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Foreword 
Liverpool Bay/Bae Lerpwl SPA (referred to as Liverpool Bay SPA) is a large area in the 
Eastern Irish Sea extending from Anglesey in Wales to Blackpool in England and covers 
from low water to approximately 20 km offshore. It is classified to protect a number of bird 
species, including common scoter (Melanitta nigra) and red-throated diver (Gavia stellata) 
due to the large wintering populations in the area. This document reports the findings of a 
study to understand the effect of anthropogenic activities on the spatial distribution of the 
two waterbirds within the SPA.  

Common scoter and red-throated diver are sensitive to disturbance from anthropogenic 
activities such as shipping and offshore wind farms. Liverpool Bay SPA is next to the port 
of Liverpool, one of the busiest in the UK and a large number of ships pass through the 
SPA daily. In addition, the arrays of four offshore wind farms are within the boundary of 
the SPA with the accompanying shipping traffic for servicing.  

This report outlines the statistical analysis and modelling undertaken to understand how 
different aspects of shipping (i.e. ship size and distance to birds), offshore wind farms and 
environmental variables (i.e. depth and salinity) influences the spatial distribution of 
common scoter and red-throated diver within the Liverpool Bay SPA.  

This report and accompanying appendices could be used to inform similar studies in 
Liverpool Bay and in offshore SPAs with similar levels of anthropogenic activities. The 
results will be used for evidence in relation to future plans and projects within the 
Liverpool Bay SPA. 

Note: DONG Energy changed name to Ørsted in 2017. 
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Executive summary 

Liverpool Bay SPA is classifed for important wintering numbers of common scoter (Melanitta nigra) and 
red-throated diver (Gavia stellata). These species are known to be sensitive to disturbance from shipping 
traÿc and Liverpool Bay is a˙ected by such traÿc. Ships regularly cross the SPA to enter or leave the port 
of Liverpool, one of the busiest ports in the UK, and to fsh or service the wind farms and other marine 
industries within the area. 

Digital aerial surveys of Liverpool Bay SPA were carried out in winter 2011 and 2015; JNCC and Dong 
Energy have made the data collected on common scoter and red-throated divers during these surveys available 
for this project. The aim of this project was to statistically model the numbers of each species in relation to 
shipping, other anthropogenic activities (such as fshing and presence/absence of wind farms) and habitat in 
order to determine the important factors in their distribution and assess possible impacts of shipping. 

Ships ftted with Automatic Identifcation System (AIS) transceivers can be tracked, thus providing information 
on ship position as well as information about the ship such as length. These data are publicly available and 
information on ship traÿc recorded on the day of the aerial surveys were collated as well as shipping data for 
longer time periods to provide a more general picture of shipping within the SPA. 

Statistical models were ftted separately to the observed numbers of sitting and fying common scoters and 
sitting red-throated diver; there were too few fying red-throated observed to consider a separate analysis. 
The response variable for these models was the number of birds observed within small sections, or segments 
(approximately 1 km in length), of the strip transects covered during the aerial survey. Given the number 
(and diversity) of the candidate explanatory variables associated with each segment, special attention was 
given to model selection in this project and models were ftted using a Complex Region Spatial Smoother 
(CReSS) in a Generalized Estimating Equation (GEE) framework to account for residual correlation and 
provide reliable model selection. These models were implemented in R (R Core Team 2017) using the MRSea 
library (Scott-Hayward et al. 2017). 

The high variance in the response data used as inputs for each model severely limited the utility of absolute 
ft measures for each model (since even a perfect data-model combination will naturally have large di˙erences 
between individual values and the mean). However, more appropriate diagnostics assessed spatially and 
overall were reassuring and provide no cause for concern about how well the models represent the response 
data, for any of the models ftted here. 

All three selected models included terms for presence/absence of a wind farm in a segment, depth (as a 
one-dimensional smooth function) and location (as a two-dimensional smooth function). In all cases, the 
presence of a wind farm decreased the estimated number of birds compared to the absence of a wind farm. 

The shipping metrics selected for each model varied across species. For red-throated divers, the selected 
shipping metrics were the average length of ships, the length of the nearest ship and the distance to the 
nearest ship. A distance of 2 km to the nearest ship appeared to be an important distance with average 
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predicted numbers increasing as the distance increased from 0 to 2 km. The e˙ect of the length of a ship 
was more ambiguous. Salinity and a variable indicating whether the segments were inside or outside the 
Liverpool Bay SPA were also selected for red-throated divers. Being inside the SPA had a positive e˙ect on 
the estimated number of sitting red-throated divers compared to being outside. 

The model for sitting common scoter included the presence/absence of ship traÿc at two temporal scales, the 
length of the average ship plus a factor variable describing segments where ship traÿc was: absent, sometimes 
present or present on the day of the aerial survey and, if so, classifed by ship length. Generally, the larger 
the ship present on the day of the survey, the more negative the impact on the estimated number of birds. 

This same factor variable was included in the model for fying common scoter but the impacts were less severe 
than for sitting common scoter. 

The fnal models were used to estimate abundance throughout the Liverpool Bay SPA using values for the 
selected temporal variables in the model that had been observed on the day of the survey. By imposing 
a hypothesised change to the explanatory variables, the impact of di˙erent scenarios were investigated by 
estimating the di˙erence in the number of birds before and after the imposed change. Further, these model 
results were used to investigate a wider range of shipping e˙ects by adjusting the values for the explanatory 
variables in each model. There are naturally a large number of scenarios that could be envisioned and here 
only a few have been considered, for example, changing the distance to a ship and increasing the length of 
some ships. Although outside the scope of this project, these methods could also be used to assess the impact 
of a new shipping lane or extending the footprint of a wind farm. The MRSea package (Scott-Hayward et al. 
2017) contains specialised routines for assessing such di˙erences and thus provides a useful tool for such work. 

Data and computer code generated as part of this project have been made available to Natural England such 
that when new data become available the analyses can be rerun. 

Project steering group: Tim Frayling (Natural England), Sophy Allen (Natural England), Julie Black (JNCC), 
Alice Kimpton (Natural England), Allen Risby (DONG Energy). 
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1. Introduction

1.1 Context 

Special Protection Areas (SPAs) are protected sites for rare and vulnerable species and regularly occurring 
migratory species of bird. The Liverpool Bay SPA is classifed for important wintering numbers of common 
scoter (Melanitta nigra) and red-throated diver (Gavia stellata) and common scoter and red-throated diver 
are known to be sensitive to disturbance from shipping traÿc (Garthe and Huppop, 2004; Kaiser et al. 2006; 
Schwemmer et al. 2011; Furness et al. 2013). An increasing amount of Natural England’s work involves 
considering the impact from shipping on populations of these birds within SPAs. The aim of this project was 
to investigate the e˙ects of shipping on common scoter and red-throated diver in the Liverpool Bay SPA, in 
particular to quantify the temporal and spatial scales of disturbance caused by di˙erent types of shipping. 

The Joint Nature Conservation Committee (JNCC) commissioned digital aerial surveys of Liverpool Bay 
SPA in February and March 2011. Following consent of the Burbo Bank Extension O˙shore wind farm, 
post-consent monitoring was undertaken as part of the requirements under the deemed Marine Licence and 
included digital aerial surveys in January and February, 2015. JNCC and DONG Energy have made these 
digital aerial survey data available to NE for the purposes of this project. 

The Automatic Identifcation System (AIS) is an automatic tracking system used on ships to help prevent 
collisions. Vessels ftted with AIS transceivers can be tracked by AIS base stations along the coast, thus 
providing information on ship position as well as information about the ship, such as name and length. AIS 
data are publicly available and these data on shipping were combined with the data on common scoter and 
red-throated diver from the digital aerial surveys to model the distribution of each species within Liverpool 
Bay SPA. 

In addition to shipping, the distribution of birds is also likely to be a function of the habitat (such as depth 
and salinity) and other anthropogenic e˙ects (e.g. presence of a wind farm or fshing activity) and so this 
information was also included in the modelling. Indeed, there are many factors that could potentially infuence 
the distribution of birds and the frst stage of the project was to identify variables which had been found to 
be useful in previous studies of the species of interest. Having identifed potentially useful variables, the next 
stage was to collate and process them into the required format for modelling. Subsequent to this, careful 
model selection was carried out and the details are included later in this report. 

The selected models were used to estimate abundance for each species for each of the survey dates using 
values for the selected explanatory variables that were observed on the day of each survey. Finally, to 
assess potential impacts of shipping and also wind farms, di˙erent hypothetical scenarios were considered by 
imposing some change on the explanatory variables (compared with values observed), and estimating the 
di˙erence in abundance before and after the induced change. 

A glossary of statistical terms is provided at the end of the document to aid interpretation. 

1.2 Objectives of the project 

The objectives of the project were to: 

• collate the common scoter and red-throated diver distributions from the digital aerial survey carried
out in winter 2011 and 2015 and AIS data recorded on the day of the surveys

• undertake a literature review to determine a suite of environmental covariates that may be important
in determining the at-sea wintering distribution for common scoter and red-throated divers

• process the shipping data to derive a suite of possible metrics to describe the levels of activity and the
di˙erent types of shipping over di˙erent time periods

• develop computer code to ft statistical models to numbers of common scoter and red-throated diver
distributions determining which candidate explanatory variables to include in models to describe the
distributions
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• using the fnal models, determine the spatial and temporal scales over which changes to di˙erent
types, or levels, of shipping or wind farms which appear to a˙ect the estimated bird distributions and
abundance.

2. Literature review

A literature review was undertaken to identify which environmental covariates had been found to be useful 
for modelling common scoter and red-throated diver distribution and what metrics, as measures of shipping 
intensity, had been used in previous studies. Relevant projects known to the project team or steering group 
were reviewed frst, followed by Google searches for keywords such as ‘scoter’, ‘diver’ or ‘seaduck’ with 
‘covariate’, ‘model’, ‘disturbance’, etc. 

2.1 Environmental Covariates 

In the relevant references relating to environmental covariate data used in modelling sea ducks or divers, the 
majority of these references related to divers. 

2.1.1 Common scoter 

In modelling common scoters recorded during aerial surveys around the UK, Maclean et al. (2006) trialed six 
habitat covariates: bathymetry (mean water depth), distance to land, distance to shallow water (less than 10 
m in depth), north slope aspect, east slope aspect and seabed complexity. These data were obtained at a 
resolution of 10 km x 10 km. Models with all combinations of covariates were tested and those with lowest 
Akaike’s Information Criteria (AIC) were selected. Counts of common scoter were best explained by month, 
bathymetry, seabed complexity, eastward seabed aspect and northward slope aspect. Models with covariates 
included had a substantially lower variance to mean ratio than those without. The study suggested that 
incorporating hydrodynamic data would improve performance compared to including only static covariates. 

In modelling the distribution of common scoter at Horns Rev wind farm o˙ Denmark, Petersen (2007) used 
geographic location (as a two-dimensional function of location coordinates), water depth, distance to coast 
and mean distance to the ten closest wind turbines. Skov et al. (2008) compiled a long list of candidate 
covariates to model aerial survey data from Horns Rev II wind farm; current speed at surface, salinity gradient 
at surface, temperature gradient at surface, water depth, relief of sea foor, complexity of sea foor, distance 
to shipping lane, distance to coastline, distance to Horns Rev I wind farm, modelled distribution of the 
American razor clam (Ensis americanus) and the cut trough shell Spisula subtruncata. They used generalized 
additive models (GAMs) and found estimated habitat suitability for S. subcontrata, distance to Horns Rev I 
and distance to coastline to be signifcant. Petersen and Nielsen (2011), who weren’t looking specifcally at 
wind farm areas, used a two-dimensional term of geographical position in combination with water depth and 
distance to coast to model common scoter distributions in Danish waters. 

For modelling and comparing pre- and post-construction distributions of long-tailed ducks, Clangula hyemalis, 
in and around the Nysted o˙shore wind farm, Denmark, Petersen et al. (2011) used geographic position and 
water depth. 

2.1.2 Red-throated diver 

Using the same candidate covariates as for common scoters above, Maclean et al. (2006) found red-throated 
diver counts were best explained by month, bathymetry, seabed complexity, distance from land and northern 
slope aspect. 

Skov et al. (2008) (discussed for common scoter above) found that the signifcant covariates for red-throated 
divers were water depth, distance to coastline, distance to 32-33 psu (salinity) gradient and an interaction 
term between these. 
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O’Brien et al. (2012) reported that predictive habitat distribution models failed to successfully predict 
red-throated diver abundance, probably due to distribution data being strongly zero-infated and possibly due 
to using only static, instead of dynamic, covariates. Thus, they used kernel density estimation to estimate 
bird density in order to delineate Marine Protected Areas. 

In work for the Marine Environmental Monitoring Plan for EON’s Robin Rigg O˙shore Wind Farm in the 
Irish Sea, Natural Power (2014) examined the covariates water depth, distance to coast, distance to the wind 
farm, sediment type, geographic position (latitude and longitude), month (or season) and time of day. Of 
these, only the last three covariates were chosen in the fnal model. 

