S	0	0		0		м			S1 gleved
-	75-95	SC	25 Y61 63	10YR5	6 00 M			Y	0	O		0		P	,	(• •
-	95–105	scl	25 Y61 63	10YR5	6 00 M			Y	0	0		0		м	١	<i>(</i>	
	105-120	с	25 Y61 63	10YR5	6 00 M			Ŷ	0	0		0		Ρ	۱	1	