In their identifcation of important marine areas in the UK for red-throated divers during the breeding season 
project, Black et al. (2015) collated more environmental data from various sources to include in a GAM 
than had been used in previous studies. The candidate covariates for modelling with boat survey bird data 
were; distance to coast, seabed depth, seabed slope, seabed aspect, maximum wave base (maximum depth at 
which wave passage causes signifcant water motion), maximum tidal bed stress (force exerted by the tide at 
the seabed), sea surface temperature, salinity, stratifcation (di˙erence in temperature between surface and 
seabed), probability of fronts (probability that a front will form at given location during summer), seabed 
substratum and coastal physiography. Using forward selection of ranked predictors, the fnal model with the 
minimal signifcant deviance was: P = s(Depth) + s(Dist) + s(Tidal) + s(Wave) + s(Front) + Seds : Coast 

where P was the probability of occurrence, s represents a spline smoothing function of covariates seabed 
depth (m; Depth), distance to coast (km; Dist), tidal bed stress (N m-2, Tidal), maximum wave base (m, 
Wave), probability of thermal fronts (Front) and Seds : Coast was an interaction term combining seabed 
sediment classes and coastal physiography classes. Using an F test, the relationship between diver presence 
and each of the selected predictor variables was statistically signifcant (p-value<0.01). The model explained 
33% of the variation in red-throated diver presence/absence for surveyed grid cells. 

Hostetter et al. (2015) used environmental covariates as predictors in modelling the proportions of great 
northern divers to red-throated divers. Distance to shore was the strongest spatial predictor of species 
proportions, with proportions of great northern diver increasing with distance. Sea surface temperature was a 
signifcant predictor of species proportions and the relationship showed seasonal reversals. Similarly, distance 
to shore, grain size, salinity and chlorophyll-a were signifcant for some surveys. The 95% confdence intervals 
for each of estimated regression coeÿcients associated with each survey often overlapped zero indicating non 
signifcance and all the estimated coeÿcients for slope were not signifcant. 

In their presentation at the red-throated diver conference, Hamburg, in 2016, Zydelis et al. (2016) used 
the candidate environmental covariates water depth, distance to wind farms, current U (east-west) velocity, 
current V (north-south) velocity, salinity and water temperature to model telemetry data. Current U velocity 
and current V velocity were unimportant in modelling and subsequently excluded. The remaining variables 
were signifcant (temperature only at 10% signifcance testing level, others at 5% level) indicating that 
red-throated divers aggregated on a distinct frontal area in the German Bight, most distinguishing by a 
salinity peak at 32 ppm. The frontal zone is created by Elbe outfow and tidal currents. The species showed 
preference towards shallower depths. Divers clearly avoided being in the proximity of o˙shore wind farms 
(the model showed avoidance up to 20 km), however, the authors urged when interpreting these results as the 
models were still in development. 

Heinänen (2016), also presenting at the red-throated diver conference, used the DHI North Sea Hydrodynamic 
Model to produce the covariates U velocity, V velocity, density, salinity and temperature and from other 
sources added water depth, distance to wind turbine and Modis Chlorophyll-a 8 day mean for modelling 
data from digital aerial surveys. Salinity and temperature were important descriptors of fronts. A two-step, 
generalized additive mixed model (GAMM) approach was used, frst modelling presence/absence and then 
density. Salinity and distance to wind farms were the most important covariates, with the frontal area 
apparently the driver of distribution during the time of the surveys and spatial extent studied. 

APEM (2016) tested a wide suite of environmental covariates in modelling digital aerial survey data: 
chlorophyll-a concentration (from POL and JNCC), distance to shore (from OS high water polygon (open 
licence available online)), maximum tidal bed stress (POL and JNCC), maximum wave base (POL and 
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JNCC), sea surface temperature (POL and JNCC), seabed aspect (from bathymetry data set), seabed depth 
(1 arc second digital elevation model from Defra), seabed slope (derived from bathymetry), shear stress 
currents (POL, Defra), shear stress waves (POL, Defra), thermal front probability (POL, Defra). Shipping 
activity was considered as the number of ship tracks in each cell on the day of the survey (no source given) 
and also the number of tracks in each cell for the day prior to the survey (no source given). For red-throated 
divers, only construction period bathymetry and shipping activity on the day of the survey were retained in 
the fnal model due to collinearity or poor predictive e˙ect through model selection. 

Skov et al. (2016) also modelled digital aerial survey data of red-throated divers in the Thames estuary, using 
a two-step GAM approach, but using MIKE software to run real-time hydrodynamic models to produce a 
comprehensive range of covariates such as water level, vertical water velocity, current gradient and vorticity, 
which were combined with other covariates such as geographic position, seabed slope and ship densities. The 
use of simulated simultaneous environmental covariates was seen to increase performance of the GAM. 

2.2 Shipping metrics 

To assess the disturbance due to ships on common scoter, Kaiser et al. (2002) studied the fushing distance of 
common scoter due to an approaching vessel (35 m in length) and their observations suggested that fock size 
had an e˙ect; small focks would be disturbed at a distance of 1 km, whereas larger focks would be disturbed 
at a distance 2 km. 

As mentioned previously, APEM (2016) used shipping activity to model red-throated diver distribution; two 
shipping metrics were considered; the number of ship tracks recorded in each 1 km2 grid cell on the day of 
the survey and also the number of tracks on the day before the survey. The number of tracks on the day of 
the survey was retained in the fnal model (together with bathymetry). 

Although not considering common scoter and red-throated diver, Burger et al. (2016) used a variety of 
shipping metrics to model abundance of other seabird species. They used Automatic Identifcation System 
(AIS) shipping data within 1.5 km of digital aerial survey transects and within a time frame of 5 hours before 
surveys. They used a two-step approach using GAMM applied in R. They frst tested all data for positive or 
negative e˙ects of ship presence on bird abundance (Model 1). Second, for cells containing one or more ships, 
several parameters were tested: number of ships, time lag (since last ship), average speed, length and number 
of AIS signals (Model 2). Geographic coordinates were always included in the model and survey was included 
as a random parameter. For common Eiders, Model 1 (R2=0.29) used smooths of number of ships and water 
depth; Model 2 (R2=0.32) used smooths of number of AIS signals per cell, an interaction of vessel speed and 
length and a smooth of water depth. For Larus gulls, Model 1 (R2=0.07) used smooths of number of ships 
and water depth and Model 2 (R2=0.12) used smooths of time lag since last ship, an interaction of speed and 
length, type of vessel (fshing/non-fshing) and a smooth of water depth. 

Common Eiders showed avoidance of areas where ships were present (36% cells with bird sightings vs. 50% 
cells when no ships are present). Number of AIS-signals was negatively related to bird densities. Least 
disturbance was by slow and medium-sized ships and fast and small (< 20 m) ships (e.g. pilot vessels). 

Presence of Larus gulls was positively related to the presence of ships (32% cells with bird sightings vs. 22% 
cells when no ships are present). Larus gulls seemed to mainly associate with slow, small vessels that 
resembled fshing vessels. Larus gull densities soon declined after ships left the area. 

2.3 Implications for this project 

Table 2.3 summarises the explanatory variables that have been considered in previous studies to model the 
distribution of common scoter and red-throated diver and other sea bird species in the case of Burger et al. 
(2016). Depth, or bathymetry, has been considered most frequently in previous studies and in all but one 
study was used in the fnal model. Other habitat variables that have been considered as candidate explanatory 
variables are salinity, water temperature, seabed complexity, sediment and chlorophyll-a and of these salinity 
was selected in fnal models the most often. Geographic location (defned by x and y coordinates) was used in 
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several of the studies. A variety of hydrodynamic variables have been considered but not always selected in 
fnal models. Distance to coast, or similar, and distance to wind farms were found to be important in several 
studies. Natural Power (2014) found that month and time of day were important in modelling abundance 
from surveys that were collected throughout the year for several years. 

It seems clear that environmental, or habitat, variables are important, in particular depth and salinity and in 
this study both variables were considered. Geographical location was also included as a two-dimensional 
smooth function and incorporating it in this way negated the need for including distance to coast/wind farm 
as additional explanatory variables. Geographical location is a proxy summarising many potential explanatory 
variable and relationships between abundance and distance from some e˙ect can be assessed by plotting 
estimated numbers obtained from a model by distance from the e˙ect, such as a wind farm (see later). The 
wintering abundances of birds were of interest in this project and the aerial survey data were collected during 
the period end of January to early March and so season was not considered here. Sea surface temperature, 
chlorophyll-a, sediment and seabed complexity were also not considered here; an attempt was also made to 
obtain the suite of covariates used by Black et al. (2015), however, these data had been compiled/modelled 
commercially under contract for either that project or the previous UK SeaMap project and were not freely 
available for this study. 

There is much less literature on shipping variables, likely due to AIS data being available relatively recently. 
Various shipping metrics were considered, similar to previous studies; the presence/absence of shipping and 
the number and length of vessels. In addition, shipping activity over di˙erent timescales were considered to 
incorporate shipping information both on the day of the survey (as in APEM 2016) and also over longer 
time periods, thus identifying regions of transient shipping and regions where ships were more persistent, for 
example along shipping lanes. 

Table 2.3 Summary of the explanatory variables considered as candidate variables (0) and used in the fnal 
models (1) in previous studies; 1 APEM (2016); 2 Burger et al. (2016); 3 Black et al. (2015); 4 Heinänen 
(2016); 5 Hostetter et al. (2015); 6 Maclean et al. (2006); 7 Natural Power (2014); 8 Petersen (2007); 9 
Petersen et al. (2011); 10 Petersen and Nielsen (2011); 11 Skov et al. (2008); 12 Skov et al. (2016); 13 Zydelis 
et al. (2016). 

Explanatory_variable 1 2 3 4 5 6 7 8 9 10 11 12 13 
Geographical location 1 1 1 1 1 1 

Depth 
Distance to 

1 
0 

1 1 
1 

0 
1 

1 
1 

0 
0 

1 
1 

1 1 
1 

1 
1 

1 

land/coast/shore 
Distance to shallow water 0 
Distance to wind farm 1 0 1 1 1 
Seabed complexity 
(slope/aspect/relief) 

0 0 0 1 0 1 

Sediment 1 1 0 
(type/substratum/grain 

size 
Salinity (gradient) 0 1 1 1 1 
Sea temperature 
(surface/gradient) 

0 0 0 1 0 1 

Chlorophyll-a 
Mollusc distribution 

0 0 1 
1 

Shear stress waves 0 
Wave base 0 1 

Water level/tidal bed 0 1 1 
stress 

Vertical water 1 
velocity/vorticity 
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Explanatory_variable 1 2 3 4 5 6 7 8 9 10 11 12 13 
Currents ( U/V 0 0 0 1 0 

velocity/speed/gradient/stress) 
Water density 0 

Probability of fronts 
Coastal physiography 

0 1 
1 

Month/season 1 1 
Time of day 

Presence/absence of ships 0 
1 

Number/density of 1 1 
ships/AIS signals 

Time lag 1 
Ship speed/length/type 
Distance to shipping lane 

1 
0 

3. Analysis methods 

Data on the seabirds in Liverpool bay SPA were collected during a series of aerial surveys in 2011 and 2015. 
Data on shipping, other anthropogenic e˙ects and habitat were collated from a variety of sources. All the 
data were then processed to generate the required format for modelling. These data were analysed to estimate 
the distribution of numbers of seabirds throughout the region of interest and determine if the numbers were 
dependent on shipping traÿc or some aspect of shipping. Having a large suite of candidate explanatory 
variables required a robust model selection process. Each stage is described below. 

3.1 Data collation 

3.1.1 Aerial survey data 

Digital aerial surveys were fown over the Liverpool Bay SPA on three days in 2011 and two days in 2015 
(Table 3.1.1). The planes few along predefned transect lines (Figure 3.1.1) and the spatial extent of the 
SPA covered by the surveys di˙ered between surveys, the southern part of the region was surveyed on 
12/02/2011, the northern part of the region on 18/03/2011 and the whole of the SPA was covered on three 
dates (07/03/2011, 24/01/2015 and 04/02/2015). Surveying started in the morning (between about 9:30am 
and 10:45am) and fnishing in the afternoon (between about 1:30pm and 4:30pm). 

Cameras were mounted on the airplane and recorded video footage along the transect lines. In 2011, three 
cameras each covered a 50 m wide strip and one camera covered a 25 m wide strip giving a total covered 
strip width of 175 m. In 2015, four cameras each covered a 125 m wide strip giving a total covered strip 
width of 500m. 

Table 3.1.1 Summary of the aerial surveys; k is the number of transects fown and w is the total width of the 
covered strip (km). 

Survey Date k w 
1 
2 
3 
4 
5 
6 

Total 

12/02/2011 
07/03/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

58 
58 
38 
38 
44 
44 
280 

0.175 
0.175 
0.175 
0.175 
0.5 
0.5 
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Figure 3.1.1 Transect lines for surveys 1 (black), 3 (red) and 5 (green). Surveys 2, 4 and 6 used similar 
transect lines to surveys 1, 3 and 5, respectively. 

3.1.2 Shipping data 

According to the Safety of Lives at Sea (SOLAS) Chapter V Regulation 19.2.4, the following ships are required 
to have AIS ftted: 

• all ships over 300 gross tons engaged on international voyages, 

• cargo ships over 500 gross tons not on international voyages and 

• passenger ships irrespective of size. 

All ships included in this regulation were required to have AIS installed by 1st July 2008, however, di˙erent 
classes of boat had di˙erent deadlines for AIS installation, ranging from 2002 - 2008. Nevertheless, all ships 
in these categories were legally obliged to by AIS installed by 2011 and 2015. 

Fishing vessels were not legally required to install AIS until 2012 and there were di˙erent installation dates de-
pending on length (https://www.gov.uk/government/publications/automatic-identifcation-system-ais-for-fshing-vessels): 

• fshing boats of length 24m and over were required to carry AIS by 31st May 2012, 

• fshing boats between 18 m and 24 m long were required by 31st May 2013 and 

• fshing boats between 15 m and 18 m long were required to carry AIS by 31st May 2014. 

This may mean that fshing vessels were under represented in the 2011 AIS data but fshing vessels over 15 m 
should be recorded in the 2015 data. 

There is no requirement for small commercial vessels, private yachts or cruising vessels to carry AIS. 
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AIS data were collected in various forms from the website shipAIS.co.uk, the Marine Management Organisation 
(MMO) and the Royal Yachting Association (RYA). 

The website shipAIS.co.uk was contacted and AIS data was requested and received for each of the fve survey 
dates plus the previous day. Data felds included in these data were, latitude, longitude, date/time, ship name, 
Maritime Mobile Service Identity (MMSI) number, International Maritime Organisation (IMO) number, 
call sign, length, beam, tonnage, Dead Weight Tonnage (DWT), heading, bearing, speed and destination. 
Ship type was not immediately available, although an internet search of ship name, taking into account the 
destination, revealed that wind farm transit ships were recorded in this data set. 

The MMO Anonymised AIS derived track lines 2011 data set was downloaded from the website data.gov.uk. 
Fields such as ship length, ship width, draught and ship type are available for some track lines but not others. 
Types of ship recorded in this data include tugs, carriers, tankers, barges, dredgers, fsh factories, ice breakers 
and ferries. There were no data included on date, apart from the year. The 2015 data set was not available 
for this project. 

Fishing activity data for commercial UK vessels 15m and over for 2011 were also downloaded. Details of the 
felds contained are given in Appendix B Table B1. The data were displayed per 3km cells. Data for 2015 
were not available. 

The RYA Coastal Atlas was a collection of data about recreational boats for May to September during 2011, 
2012 and 2013. It was available as a relative density of AIS tracks within cells 1 square nautical mile, and 
provided by Natural England. 

3.1.3 Other anthropogenic data 

The Crown Estate provided data on the following features: 

• pipeline location data 

• gas storage location 

• aggregate extraction areas 

• meteorological mast location and 

• o˙shore wind farms location 

This information was freely available in shape fle format from its website (https://www.thecrownestate.co. 
uk/energy-minerals-and-infrastructure/downloads/maps-and-gis-data/). 

3.1.4 Environmental covariates 

Following the literature review, the following environmental covariates were deemed potentially most useful 
and sourced/originated accordingly: 

• water depth (from the UK Hydrographic Oÿce six second bathymetry digital elevation model, used 
under licence to Natural England); and 

• salinity data were also sourced for the study area (in parts per thousand) from Proudman Oceanographic 
Laboratories POLCOM 2004 data. More recent data, including those for 2011 and 2015 were unavailable 
for this study. 

3.2 Data processing 

3.2.1 Aerial survey data 

The camera footage recorded during the aerial surveys was analysed to identify the location of any birds and 
their behaviour and species. Behaviour was recorded as sitting (which also included birds recorded as diving, 
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taking o˙ or fushing) or fying. The confdence of the species identifcation for each bird was categorised as 
either defnite, probable or possible. All confdence categories were included. In addition, birds identifed as 
‘diver sp.’ were treated as red-throated diver. 

The aerial survey global positioning system (GPS) tracks were split at transect start and end points using Esri 
ArcGIS 10 to produce the discreet survey transects fown. Added to these were felds for transect identifcation, 
length and the coordinates of the start and end points. Any parts of the transects which occurred on land 
(i.e. above the Ordnance Survey High Water poly line) were not included. The ET GeoWizard’s ‘split poly 
line by length’ tool plugin was used to split the transects into 1 km sections, or segments (with shorter 
segments at ends). A segment length feld was added and end segments shorter than 500 m were joined to 
neighbouring segments and the segment length feld updated. Fields for segment identifcation, start, end 
and midpoint coordinates were added. The GPS track fles were spatially joined to the segmented transects 
fles to assign times back to the segments. 

The aerial survey observation fles were spatially joined to the associated segmented transect fles and the 
felds from the latter added to the former and the number of birds per segment was enumerated. All of the 
segments (with and without bird observations on) were merged and sorted by time to produce segmented 
survey fles for analysis. To these were appended felds for all the covariates, as detailed below. 

3.2.2 Shipping data 

The processing preparation required, after screening the shipping data sets, was to convert the point data 
provided from the shipais.co.uk website to line data and clip to the UK coastline using the ET GeoWizard 
‘erase’ tool plugin. Some tracks and parts of tracks were deleted where intermittent signal collection gave the 
impression that ships travelled overland, or across islands. Appendix B Table B2 details the modifed tracks. 

Following the literature review and discussion with the project Steering Group, seven metrics of shipping 
activity were identifed and described below. Details of how these were included as explanatory variables in 
the modelling are given in section 3.3.2. 

• For the entire MMO and shipais.co.uk data sets (and the latter split into data from the day of each 
aerial survey and the day before each survey), the presence or absence of shipping tracks in each survey 
transect segment was assigned; 

• For the shipais.co.uk data set from the day of each aerial survey, the number of shipping tracks in each 
segment was calculated; 

• For the shipais.co.uk data set from the day of each aerial survey, the nearest distance of shipping tracks 
to the segment midpoint was calculated; 

• For the shipais.co.uk data from the day of each aerial survey the average vessel length in each survey 
transect segment was extracted; 

• For the shipais.co.uk data from the day of each aerial survey the maximum vessel length in each survey 
transect segment was extracted; 

• For the shipais.co.uk data from the day of each aerial survey the length and name of the nearest vessel 
to the midpoint of each transect segment was extracted; and 

• For the 2011 fshing activity data set the total time in hours in each survey transect segment was 
assigned. 

To derive presence or absence, number of vessels, average and maximum length of vessels, polygons of the 
aerial survey segmented transect tracks were made by o˙setting by half the total width of camera strip widths 
used on each survey (including inter-camera gaps) and intersecting these polygons by the di˙erent shipping 
activity layers. Nearest distance was measured to the segment midpoints and likewise total time of fshing 
activity was intersected with segment midpoints. 

Records of vessels and fshing buoys recorded during the aerial surveys were also extracted from the survey 
data. 

11 

https://shipais.co.uk
https://shipais.co.uk
https://shipais.co.uk
https://shipais.co.uk
https://shipais.co.uk
https://shipais.co.uk
https://shipais.co.uk


� �

�

3.2.3 Other anthropogenic activity data 

The anthropogenic activity data layers (gas pipelines, gas storage, aggregate extraction, wind farms and 
wind farm cable routes) were all intersected with the segmented survey transect polygons to populate 
respective presence/absence felds. An additional feld was populated with presence/absence of any of these 
anthropogenic activities. 

Wind farm presence/absence felds were made for those with foundation construction completed before the 
2011 aerial surveys and those completed before the 2015 aerial surveys. 

3.2.4 Environmental covariates 

Depth in metres was assigned to the midpoint of each survey transect segment by extraction from the UK 
Hydrographic Oÿce six second bathymetry digital elevation model. Segments with no associated depth data 
(over land) were assigned the value -9999. 

Salinity in parts per thousand was assigned to the midpoint of each survey transect segment by extraction 
from Proudman Oceanographic Laboratories POLCOM 2004 data. Segments with no associated salinity 
(some inshore areas) were assigned the value ‘9999’. 

3.2.5 Prediction grid 

A 1km x 1km cell grid aligned to the Ordnance Survey Great Britain grid covering the Liverpool Bay SPA 
was originated in Esri ArcGIS 10 for the purpose of projecting model predictions. The resolution of model 
predictions depends on the resolution of the explanatory variables that are included in the model and although 
the covariates were naturally (mostly) available at a fner resolution, 1 km was chosen to match the length of 
the aerial survey segments (see later). 

Each grid cell had felds for each of the anthropogenic and environmental covariates, produced in the same 
way as for the transect segments. Given that some of the variables were survey date specifc, in order to make 
predictions for the di˙erent survey dates, a prediction grid was created for each survey date and populated 
with the appropriate values for the date specifc variables. 

3.3 Analysis methods 

3.3.1 Statistical models 

The counts of birds per segment along the transect lines were used to estimate bird abundance in the region 
of interest (Liverpool Bay SPA); this approach, as opposed to assuming a constant density, models trend in 
the spatial distribution and allows it to vary throughout the region of interest. 

The number of birds in each segment (with known area) was enumerated, Ni where i indicates an individual 
segment and the numbers in each segment formed the response variable in the statistical model. Counts are 
often modelled using a Poisson distribution, however, these data were likely to be overdispersed (i.e. more 
variable than expected for Poisson distributed data), and so an overdispersed Poisson distribution was used 
with mean µi. For an overdispersed Poisson, the mean-variance relationship of the Poisson is relaxed so 
that the mean is proportional to the variance. This function contains a multiplicative factor (known as an 
overdispersion parameter) which was estimated from the data. The mean was modelled with location, habitat 
and shipping variables as candidate explanatory variables represented as follows. PJ PK 
µi = exp(log(ai) + 0 + j Fij + sk(Dik) + sl(Xi, Yi))j k 

where 

• log(ai) is an o˙set term (a term with known regression coeÿcient) that corresponds to the area of each 
segment (ai = wili where wi and li are the total strip width and length for each segment i, respectively) 

• 0 is an intercept 
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� �• j Fij represent factor terms (e.g. indicating the presence/absence of shipping) with j representing the 
regression coeÿcients for factor variable Fj 

• sk(Dik) represent one dimensional smooth terms (e.g. depth) implemented using quadratic B-splines 
with fexibility chosen using spatially adaptive smoothing (SALSA) methods (Walker et al. 2010) 

• sl(Xi, Yi) represents a two-dimensional smooth term of location (determined for each segment i by Xi 

and Yi). This used radial Gaussian basis functions with fexibility also targeted using SALSA (Walker 
et al. 2010). 

The models were ftted using the complex region spatial smoother (CReSS) in a Generalized Estimating 
Equations (GEE) framework with SALSA for model selection (Walker 2010) implemented in the R (R Core 
Team, 2017) library MRSea (Scott-Hayward et al. 2017). GEEs allowed for standard errors to be calculated 
taking account of any correlation in the residuals within a specifed blocking structure (robust standard 
errors). In the presence of residual correlation it is important to use robust standard errors and corresponding 
p-values which are adjusted for this correlation when determining statistical signifcance. For this reason, 
robust standard errors were employed and since it was likely that counts of birds within segments along the 
transect lines would be correlated (and the model is unlikely to explain this correlation in full), transects 
were specifed as the blocking structure. 

The region of interest included headlands (e.g. Great Orme, Figure 3.1.1) which, it was felt, may prove 
barriers to the seabird species of interest and so they would fy around, rather than over them. Therefore, 
distances between segments were defned by geodesic distances rather than straight line distances to ensure 
that distances were more biologically reasonable and refected distances around the coast. 

The response variable was the number of birds per segment and separate models were ftted to common 
scoter and red-throated diver. The intention had been to include both sitting and fying birds in the same 
model with a term in the model indicating whether the number was for sitting or fying birds; specifcally an 
interaction term between behaviour and location would allow the surface to vary by behaviour. However, in 
practice, ftting this model demonstrated some parameters were inestimable and so separate models were 
ftted to sitting and fying birds. Another beneft of ftting separate models to these groups also meant the 
covariates included in each model could vary and help us identify if the key drivers di˙ered across activity 
state. 

3.3.2 Candidate explanatory variables 

The processed shipping data, other anthropogenic and environmental data provided a suite of candidate 
explanatory variables that were agreed during the project and are listed below (see Appendix C for further 
details). Birds could be located throughout the area of the segment and so (potentially) continuously varying 
covariates (e.g. depth, distance to a ship) may be di˙erent between birds within the segment and in these 
cases, a relevant summary statistic (e.g. mean) was used to obtain a single value to describe the segment. The 
names shown below in italics are the names that were used during the modelling process. The numbers in 
square brackets indicate that some variables could not be included in the same model because the coeÿcients 
associated with the factor levels could not all be estimated (see later). The numbers in parentheses indicate 
the coding used for each factor level. 

• LBspa - inside (1) or outside (0) of the Liverpool Bay SPA 

• fish - presence (1) or absence of fshing (0) within a segment derived from the number of hours of 
fshing in a segment (obtained from the total fshing activity data set for 2011). This was used as an 
indication of fshing locations. 

• windfarm - the intersection (1) or no intersection (0) of the segment with wind farms where the 
foundations were constructed by the date of the survey 

• anthrop - the intersection (1) or no intersection (0) of the segment with anthropogenic activities such 
as gas storage, aggregates extraction areas and wind export cables. 

• windcable - the intersection (1) or no intersection (0) of the segment with wind export cables 
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• shipAIS1 [1] - presence (1) or absence (0) of a ship track within the segment based on ship tracks from 
the day of the survey 

• shipnumf [1] - the number of ships within the segment for the day of the survey. This was included as 
a factor variable with three levels, no ships (0), 1-4 ships (1) and >4 ships (2) 

• shiplenav - the average length (metres) of the ships for shipping intersecting with the segments on the 
day of the survey. If there were no ships intersecting with the segment, the length was zero (also see 
below). 

• shiplenmax - the maximum length of the ships intersecting with the segments on the day of the survey. 
If there were no ships intersecting with the segment, the value was zero. 

• shipnear - nearest distance to ship (km) for the day of the survey included as a 1-dimensional smooth 
term. This would include ships that did not intersect with a segment but may have passed close by. 

• shiplennear - the maximum length of the nearest ship on the day of the survey. If this di˙ered between 
birds within a segment, the maximum length was used. 

• shipAIS5 - presence (1) or absence (0) of a ship track intersecting with a segment using the combined 
ship tracks for all fve days of the surveys 

• shipAIS10 - presence (1) or absence (0) of ship track intersecting with a segment using the combined 
ship tracks for all 10 dates (i.e. the day before and the day of the survey for fve dates) 

• shipMMO - presence (1) or absence (0) of all shipping tracks obtained from the MMO Anonymised 
AIS derived track lines data for 2011. This was used to describe the presence of shipping generally in 
the region. 

• depth - depth (m) obtained from the UK Hydrographic Oÿce six second elevation model. Depths for 
segments with no associated depth data (i.e. over land) were as missing were estimated (see below). 
Included as a 1-dimensional smooth term. 

• salinity - salinity (parts per 1000) obtained from the Proudman Oceanographic Laboratories POLCOM 
2004 data. Included as a 1-dimensional smooth term. 

• location defned as a distance (m) from a reference point (x.pos, y.pos) included as a two-dimensional 
smooth term. 

The shipping metrics provided information over various time scales, from the day of survey (shipAIS1, 
shipnumf and shipnear, shiplenav, shiplenmax, shiplennear), a more general picture of the pres-
ence/absence of shipping (shipAIS5 and shipAIS10) and an overall picture of the presence/absence of 
shipping within a year (shipMMO). The latter three variables were included in order to determine if there 
were more persistent shipping e˙ects and over what timescale these e˙ects may last. 

Many of the factors indicate the presence/absence of the shipping or installation within a segment. There 
may be a bu˙er region around a ship track, shipping lane or installation within which birds are still a˙ected 
although not impacted directly. Fitting location as a two-dimensional smooth will allow the ftted surface 
to vary fexibly and thus allow for any di˙erences around an installation or shipping lane. Fitting a two-
dimensional smooth has the advantage over including the distance to the e˙ect (e.g. distance to wind farm) 
as a one-dimensional smooth function, in that a two-dimensional smooth can model impacts which may not 
be symmetrical around the e˙ect. 

Two new variables were created that were a combination of shipping in general and the shipping on the 
day of the survey. The presence/absence data from the MMO AIS data for 2011 were combined with the 
lengths of ships present on the day of the survey to create a two new variables, one using the average length 
of ships present in a segment and the other using the maximum length of ships present in a segment. Using 
the quantiles of the length distributions to obtain approximately equal numbers in each length category, the 
variables were classifed as follows: 
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• shipcatAv [1] - no ships present in segment (0), ships present sometimes but not on the day of the 
survey (1) and ships present in segment on the day of the survey and classifed according to average 
length; ships with average length 10-15m (2), ships >15-20m (3), ships >20-36m (4), ships >36-89m (5) 
and ships >89m in length on average (6). 

• shipcatMax [1] - no ships present in segment (0), ships present sometimes but not on the day of the 
survey (1) and ships present in segment on the day of the survey and classifed according to maximum 
length; ships with maximum length 10-15m (2), ships >15-21m (3), ships >21-36m (4), ships >36-95m 
(5) and ships >95m in length on average (6). 

Depth values were missing for some segments (3% of segments). Since depth was likely to be an important 
explanatory variable, rather than delete these segments, a GAM was used to model depth with salinity, 
distance to coast as smooth terms and location (x, pos, y.pos) as a two-dimensional smooth term. The model 
was used to estimate missing values in the survey segments and the prediction grid. A very few values of 
salinity were missing in the prediction grid - salinity was only available on a coarse resolution (see Appendix 
C) and so missing values were assigned the same value as adjacent segments. 

3.3.3 Model selection 

Separate models were ftted to each species (using the term ‘species’ to identify sitting and fying birds as 
di˙erent species) and with many candidate explanatory variables, some similar to, or derived from, other 
variables, selecting the variables (or combinations of variables) with the most predictive power to data unseen 
by the model (assessed using cross validation) was important. As mentioned above some variables could not 
be ftted together since they were essentially a subset of each other (see later for an example), therefore, these 
variables were grouped together and one variable from this group was selected based on its relative predictive 
power to data unseen by the model. This group (based on the explanatory variables) was the same for all 
species. 

The model selection process for each species was done in several steps, frstly choosing the variable from 
those grouped together, identifying collinear variables, then using backward selection to select factor and one 
dimensional terms and fnally including a two dimensional term for location and possible interaction. The 
details were as follows. 

1. The predictive power of each term to data unseen by the model was assessed by ftting each term 
separately and, for each model, harvesting the k-fold cross validation (CV) score, a ft score (pseudo-R2, 
measuring the squared correlation between the observed values and the ftted values) and the p-value 
associated with each term. This was done in order to assess all explanatory variables for their predictive 
power in explaining the response and to select the variable within each group which explained the most 
variation for the response variable. The variables were ranked based on the average CV score (100 
replicates of the CV were generated to calculate a CV score for each covariate separately, the data are 
randomly divided into k subsets and the mean and percentile-based confdence intervals obtained). 

2. A variable from those grouped together was chosen based on the lowest CV score. It was combined with 
all the other remaining variables and the multi-collinearity of these variables was checked. Generalized 
variance infation factors (GVIFs) were used to quantify the severity of multi-collinearity in a generalized 
linear model. As a rule of thumb, values greater than 5 indicate that a variable is collinear with other 
variables and any collinear variables were excluded. 

3. All remaining terms apart from spatial location, were included in a model - referred to as the ‘Full 
model’. Backwards selection was used so that at the end of this stage all terms included were signifcant 
(i.e. the p-value, associated with the term was less than 0.05). The least signifcant term was removed 
from the model and a new average CV score and pseudo-R2 value were obtained and the signifcance of 
remaining terms checked. 

4. Having chosen the factor and one dimensional terms in step 3, a two-dimensional term for location 
was added. Thus, environmental and shipping metrics that were important in describing the response 
were selected before location was included since location may account for some of the variability due to 
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other variables. Having included location, some other terms may become non-signifcant and these were 
excluded, one at a time as before. Finally, an interaction term between location and any remaining 
shipping factor metric was included in order to determine if an interaction was required. If there was 
more than one candidate factor for the interaction, a pseudo-R2 ft score and a cross validation (CV) 
score was calculated for each model and the model with the lowest average CV score was selected. 

At the end of the process described above, the selected models were then checked to ensure that the 
assumptions of the model had not been violated and to assess the relationships between the variables and the 
response. 

3.3.4 Diagnostics and model assessment 

For each selected model, diagnostics were performed to ensure model assumptions were valid. To assess 
whether the residuals were correlated, an empirical runs test for randomness in the residuals was performed. 
Correlation in the residuals would indicate that a blocking structure was required. To assess whether the 
blocking structure chosen was appropriate, a plot of the lag between residuals within a block and the 
correlation at each lag was obtained (an Auto Correlation Function plot). 

Predicted values for the survey data were obtained from the selected model and the residuals (observed values 
- predicted values) calculated. The residuals were plotted spatially and visually examined to determine if 
there were any patterns - ideally, there should not be any patterns discernible in residual plots and this is 
what was examined here. 

Partial plots of each factor and one dimensional term in the selected model were visually examined to assess 
the relationships between the variables and the response (given the other variables in the model). 

3.3.5 Estimating abundance and 95% confdence intervals 

Using the fnal models, average predicted abundance for each species was calculated for a grid of points 
(the prediction grid), with associated area and known values for the explanatory variables, throughout the 
Liverpool Bay SPA. Total abundance for each survey date was estimated by summing predicted abundance 
over all grid points in the region using observed values for each survey date. The confdence intervals for 
total abundance were obtained from a parametric bootstrap procedure available in MRSea (Scott-Hayward et 
al. 2017) and implemented as follows. The selected model coeÿcients were re-sampled from a multivariate 
Normal distribution and new predictions obtained for every grid cell using these re-sampled coeÿcients. 
This process was repeated 500 times to build a distribution of abundance estimates. Percentile-based 95% 
confdence intervals of abundance were obtained from the distribution for each grid cell and as a collection. 

Using the bootstrap predictions for each grid cell, the variation, or uncertainty, associated with these estimated 
surfaces was assessed by plotting the coeÿcient of variation for each grid cell. 

3.3.6 Spatially explicit impact of shipping 

The chosen models were used to investigate a series of hypothetical changes to shipping activity by determining 
di˙erences between estimated numbers of birds using observed values for the explanatory variables in the 
prediction grid and estimated numbers of birds where some change had been applied to the shipping variables 
(based on the model and the estimated coeÿcients). The enforced change will necessarily depend on the 
selected explanatory variables in each model. Some scenarios that could potentially be simulated are as 
follows: 

• an increase in the number of ships within existing shipping lanes; this could be implemented by using 
the variable shipnumf and changing the records indicating 1-4 ships to indicate more than four ships. 

• an increase in the disturbance to birds; this could be implemented by decreasing the distance to the 
nearest ship by changing the variable shipnear 
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• an increase (or decrease) in the length of the ships, within the existing shipping lanes. 

For the combined category variables (shipcatAv and shipcatMax), several scenarios could be considered, for 
example, 

• the spreading of shipping activity into undisturbed regions by changing records never containing a ship 
(level 0) to contain a ship (i.e. level 1 or a ship of specifed length) 

• an increase in the length of ships. 

If there was no impact in a grid cell due to changing relevant shipping variables compared to no change, 
then the di˙erences in the estimated mean number of birds would be close to zero (and within the bounds 
of natural variability). An increase in the number of birds per grid cell would be a positive di˙erence and 
a decrease in the number of birds would be a negative di˙erence. The signifcance of the di˙erences were 
assessed from the parametric bootstrap and assessed per grid cell. 

These hypothetical scenarios were illustrated using the values of explanatory variables observed for the most 
recent survey (i.e. the survey on 04/02/2015) as the no change reference and then changing these observed 
values for relevant variables in order to refect the scenario being considered. The possible scenarios were 
dependent on the fnal models for each species and so details of scenarios considered are provided in the 
results section. 

3.3.7 Impact of wind farms and anthropogenic activity 

The e˙ect of a wind farm (or indeed any other anthropogenic e˙ect) may not be limited to the footprint of 
the wind farm but extend to some region outwith the footprint. Plotting the relationship between estimated 
numbers of birds and the closest distance to the centre of a wind farm would indicate possible gradient e˙ects, 
assuming these e˙ects were symmetrical around the e˙ect. A smooth function ftted to these data would 
allow any trends to be identifed particularly in the presence of over plotting points. 

The centres of the wind farms are shown in Appendix C Figure C5. In these data, the minimum closest 
distance to the centre of a wind farm for any of the prediction grid cells was 124 m. For the wind farms 
present in 2011, all prediction grid cell points within the footprint of a wind farm were within 3.1 km of the 
centre. A wind farm with a much larger footprint was constructed by 2015 and the maximum distance to the 
centre for a grid cell within this footprint was 7.5 km. 

Similar to assessing hypothesised changes in shipping, the e˙ects of extending, or removing, wind farms 
or other anthropogenic e˙ects on the numbers of birds could also investigated, depending on the variables 
included in the fnal model. For example, if the variable windfarm (i.e. the presence/absence of a wind farm) 
was retained in the fnal model, then the impact of removing the wind farm was investigated by estimating 
numbers using the observed values for the variable windfarm and then comparing these with estimated 
numbers after changing all values in the prediction grid indicating presence of a wind farm to absence of a 
wind farm. To illustrate any di˙erences, the prediction data for the most recent survey (February 2015) was 
used. 

Location of wind farms has been included as presence/absence and so any di˙erences will necessarily be 
limited to the footprint of the wind farm and thus may be underestimated if there is an e˙ect of the wind 
farm beyond the boundary. Nevertheless, the di˙erences in estimated numbers, with and without wind farms, 
can be plotted against the closest distance to the centre of a wind farm in order to assess how the di˙erences 
change as distance from the centre of a wind farm increases. 

Similarly (although outwith the scope of this project), the e˙ects of extending a wind farm could be investigated 
where the impact is imposed by identifying the records in the prediction grid where the wind farm is to be 
extended and changing the values for windfarm from absence to presence although any results on the basis 
of this would still be speculative. 
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4. Results 

4.1 Aerial survey data 

Liverpool Bay SPA covers an area of approximately 1,900 km2. The total length of transects fown during all 
surveys was over 4,040 km and the surveys covered a total area of 1,182 km2 (Table 4.1.1). The transects 
were divided into 4,039 segments. 

Common scoter were recorded in large numbers and the numbers per segment were very variable. Common 
scoter were identifed as sitting on the water in 955 segments (23.6% of segments; Figure 4.1.1) and the 
median number of birds per segment (in segments where they were identifed) was 10 birds. A few, very large 
groups of sitting common scoter were observed; the maximum number observed within one segment was 6,277 
birds (identifed during the survey on 24/01/2015). 
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Figure 4.1.1 Numbers of sitting common scoter per segment averaged over all surveys. Since there were a few 
segments with very large numbers of birds, the numbers per individual segment have been capped at 1000 
birds. 

Flying common scoter were identifed in only 214 segments (5.3% of segments; Figure 4.1.2) but as with sitting 
common scoter the number identifed per segment was very variable. The median number per segment (where 
identifed) was 3 birds and the maximum number identifed per segment was 224 birds (seen on 07/03/2011). 

18 



400000 440000 48000059
00

00
0

59
30

00
0

59
60

00
0

x.pos

y.
po

s

0

5

10

15

20

25

Figure 4.1.2 Numbers of fying common scoter per segment averaged over all surveys. The numbers per 
individual segment have been capped at 50 birds. 

Red-throated diver were identifed as sitting in 598 segments (14.8% of segments; Figure 4.1.3). The median 
number per segment (where identifed) was one bird and the maximum number was 19 birds (recorded on 
04/02/2015). 
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Figure 4.1.3 Numbers of sitting red-throated diver per segment averaged over all surveys. 

Very few red-throated diver were identifed as fying (22 birds recorded in total in 19 segments; Figure 4.4). 
This was too few to be able to analyse and so fying red-throated diver were not be considered further. 

In general for all species, the majority of segments did not contain the species of interest and where birds 
were detected the numbers per segment were variable, particularly so for common scoter. The numbers of 
each species identifed per segment for each survey are plotted in Appendix A. 

Table 4.1.1 Summary of the aerial survey; L is the total length of transects covered during the survey (km), a 
is the total area of the strip covered (km2) and the total numbers (N) of common scoter (CS) and red-throated 
diver (RTD) observed either sitting or fying. 

Survey Date L a N CS sit N CS fy N RTD sit N RTD fy 
1 
2 
3 
4 
5 
6 

Total 

12/02/2011 
07/03/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

708.4 
697.8 
585 
591 
742 
717.3 
4041 

124 
122.1 
102.4 
103.4 
371 
358.6 
1182 

6697 
4726 
2390 
4505 
34380 
41122 
93820 

29 
544 
25 
23 
946 
496 
2063 

208 
152 
61 
92 
242 
286 
1041 

3 
2 
0 
4 
3 
10 
22 

4.2 Identifying the ‘group’ of explanatory variables 

The variables identifying ship traÿc on the day of the survey were highly correlated for example, shipAIS1 
(presence/absence of ship traÿc on the day of the survey) and shipnumf (the number of ships intersecting 
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the segment on the day of the survey) (Table 4.2.1). Hence, the regression coeÿcients associated with the 
factor levels could not all be estimated if they were included in the same model. The same was true with 
shipAIS1 and shipcatAv (or shipcatMax) (Table 4.2.2). Thus, these four variables were grouped together 
and only one variable from this group was chosen. 

Table 4.2.1 The number of segments in each level of shipAIS1 (rows) and shipnumf (columns). 

0 1 2 
0 3580 0 0 
1 0 395 64 

Table 4.2.2 The number of segments in each level of shipAIS1 (rows) and shipcatAv (columns). 

0 1 2 3 4 5 6 
0 1424 2156 0 0 0 0 0 
1 0 0 128 65 89 86 91 

The average length of ships in a segment was highly correlated to the maximum length of ships in a segment 
(Figure 4.2.1). Collinear relationships such as these were identifed using the GVIF scores. 
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Figure 4.2.1 Scatter plot and (absolute) correlation between each pair of shipping length variables. The red 
line is a curve ftted to the pair of variables. The size of the text refects the value of the correlation. 
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4.3 Red-throated divers sitting on the water 

4.3.1 Selected model 

Each candidate variable was assessed individually and although depth had the highest pseudo-R2 ft score, 
each term ftted individually explained little of the variation observed in the response (Table 4.3.1). These 
very low scores are typical when overdispersion is high - even when we have a perfect data-model combination, 
values generated from this distribution can vary greatly from the mean when the mean is high giving rise 
to very large residuals and a low pseudo-R2 score.The variable shipcatAv was selected from the variables 
grouped together because it had the lowest mean CV out of the four variables. 

Table 4.3.1. Fit statistics for each term included separately to model red-throated diver counts ordered from 
best (according to average CV) to worst: average CV, and 2.5 and 97.5 percentile-based confdence limits, 
pseudo R2 (R2, a measure of the squared correlation between the observed values and the ftted values from 
the model) and probability (p.value) associated with ftting each term separately. Numbers in the ‘Group’ 
column indicate variables which were grouped together and one variable from the group was chosen. 

Variable meanCV lowCV highCV R2 p.value Group 
s(depth) 0.856 0.854 0.8584 0.02831 0 

shiplennear 0.8604 0.8597 0.8613 0.01884 1.412e-11 
as.factor(shipcatAv) 
as.factor(shipMMO) 

0.87 
0.87 

0.8691 
0.8692 

0.8712 
0.8711 

0.0118 
0.01035 

0.02009 
0.01305 

1 

as.factor(fsh) 
as.factor(shipcatMax) 

0.8702 
0.8704 

0.8697 
0.8694 

0.8712 
0.8718 

0.01004 
0.01149 

0.0002626 
0.02385 1 

as.factor(LBspa) 0.8707 0.8702 0.8712 0.01031 9.847e-07 
as.factor(windfarm) 

s(shipnear) 
0.8713 
0.8727 

0.8709 
0.8705 

0.872 
0.8756 

0.0092 
0.01242 

0.0003464 
4.687e-05 

as.factor(shipAIS1) 0.8732 0.8727 0.8738 0.007602 0.1262 1 
as.factor(shipnumf) 

s(salinity) 
0.8735 
0.8736 

0.8729 
0.8718 

0.8742 
0.8763 

0.007577 
0.01269 

0.2692 
9.292e-08 

1 

s(shiplenmax) 
as.factor(shipAIS10) 

0.8738 
0.874 

0.8723 
0.8734 

0.8758 
0.8748 

0.009091 
0.007162 

0.0001043 
0.4525 

as.factor(shipAIS5) 0.8741 0.8736 0.8747 0.007171 0.4382 
as.factor(windcable) 
as.factor(anthrop) 

0.8745 
0.8748 

0.874 
0.8743 

0.8752 
0.8755 

0.007219 
0.006726 

0.01743 
0.1903 

s(shiplenav) 0.8776 0.872 0.901 0.009173 0 

Having chosen which term to include from those grouped together, the multi-collinearity of the remaining 
variables was assessed (Table 4.3.2). The term shipMMO was likely collinear with shipcatAv; the CV scores 
for these two terms were very similar (Table 4.3.1) and since the shipcatAv included information on both 
transient shipping as well as more permanent shipping areas, shipcatAv was selected over shipMMO. Not 
surprisingly, windcable and anthrop were collinear (since one is a subset of the other) and windcable was 
selected because of potentially higher predictive power to unseen data as assessed by CV (Table 4.3.1). The 
adjusted GVIFs for shiplenmax and shiplenav were high but not above a threshold of 5 and so at this stage 
of the model selection process both these terms were included in the full model. 

Table 4.3.2 Table of generalized variance infation factors (GVIF) for red-throated divers, degrees of freedom 
(Df) and GVIFs adjusted for the degrees of freedom (GVIFˆ(1/2*Df)). 

GVIF Df GVIFˆ(1/(2*Df)) 
depth 

shiplennear 
1.845 
1.719 

1 
1 

1.358 
1.311 

as.factor(shipcatAv) 
as.factor(shipMMO) 

663.7 
32.69 

6 
1 

1.719 
5.718 

22 



GVIF Df GVIFˆ(1/(2*Df)) 
as.factor(fsh) 1.179 1 1.086 

as.factor(LBspa) 
as.factor(windfarm) 

1.025 
1.038 

1 
1 

1.012 
1.019 

shipnear 
salinity 

1.774 
1.373 

1 
1 

1.332 
1.172 

shiplenmax 15.85 1 3.981 
as.factor(shipAIS10) 
as.factor(shipAIS5) 

2.399 
2.425 

1 
1 

1.549 
1.557 

as.factor(windcable) 5800155 1 2408 
as.factor(anthrop) 

shiplenav 
5800155 
11.8 

1 
1 

2408 
3.435 

The variables shiplennear and shiplenav were included in the full model as linear terms was one because 
there were problems ftting them as fexible functions due to gaps in the covariate ranges providing little 
support for nonlinearities. The stages in the model selection process are summarised in Table 4.3.3. Not 
surprisingly, the ft score for the full model was improved compared to ftting terms individually and this 
score did not change substantially as non-signifcant factor and one-dimensional terms were removed. The 
addition of the two-dimensional term for location substantially improved the ft score to both the observed 
data (assessed by the pseudo-R2) and to data unseen by the model (assessed by CV). . 

Table 4.3.3. The iterations in model selection for red-throated divers; starting with the full model, the ‘Model’ 
column indicates terms that were dropped from (‘-’) or added to (‘+’) the model and shows the mean CV 
and percentile-based confdence limits associated with the model; the pseudo-R2 ft score; the ‘p.value’ shows 
the probability associated with the term excluded/included from the model. ‘s(.)’ indicates a smooth term. 

NumIter Model meanCV CI_2.5 CI_97.5 R2 p.value 
1 Full model 0.8488 0.8327 0.8994 0.07248 NA 
2 - as.factor(shipAIS5) 0.8478 0.8323 0.8971 0.07242 0.992 
3 
5 

- shiplenmax 
- as.factor(fsh) 

0.8745 
0.8779 

0.8327 
0.8317 

1.035 
1.048 

0.07303 
0.07355 

0.9815 
0.597 

5 - as.factor(fsh) 0.8716 0.8316 1.014 0.07221 0.2684 
6 
7 

- as.factor(shipAIS10) 
- as.factor(shipcatAv) 

0.8717 
0.8323 

0.8316 
0.8281 

1.019 
0.8379 

0.07037 
0.06849 

0.2309 
0.1518 

8 + s(x.pos,y.pos) 0.7942 0.7875 0.8037 0.1317 5.045e-08 

An interaction was considered between location and shiplenav and shiplennear (Table 4.3.4). Although the 
p-value associated with shiplennear was signifcant, the CV scores and pseudo-R2 ft score did not indicate 
that an interaction term should be included, therefore, an interaction term was not included. 

Table 4.3.4 Assessment of an interaction term in the model for red-throated divers; the top row provides the 
CV (mean and percentile-based confdence limits), pseudo-R2 ft score and the p.value for the two-dimensional 
smooth for location with no interaction for comparison. 

Term meanCV CI_2.5 CI_97.5 R2 p.value 
s(x.pos,y.pos) 0.7942 0.7875 0.8037 0.1317 5.045e-08 

s(x.pos,y.pos):shiplenav 0.8061 0.8011 0.8123 0.1094 0.2274 
s(x.pos,y.pos):shiplennear 0.8004 0.795 0.8065 0.1179 0.0004607 

The fnal model for red-throated diver included the following variables: 
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• factors, LBspa and windfarm 

• linear terms, shiplennear and shiplenav, 

• one dimensional smooth terms shipnear, depth and salinity and 

• location as a two-dimensional term between x.pos and y.pos. 

The ft score of the fnal model was 0.13 was an improvement over the other models ftted, whilst not 
capturing a substantial amount of the variation observed in the numbers of red-throated diver given the high 
overdispersion. The signifcance associated with each term is shown in Table 4.3.5. 

Table 4.3.5 Analysis of variance table for the fnal model ftted to red-throated diver data; the number of 
degrees of freedom (Df), test statistic (X2) and p-value associated with each term in the model (P(>|Chi|)). 

Table 10: Analysis of ‘Wald statistic’ Table 

Df X2 P(>|Chi|) 
as.factor(LBspa) 1 16.7 4.385e-05 

as.factor(windfarm) 
shiplennear 

1 
1 

22.17 
11.9 

2.501e-06 
0.0005607 

shiplenav 
s(depth) 

1 
3 

4.955 
77.93 

0.02602 
1.11e-16 

s(shipnear) 4 23.25 0.0001131 
s(salinity) 

s(x.pos, y.pos) 
3 
8 

7.772 
49.52 

0.05097 
5.045e-08 

In terms of assessment of the fnal model, the residuals did not cause any concerns regarding model ft (Figure 
4.3.1). The predicted values are shown in the next section (Figure 4.3.4) and exhibited good agreement 
with the observed values (Figure 4.3.1). Further details of the model selection process and assessment for 
red-throated divers are included in Appendix D. 
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Figure 4.3.1 Residuals (di˙erence between the observed number of birds and predicted number) averaged 
over all surveys. The yellow line indicates the approximate boundary of Liverpool Bay SPA. The black circles 
indicate the location of segments where large numbers of birds (>10 birds per segment) were observed. 

The relationships of the variables (factors and one-dimensional terms) to the response (i.e. numbers of 
red-throated divers), given the other variables in the model, are shown in Figure 4.3.2. For red-throated divers, 
being inside Liverpool Bay SPA had a signifcant positive e˙ect on the predicted numbers of birds compared 
to outside the SPA and the presence of a wind farm had a negative e˙ect compared to the absence of a wind 
farm. The plot for shiplennear (length of the nearest ship) indicated a signifcant negative relationship so 
that the predicted average number of birds per segment decreased as the length of the nearest ship increased. 
For shipnear (distance to nearest ship), the important distance appeared to be about 2 km; within that 
range the predicted average numbers increased as the distance increased (i.e. the nearest ship was further 
away) and beyond that distance the relationship became considerably more uncertain and potentially the 
relationship was non-signifcant (i.e. no change in the response). There was also uncertainty associated with 
ftted function for shiplenav (average length of ships) and this positive relationship may be being driven by a 
few points at large values; the lower confdence interval was only just above, if not, zero. 

[1] "Making partial plots" 
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Figure 4.3.2a Relationship between the response and the factors in the fnal model for red-throated divers 
given the other variables in the model (on a logarithmic scale). For factors, the estimated coeÿcient (dot) 
and confdence interval (vertical line) are shown for each estimated factor coeÿcient with respect to factor 
level 0 which is used as a baseline, or reference, level. A positive value indicates an increase in the response, 
as for LBspa factor level one (i.e. inside Liverpool Bay SPA), and a negative value indicates a decrease as for 
windfarm factor level one (i.e. presence of a wind farm). 

[1] "Making partial plots" 

0 100 200

−
1.

5
0.

0

shiplennear

P
ar

tia
l F

it 
(li

nk
)

0 100 200

0
2

shiplenav

P
ar

tia
l F

it 
(li

nk
)

26 



0 10 20 30

−
0.

5
1.

5

shipnear

P
ar

tia
l F

it 
(li

nk
)

−30 −10 10

−
10

5
20

depth

P
ar

tia
l F

it 
(li

nk
)

32.8 33.4 34.0

0
4

salinity

P
ar

tia
l F

it 
(li

nk
)

Figure 4.3.2b Relationship between the response and the one-dimensional terms in the fnal model for 
red-throated divers given the other variables in the model (on a logarithmic scale). The solid line indicates the 
relationship, the dashed lines show the confdence interval and the ticks along the x-axis indicate the observed 
values. A positive value indicates an increase in the response and a negative value indicates a decrease. The 
plot for shiplennear (length of the nearest ship; m) indicates that the number of birds decreases as the length 
of the nearest ship increases. For shiplenav (the average length of a ship in a segment; m) indicates the 
opposite, however, there is a gap in the distribution of observed values for this variable and this relationship 
may be being driven by a small number of observations with large values for shiplenav and so caution should 
be applied in interpreting this relationship. The increasing CI is due to the smaller numbers of observations 
as shiplenav increases. For shipnear (distance to nearest ship; km), as the distance increases (i.e. the ship is 
further away) to approximately 2 km, the number of birds increases, beyond 2 km the number decreases and 
then increases with high uncertainty. The plots for depth (m) and salinity (ppt) indicate a preference for a 
depth of approximately 5 m and salinity higher than 33 ppt, however, there is also considerable uncertainty 
about these ftted functions (shown by the wide confdence intervals). There is a gap in the distribution of 
observed values for salinity and so the frst part of the curve is being driven by a few points with low values 
for salinity. 
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4.3.2 Estimated abundances 

The shipping metrics and wind farm variable in the fnal model were survey specifc and so prediction was 
made using the prediction data for each of the fve survey dates (Figure 4.3.3) and then averaged over all 
surveys (Figure 4.3.4). 
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Figure 4.3.3 Estimated numbers of red-throated diver sitting per grid cell (1 km2) based on the observed 
values for each survey date. The magenta line indicates the boundary of Liverpool Bay SPA. 

The estimated total abundance of birds within Liverpool Bay SPA for each survey are shown in Table 4.3.6. 
Overall, the number of birds per grid cell (approximately 1 km2) is low with highest numbers found towards 
the coast (Figure 4.3.4). The uncertainty associated with estimated abundance surface was low (Figure 4.3.5). 

Table 4.3.6 Estimated abundances (N) and 95 percentile-based confdence intervals for red-throated divers 
sitting on the water for each survey date. 

Date Estimated.N CI_2.5 CI_97.5 
12/02/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

Mean 

1599.015 
1648.555 
1674.023 
1252.630 
1383.624 
1511.569 

1413.918 
1458.337 
1476.951 
1106.238 
1265.284 
1368.189 

1983.153 
2028.235 
2067.427 
1574.145 
1639.442 
1816.919 
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Figure 4.3.4 Estimated numbers per grid cell (1 km2 approx.) of sitting red-throated divers averaged over all 
survey dates. 
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Figure 4.3.5 Coeÿcients of variation associated with the estimated numbers per grid cell for sitting 
red-throated diver averaged over all surveys. The magenta line indicates the approximate boundary of 
Liverpool Bay SPA. 

4.3.3 Impact of shipping 

For red-throated divers, the shipping metrics chosen were the nearest distance to a ship (shipnear) and two 
metrics based on length (shiplennear and shiplenav). To illustrate the e˙ect of the shipping using these 
metrics, two scenarios were considered: 

1. there are ships in more places throughout the region so that the nearest distance to a ship, compared 
to observed values, decreased by 1 km, 2 km and 3 km. 

2. an increase of 20 m in the length of ships compared to observed values so that the length of the nearest 
ship was increased by 20 m and the average length of a ship (where present in a segment) was also 
increased by 20 m. 

These scenarios were illustrated using the observed values of explanatory variables for the February 2015 
survey. 

The frst scenario, impact of reducing the nearest distance to a ship involved the variable shipnear and 
reducing this by 1 km, 2 km and 3 km compared to observed values (up to the minimum distance observed in 
the data) (Figure 4.3.6). To help interpret these plots also see the observed values for shipnear shown in 
Appendix G and the estimated function for shipnear in Figure 4.3.2b. Figure 4.3.6 shows that where the 
distance to the nearest ship was already very short (i.e. a ship was recorded within the grid cell) there was 
little impact, however, around these cells (where the observed nearest distance to a ship was approximately 1 
to 2 km) there was a negative impact on predicted numbers as the distance to the nearest ship decreased 
(i.e. the nearest ship moved closer). This region increased in width as the reduction in the nearest distance 
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increased. Positive impacts occurred in regions where the nearest distance to ships were observed to be 
between about 2 km and 18 km (e.g. in the north of the region). Where observed distances to the nearest 
ship were long (i.e. in the south west of the region) a decrease in numbers was observed due to the estimated 
smooth function for shipnear increasing after approximately 18 km. There were small reductions in overall 
predicted abundance within the Liverpool Bay SPA (Table 4.3.7). 
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Figure 4.3.6 The di˙erences in numbers of red-throated divers per grid cell when a decrease of 1 km, 2 km 
and 3km in the nearest distance to a ship is imposed on prediction data for February 2015. Symbols indicate 
signifcant di˙erences, an increase in the number of birds (+) and a decrease in the number of birds (o). 

For the second scenario, the imposed impact of increasing the length of the ships by 20 m is shown in Figure 
4.3.7; this involved increasing the variables shiplennear and shiplenav (where ship were present) by 20 m 
compared to observed values. This shows that there was generally a signifcant decrease in the number 
of birds except where there were ships already present in a segment, in which case there was a small and 
non-signifcant increase (see Appendix G). Increasing the length of the nearest ship had a negative e˙ect but 
where ships were already present this was o˙set somewhat by the positive e˙ect due to shiplenav (see Figure 
4.3.2b). The impacts on overall abundance within Liverpool Bay SPA are given in Table 4.3.7. 
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Figure 4.3.7 The di˙erences in numbers of red-throated divers per grid cell when an increase of 20m is 
imposed on the length of the nearest ship and also on the length of a ship where present in a segment using 
the observed prediction data for 2015. Symbols indicate signifcant di˙erences, an increase in the number of 
birds (+) and a decrease in the number of birds (o). 

Table 4.3.7 Estimated abundances and 95 percentile-based confdence intervals for red-throated divers under 
hypothesised changes; scenario 1, decrease in the distance to the nearest ship and scenario 2, increase in the 
length of ships. 

Date Estimated.N CI_2.5 CI_97.5 Scenario Change 
04/02/2015 
04/02/2015 
04/02/2015 
04/02/2015 
04/02/2015 

1384 
1353 
1303 
1235 
1295 

1265 
1208 
1140 
1053 
1154 

1639 
1644 
1629 
1626 
1543 

No change 
1 
1 
1 
2 

1 km 
2 km 
3 km 
20 m 

4.3.4 Impact of wind farms 

Any bu˙ering e˙ect of a wind farm can be assessed by plotting the estimated number of birds per grid 
cell (given observed locations of wind farms) against closest distance from the centre of a wind farm. The 
estimated number of red-throated divers using all prediction data were plotted against the closest distance to 
the centre of a wind farm (Figure 4.3.8). There were few points very close to the centre of a wind farm and 
uncertainty of the ftted function was highest in this region. Moving away from the centre, numbers increased 
and, over all estimates, remained constant beyond about 3.8 km away the centre of a wind farm. 
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Figure 4.3.8 Estimated numbers of red-throated divers per grid cell (estN) against the closest distance to the 
centre of a wind farm (cdist, m) using all the prediction data (i.e. all survey dates). Values have been limited 
to a distance of 10 km from the centre of a wind farm and colour distinguishes points outside (0) or inside (1) 
the footprint of a wind farm. The grey region is a 95% confdence interval around the ftted function. 

The impact of removing wind farms was illustrated using the prediction data for the February 2015 survey 
and changing the variable indicating the presence/absence of a wind farm (windfarm); the di˙erences in 
numbers estimated with and without wind farms were calculated. Although the increase in the predicted 
abundance in the Liverpool Bay SPA was small (Table 4.3.8) there was a signifcance increase in numbers per 
grid cell within the footprint of the wind farms after imposing the hypothetical removal of the wind farms. 
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Figure 4.3.9 The di˙erences in numbers of red-throated divers per grid cell after removing wind farms from 
the February 2015 prediction data. Symbols indicate signifcant di˙erences, an increase in the number of 
birds (+) and a decrease in the number of birds (o). 

Table 4.3.8 Estimated abundances of red-throated divers with and without wind farms for the February 2015 
prediction data. 

Date Estimated.N CI_2.5 CI_97.5 Scenario 
04/02/2015 
04/02/2015 

1384 
1440 

1265 
1318 

1639 
1700 

No change 
Wind farms removed 

Figure 4.3.9 illustrates the locations of the di˙erences in numbers with and without wind farms for one survey 
date. Table 4.3.8 shows the estimated abundance in red-throated divers for the Liverpool Bay SPA after 
removing the wind farms in the February 2015 prediction data. 

Figure 4.3.10 looks at di˙erences in numbers (within the wind farm footprints) over all prediction data against 
distance to the centre of the wind farm. The di˙erences remained constant within about 2 km from the 
centre but declined further way from the centre; in 2011 all points within a wind farm footprint were within 
3.1 km and in 2015 this distance increased to 7.5 km. 
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Figure 4.3.10 Di˙erence in estimated numbers of red-throated divers per grid cell (di˙.estN) with and without 
wind farms against the closest distance to the centre of a wind farm (cdist, m) using all prediction data. The 
grey region is a 95% confdence interval around a smooth function ftted to these data. 

4.4 Common scoter sitting on the water 

4.4.1 Selected model 

Each candidate variable was assessed individually and although it was again depth which had the highest 
pseudo-R2 ft score, each term ftted individually explained little of the variation observed in the response due 
to the overdispersion (Table 4.4.1). The variable shipcatAv was selected from the variables grouped together 
because it had the lowest mean CV out of the four variables. 

Table 4.4.1. Fit statistics including each term separately to model sitting common scoter counts: average 
CV, and 2.5 and 97.5 percentile confdence limits, pseudo-R2 (R2, a measure of the correlation between the 
observed values and the ftted values from the model) and probability (p.value) associated with ftting each 
term separately. Numbers in the ‘Group’ column indicate which variables were grouped together and one 
variable from the group was chosen. 

Variable meanCV lowCV highCV R2 p.value Group 
s(depth) 

as.factor(shipcatAv) 
as.factor(shipcatMax) 
as.factor(shipMMO) 
as.factor(shipAIS10) 

s(salinity) 
s(shipnear) 

15676 
15766 
15766 
15795 
15803 
15956 
15995 

15618 
15747 
15750 
15776 
15790 
15905 
15943 

15761 
15801 
15792 
15820 
15819 
16027 
16050 

0.05513 
0.04842 
0.04841 
0.04692 
0.04253 
0.04004 
0.03665 

0 
1.592e-14 
1.794e-14 
1.419e-13 
5.094e-18 
5.869e-07 
0.0004311 

1 
1 

37 



Variable meanCV lowCV highCV R2 p.value Group 
as.factor(shipAIS5) 16013 16001 16037 0.02929 4.364e-08 
as.factor(shipnumf) 
as.factor(shipAIS1) 

16047 
16048 

16038 
16037 

16059 
16066 

0.02658 
0.02658 

5.131e-07 
1.789e-07 

1 
1 

shiplenav 
s(shiplenmax) 

16055 
16076 

16045 
16047 

16069 
16111 

0.02652 
0.02658 

0.009855 
1.11e-16 

as.factor(windfarm) 16087 16079 16100 0.02411 1.324e-05 
as.factor(LBspa) 
as.factor(anthrop) 

16110 
16139 

16101 
16130 

16127 
16150 

0.02249 
0.02108 

0.001553 
0.8328 

shiplennear 16140 16126 16160 0.02021 0.1393 
as.factor(windcable) 

as.factor(fsh) 
16140 
16143 

16129 
16130 

16154 
16161 

0.02088 
0.02178 

0.3196 
0.2867 

Having chosen which term to include from those grouped together, the multi-collinearity of the remaining 
variables was assessed (Table 4.4.2). The term shipMMO was likely collinear with shipcatAv and as with red-
throated divers, shipcatAv was selected over shipMMO. The terms anthrop and windcable were identifed 
as being collinear and anthrop was selected because of potentially higher predictive power to data seen and 
unseen by the model (Table 4.4.1). Also, the adjusted GVIFs for shiplenav and shiplenmax indicated high 
correlation and shiplenav was selected over shiplenmax based on it’s lower CV score. 

Table 4.4.2 Table of generalized variance infation factors (GVIF) for sitting common scoter, degrees of 
freedom (Df) and GVIFs adjusted for the degrees of freedom (GVIFˆ(1/2*Df)). 

GVIF Df GVIFˆ(1/(2*Df)) 
as.factor(shipcatAv) 
as.factor(shipMMO) 

2578 
161.2 

6 
1 

1.924 
12.7 

as.factor(shipAIS10) 
as.factor(shipAIS5) 

4.24 
4.235 

1 
1 

2.059 
2.058 

as.factor(windfarm) 1.002 1 1.001 
as.factor(LBspa) 
as.factor(anthrop) 

1.05 
3775264 

1 
1 

1.025 
1943 

as.factor(windcable) 3775264 1 1943 
as.factor(fsh) 
shiplennear 

1.235 
1.46 

1 
1 

1.111 
1.208 

depth 
salinity 

1.674 
1.292 

1 
1 

1.294 
1.137 

shipnear 1.325 1 1.151 
shiplenav 
shiplenmax 

34.2 
42.49 

1 
1 

5.848 
6.518 

The stages in the model selection process are summarised in Table 4.4.3. The variables shiplennear and 
shiplenav were included as linear terms, because there were problems ftting them as smooth functions. The 
pseudo-R2 ft scores did not change substantially when non-signifcant terms were removed from the full 
model. After selecting factor and one-dimensional and including a two-dimensional term for location, there 
were four variables retained in the model that could potentially form an interaction with the two-dimensional 
smooth term of location. Each was tried in turn and the term selected for an interaction was shipAIS5 based 
on the mean CV score (Table 4.4.4). 

Table 4.4.3. The iterations in model selection for common scoter sitting; starting with the full model, the 
‘Model’ column indicates terms that were dropped from (‘-’) or added to (‘+’) the model and shows the mean 
CV and percentile-based confdence limits associated with the model, ft score pseudo-R2 and the ‘p.value’ 
column shows the probability associated with the term excluded/included from the model. ‘s(.)’ indicates a 
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smooth term. 

NumIter Model meanCV CI_2.5 CI_97.5 R2 p.value 
1 Full model 15621 15465 15814 0.08573 NA 
2 - salinity 15579 15441 15760 0.08609 0.7154 
3 
4 

- as.factor(LBspa) 
- s(shipnear) 

15575 
15585 

15438 
15485 

15757 
15750 

0.08602 
0.0763 

0.5052 
0.2896 

5 - as.factor(fsh) 15520 15417 15653 0.07534 0.6259 
6 
7 

- shiplennear 
- as.factor(anthrop) 

15447 
15438 

15343 
15338 

15624 
15583 

0.08041 
0.0798 

0.1784 
0.1522 

8 + s(x.pos,y.pos) 21019 15045 15444 0.1163 0.001876 
9 + s(x.pos,y.pos):shipAIS5 14791 14567 15123 0.1682 0.0003929 

Table 4.4.4 CV scores for the candidate variables to include as a interaction term with location for sitting 
common scoter. The values for s(x.pos, y.pos) are included for comparison. 

Term meanCV CI_2.5 CI_97.5 R2 p.value 
s(x.pos,y.pos) 21019 15045 15444 0.1163 0.001876 

s(x.pos,y.pos):as.factor(shipcatAv) 
s(x.pos,y.pos):as.factor(shipAIS5) 

8.124e+16 
14822 

14578 
14584 

1.204e+10 
15263 

0.1648 
0.1682 

0 
0.0003929 

s(x.pos,y.pos):as.factor(shipAIS10) 15194 14988 15509 0.1345 0.01796 
s(x.pos,y.pos):shiplenav 15585 14794 15298 0.1343 0.0001553 

The pseudo-R2 ft score for the fnal model was 0.17 which while better than the other models assessed is low, 
however, these data in particular, were very variable and it will be diÿcult to capture this variability. The 
fnal model for sitting common scoter included the following variables: 

• factors, windfarm, shipcatAv, shipAIS5 and shipAIS10, 

• linear term shiplenav, 

• one dimensional smooth term depth, 

• location as two-dimensional term between x.pos and y.pos and 

• an interaction term between location and shipAIS5. 

The signifcance associated with each term is shown in Table 4.4.5. 

Table 4.4.5 Analysis of variance table for the fnal model ftted to sitting common scoter data; the number of 
degrees of freedom (Df), test statistic (X2) and p-value associated with each term in the model (P(>|Chi|)). 

Table 18: Analysis of ‘Wald statistic’ Table 

Df X2 P(>|Chi|) 
as.factor(windfarm) 1 64.3 1.11e-15 
as.factor(shipcatAv) 
as.factor(shipAIS10) 

6 
1 

57.1 
36.55 

1.747e-10 
1.489e-09 

as.factor(shipAIS5) 1 5.533 0.01866 
shiplenav 
s(depth) 

1 
4 

11.33 
137.9 

0.0007608 
0 

s(x.pos, y.pos) 5 21.26 0.000722 
s(x.pos, y.pos):as.factor(shipAIS5) 5 22.65 0.0003929 
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In terms of model assessment, the residuals did not indicate any systematic departures from the model 
(indicated by clusters of extreme red or blue colours) but naturally gave large residuals where unusually large 
values were seen. This fgure provided no cause for concern in this case (Figure 4.4.1) and the predicted 
values (Figure 4.4.4) showed agreement with the observed values (Figure 4.1.1). Further details of the model 
selection process and assessment for sitting common scoter are included in Appendix E. 
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Figure 4.4.1 Plot of the residuals (di˙erence between the observed number of birds and predicted number) 
averaged over all surveys. The large positive residuals (>150) occurred in segments where large numbers of 
birds (>500) were observed (black circles). The yellow line indicates the approximate boundary of Liverpool 
Bay SPA. 

The relationships of the variables (factors and one-dimensional terms) to the response (i.e. numbers of birds) 
given the other variables in the model are shown in Figure 4.4.2. The presence of a wind farm compared 
to the the absence of a wind farm had a negative impact as does the presence of ship tracks in shipAIS10 
(combined presence/absence of shipping on the day of the survey and the day before). Ships present on 
the day of the survey also had a negative impact and two levels (ships present but not on the day of the 
survey and ships 10-15m present on the day of the survey) both overlapped the baseline level (no ships 
present). Conversely, as the average length of ships increased, there was a positive e˙ect although there was 
considerable uncertainty associated with the ftted function and this relationship may be being driven by a 
few large observations. There seems to be a slight preference for a depth of approximately 5 m but again 
there is considerable uncertainty associated with the ftted function. 

[1] "Making partial plots" 
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Figure 4.4.2a Relationship of the factors in the fnal model to the numbers of sitting common scoter (on a 
logarithmic scale) given the other variables in the model. For factors, the estimated coeÿcient (dot) and 
confdence interval (vertical line) are shown for each estimated factor coeÿcient; factor level 0 is used as 
a baseline, or reference, level. A positive value indicates an increase in the response and a negative value 
indicates a decrease. Both windfarm factor level 1 (i.e. presence of a wind farm) and shipAIS10 factor level 
1 (i.e. presence of a ship over a medium time scale) are associated with a decrease. For shipcatAv, factor 
level 1 (presence of a ship but not on the day of the survey) there is no change compared to factor level 0 
(ships never present). For all other levels (i.e. ship present and categorised by length) there was a negative 
e˙ect, however, for small ships (10-15 m) there was overlap with the reference level. The variable shipAIS5 
is not shown because it was included in an interaction with location. 
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Figure 4.4.2b Relationship of the one-dimensional terms in the fnal model to the numbers of sitting common 
scoter (on a logarithmic scale) given the other variables in the model. The solid line indicates the relationship, 
the dashed lines show the confdence interval and the ticks along the x-axis indicate the observed values. A 
positive value indicates an increase in the response and a negative value indicates a decrease. The relationship 
with shiplenav (average length of a ship, m) should be interpreted with caution as the positive relationship 
may be being driven a large value for shiplenav. There is a slight preference for shallower depths (m) but 
again there is uncertainty associated with this relationship as evidenced by the wide confdence intervals. 

4.4.2 Estimated abundances 

The shipping metrics and the wind farm variable in the fnal model were survey specifc and so prediction 
was made using the observed values for each of the fve survey dates (Figure 4.4.3) and then averaged over all 
surveys (Figure 4.4.4). 
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Figure 4.4.3 Estimated number of sitting common scoter per grid cell (~1 km2) based on the observed values 
for each survey date. The magenta line indicates the boundary of Liverpool Bay SPA. 

The estimated abundances (and 95 percentile-based confdence intervals) in the Liverpool Bay SPA using the 
observed values for each survey are shown in Table 4.4.5. The highest estimated numbers occurred closer 
to the coast and particularly in the north of the SPA (Figure 4.4.4). The uncertainty associated with the 
estimated surface (Figure 4.4.5) is low, except on the most northerly edge of the SPA where survey coverage 
was lower than in other parts of the region (Figure 4.1.1) however numbers estimated in this area were 
extremely close to zero and so any variability on these estimates returns a very high coeÿcient of variation. 
The estimated abundances are somewhat higher in 2011 than maybe anticipated from the observed numbers 
but note that average numbers are estimated based on functions ftted to data from all surveys. 

Table 4.4.5 Estimated abundances (N) and percentile-based confdence intervals for common scoter sitting on 
the water for each survey date. 

Date Estimated.N CI_2.5 CI_97.5 
12/02/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

Mean 

117329 
119561 
117519 
121291 
117101 
118560 

96496 
99150 
96839 
99862 
96539 
97808 

170104 
171580 
170979 
175989 
168958 
171898 
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Figure 4.4.4 Estimated numbers of common scoter sitting per grid cell and averaged over all survey dates. 
The magenta line indicates the approximate boundary of Liverpool Bay SPA. 
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Figure 4.4.5 Coeÿcients of variation associated with the estimated numbers per grid cell for sitting common 
scoter and averaged over all surveys. The magenta line indicates the approximate boundary of Liverpool Bay 
SPA. 

4.4.3 Impact of shipping 

For sitting common scoter, several shipping metrics were included in the fnal model which incorporated 
information about the transient shipping on the day of the survey and metrics which incorporated information 
on the presence/absence of more general ship traÿc. There are many scenarios that could be envisioned 
and the hypothetical scenario illustrated here was the impact of an increase in the length of ships using the 
existing shipping lanes. 

Two variables in the fnal model incorporated information on ship length, shipcatAv and shiplenav. To 
impose a change in length, values for both variables were changed accordingly. In shipcatAv, average ship 
lengths were divided into fve categories (see section 3.3.2) and to implement the hypothetical scenario 
(i.e. longer ships) the change imposed on observed values was that all ships would increase in length and move 
to a longer length category, except for the ships already in the longest category (i.e. >89m). The models 
were ftted with only fve length categories and so obtaining a prediction for a new category (unobserved 
in the data) would not be possible. To ensure that shiplenav was consistent with the change specifed in 
shipcatAv, the average lengths of ships per segment were replaced with a lengths chosen at random (and 
with replacement) from the observed lengths of ships in the new category. For example, ships of length 10-15 
m were in category 2 and under the imposed change these moved to category 3 (i.e. ships >15-20 m in length) 
and new lengths (to populate values for shiplenav) were selected at random from the observed distribution 
of lengths in category 3. 

The impact of the imposed change for one realisation is shown in Figure 4.4.6 (there are many realisations 
because of the random selection of new lengths). To help interpret this plot also see the observed values in 
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Appendix G and the ftted functions for the relevant variables (Figure 4.4.2). Figure 4.4.6 shows that there 
will be no change in large parts of the region but in lanes already used by large ships there will be a decrease 
in bird numbers of up to 30 birds per grid cell and some smaller increases likely due from ships moving from 
category 3 to 4. The e˙ect on overall predicted abundance within the Liverpool Bay SPA as a whole was 
small (Table 4.4.6). 
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Figure 4.4.6 The di˙erences in numbers of sitting common scoter per grid cell when the lengths of ships are 
increased using observed values for 2015. Symbols indicate signifcant di˙erences, an increase in the number 
of birds (+) and a decrease in the number of birds (o). 

Table 4.4.6 Estimated abundances and 95 percentile-based confdence intervals for sitting common scoter 
under hypothesised change of an increase in the length of ships. 

Date Estimated.N CI_2.5 CI_97.5 Change 
04/02/2015 117101 96539 168958 No change 
04/02/2015 116726 96390 169324 Ship length increase 

4.4.4 Impact of wind farms 

Plotting estimated numbers of sitting common scoter per grid cell against the closest distance to a centre 
of a wind farm (using prediction data for all survey dates) indicated that numbers remained low until 
approximately 2 km from the centre of a wind farm (Figure 4.4.7). Numbers increased at a constant rate 
until approximately 8 km from a centre of a wind farm, after 8 km numbers overall remained constant. 
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Figure 4.4.7 Estimated numbers of sitting common scoter per grid cell (estN) against the closest distance to 
the centre of a wind farm (cdist; m). Values have been limited to a distance of 10 km from the centre of a 
wind farm and colour distinguishes points outside (0) or inside (1) the footprint of a wind farm. The grey 
region is the 95% confdence interval around a smooth function ftted to these data. 

The impact of removing the wind farms was illustrated using the February 2015 prediction data and by 
selecting the variable indicating the presence/absence of a wind farm (i.e. windfarm) and changing all 
records in the prediction grid indicating presence of a wind farm to indicating no wind farm. Figure 4.4.8 
indicated that the numbers per grid cell increased within the footprint of the wind farm with the removal of 
the wind farm. The e˙ect on overall predicted abundance within the Liverpool Bay SPA was small (Table 
4.4.7). 
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Figure 4.4.8 The di˙erences in average predicted numbers of sitting common scoters per grid cell when the 
wind farms are removed using the prediction data for February 2015. Symbols indicate signifcant di˙erences, 
an increase in the number of birds (+) and a decrease in the number of birds (o). The scale has been limited 
to a di˙erence of 100 birds per grid cell. 

Table 4.4.7 Estimated abundances of sitting common scoter with and without wind farms for the February 
2015 prediction data. 

Date Estimated.N CI_2.5 CI_97.5 Scenario 
04/02/2015 117101 96539 168958 No change 
04/02/2015 119406 98294 172960 Wind farms removed 

The presence of a wind farm had the e˙ect of reducing the numbers of birds within the footprint of the wind 
farm. Looking at the di˙erences in the estimated numbers per grid cell with and without wind farms from 
the centre of a wind farm shows that beyond about 3 km from the centre there were no di˙erences with and 
without wind farms (Figure 4.4.9). 
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Figure 4.4.9 Di˙erence in estimated numbers of sitting common scoter per grid cell (di˙.estN) with and 
without wind farms against the closest distance to the centre of a wind farm (cdist, m) using all prediction 
data. The grey region is a 95% confdence interval around a smooth function ftted to these data. 

4.5 Common scoter fying 

4.5.1 Selected model 

Each candidate variable was assessed individually and as with the other species it was again depth which had 
the highest pseudo-R2 ft score (Table 4.5.1). Although shipAIS1 had the lowest mean CV and would be 
chosen at the frst stage of the selection process, it was the frst variable to be removed from the full model 
(see Appendix F). Therefore, the variable with the next lowest mean CV score, shipcatAv was selected from 
the group of variables (Table 4.5.1). 

Table 4.5.1. Fit statistics including each term separately to model fying common scoter counts: mean CV, 
2.5 and 97.5 percentile-based confdence limits, pseudo R2 ft score (R2, a measure of the correlation between 
the observed values and the ftted values from the model) and probability (p.value) associated with ftting 
each term separately. Numbers in the Group column indicate variables which were grouped together and one 
variable from the group was chosen. 

Variable meanCV lowCV highCV R2 p.value Group 
s(depth) 

as.factor(shipAIS10) 
as.factor(windfarm) 

shiplenav 
as.factor(anthrop) 
as.factor(windcable) 

22.1 
22.21 
22.22 
22.22 
22.23 
22.23 

22.05 
22.2 
22.21 
22.21 
22.21 
22.22 

22.17 
22.23 
22.24 
22.24 
22.24 
22.25 

0.01697 
0.008707 
0.006916 
0.007063 
0.00665 
0.006387 

0 
0.2268 
0.04712 
0.1394 
0.08875 
0.1631 
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Variable meanCV lowCV highCV R2 p.value Group 
as.factor(shipMMO) 22.24 22.23 22.26 0.00661 0.6217 
as.factor(shipAIS5) 

shiplennear 
22.25 
22.25 

22.23 
22.24 

22.27 
22.27 

0.006416 
0.006151 

0.7361 
0.6508 

as.factor(shipAIS1) 
as.factor(shipcatAv) 

22.25 
22.25 

22.24 
22.23 

22.27 
22.32 

0.005974 
0.008711 

0.986 
0.01769 

1 
1 

as.factor(shipnumf) 22.25 22.24 22.27 0.00592 0.5573 1 
as.factor(fsh) 

as.factor(shipcatMax) 
22.25 
22.26 

22.24 
22.23 

22.27 
22.32 

0.006061 
0.008722 

0.5415 
0.01674 1 

s(shiplenmax) 22.26 22.24 22.29 0.006509 0.5108 
as.factor(LBspa) 

s(salinity) 
22.28 
22.29 

22.27 
22.25 

22.3 
22.34 

0.006029 
0.007215 

0.9695 
0.307 

s(shipnear) 22.32 22.27 22.39 0.00648 0.1979 

Having chosen which term to include from those grouped together, the multi-collinearity of the remaining 
variables was assessed (Table 4.5.2). The term shipMMO was likely collinear with shipcatAv and shipcatAv 
was selected over shipMMO. The term anthrop was selected because of potentially higher predictive power 
(Table 4.5.1). The variables shiplenav and shiplenmax had high adjusted GVIFs but these were not greater 
than the threshold (>5) and so at this stage were retained. 

Table 4.5.2 Table of generalized variance infation factors (GVIF) for fying common scoter, degrees of freedom 
(Df) and GVIFs adjusted for the degrees of freedom (GVIFˆ(1/2*Df)). 

GVIF Df GVIFˆ(1/(2*Df)) 
as.factor(shipAIS10) 
as.factor(windfarm) 

3.835 
1.004 

1 
1 

1.958 
1.002 

as.factor(anthrop) 
as.factor(windcable) 

219340 
219340 

1 
1 

468.3 
468.3 

as.factor(shipMMO) 91.63 1 9.572 
as.factor(shipAIS5) 
as.factor(shipcatAv) 

3.979 
4002 

1 
6 

1.995 
1.996 

as.factor(fsh) 1.27 1 1.127 
as.factor(LBspa) 

depth 
1.181 
1.964 

1 
1 

1.087 
1.402 

shiplenav 
shiplennear 

15.61 
1.807 

1 
1 

3.951 
1.344 

shiplenmax 22.94 1 4.789 
salinity 
shipnear 

1.386 
1.763 

1 
1 

1.177 
1.328 

The stages in the model selection process are summarised in Table 4.5.3. The variables shiplennear, shiplenav, 
shiplenmax and salinity were included as linear terms, because there were problems ftting them as smooth 
terms (even after reducing the maximum number of knots for the smooth term to one). The mean CV score 
did not ‘settle down’ until six terms had been removed. 

Table 4.5.3. The number of iterations in model selection for fying common scoter; The Model column 
indicates terms that were dropped from (‘-’) or added to (‘+’) the model; the mean CV and percentile based 
confdence limits associated with the model, pseudo-R2 ft score and p.value which indicates the probability 
associated with the term excluded from, or added to, the model. 

NumIter Model meanCV CI_2.5 CI_97.5 R2 p.value 
1 Full model 2.141e+25 51.32 7.447e+21 0.0563 NA 
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NumIter Model meanCV CI_2.5 CI_97.5 R2 p.value 
2 - shiplennear 2.739e+25 36.27 7.265e+21 0.0563 0.9747 
3 
4 

- as.factor(shipAIS5) 
- as.factor(shipAIS10) 

8.482e+32 
8.576e+32 

75.22 
77.54 

2.591e+29 
2.743e+29 

0.04606 
0.04696 

0.7687 
0.8296 

5 
6 

- salinity 
- shiplenmax 

2.339e+26 
2.632e+26 

132 
49.46 

1.501e+23 
4.339e+23 

0.05114 
0.05066 

0.4298 
0.4112 

7 - as.factor(LBspa) 2.267e+27 236.9 3.63e+26 0.05187 0.3801 
8 
9 

- shiplenav 
- s(shipnear) 

22.37 
22.19 

22.21 
22.08 

22.68 
22.34 

0.03729 
0.02734 

0.2153 
0.1541 

10 - as.factor(fsh) 22.09 21.98 22.27 0.02836 0.155 
11 + s(x.pos,y.pos) 22 21.82 22.27 0.05 0.003835 

The only shipping metric remaining in the model was shipcatAv. An interaction with this term and location 
was tried but was inestimable and so an interaction term was not included. The fnal model for fying common 
scoter included the following variables: 

• factors, windfarm, anthrop, shipcatAv 

• one dimensional smooth term depth and 

• location as two-dimensional term between x.pos and y.pos 

The ft score for the fnal model was 0.05 which was similar to that of the full model, although without the 
model ftting problems. This value was low but this was not surprising given the small number of segments 
where fying common scoter were observed and the variability of those observations when numbers were seen. 
The signifcance of the terms in the model are shown in Table 4.5.4. 

Table 4.5.4 Analysis of variance table for the fnal model ftted to fying common scoter data; the number of 
degrees of freedom (Df), test statistic (X2) and p-value associated with each term in the model (P(>|Chi|)). 

Table 25: Analysis of ‘Wald statistic’ Table 

Df X2 P(>|Chi|) 
as.factor(windfarm) 1 20.3 6.613e-06 
as.factor(anthrop) 
as.factor(shipcatAv) 

1 
6 

13.5 
25.8 

0.0002386 
0.0002425 

s(depth) 4 83.08 0 
s(x.pos, y.pos) 3 13.41 0.003835 

Despite the low ft score, the residuals did not provide any cause for concern (Figure 4.5.1) and the predicted 
values (Figure 4.5.4.) showed agreement with the observed values (Figure 4.1.2). Further details of the model 
selection process and assessment for sitting common scoter are included in Appendix F. 
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Figure 4.5.1 Plot of the residuals (di˙erence between the observed number of birds and predicted number) 
averaged over all surveys. The black circles indicate segments where large numbers (>80) of common scoter 
were observed fying. The yellow line indicates the approximate boundary of Liverpool Bay SPA. 

The relationships of the variables (factors and one-dimensional terms) to the response (i.e. numbers of fying 
common scoter) given the other variables in the model are shown in Figure 4.5.2. In terms of signifcant 
coeÿcients, there were signifcant negative e˙ects due to presence of a wind farm and the presence of other 
anthropogenic e˙ects compared to their absence; the presence of small ships (10 - 15 m) on the day of the 
survey had a signifcant positive e˙ect (testing at 5% signifcance level), compared to the absence of a ship. 

[1] "Making partial plots" 
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Figure 4.5.2a Fitted relationships of the factors in the fnal model to the numbers of fying common scoter 
(on a logarithmic scale) given the other variables in the model. For factors, the estimated coeÿcient (dot) 
and confdence interval (vertical line) are shown for each estimated factor coeÿcient; factor level 0 is used 
as a baseline, or reference, level. A positive value indicates an increase in the response and a negative 
value indicates a decrease. The presence of a wind farm and the presence of anthropogenic e˙ects had a 
signifcant negative e˙ect compared to their absence in a segment. Factor levels 1 and 2 for shipcatAv had a 
positive e˙ect compared to the baseline coeÿcient although for level 1 this was not signifcant as evidenced 
by the confdence interval containing zero and level 2 (presence of a small ship) was signifcant (testing at a 
5% signifcance level). Larger ships (factor levels 3 to 6) had a negative impact but again these were not 
signifcantly di˙erent from the baseline coeÿcient. 

[1] "Making partial plots" 

53 



−30 −10 10

−
50

50

depth

P
ar

tia
l F

it 
(li

nk
)

Figure 4.5.2b Fitted relationships of depth (m) in the fnal model to the numbers of fying common scoter (on 
a logarithmic scale) given the other variables in the model. the solid line indicates the relationship, the dashed 
lines show the confdence interval and the ticks along the x-axis indicate the observed values. A positive 
value indicates an increase in the response and a negative value indicates a decrease. Here, there appears to 
be a slight preference for shallower waters but there is considerable uncertainty associated with the ftted 
function as evidenced by the wide confdence intervals which also contain zero indicating non-signifcance. 

4.5.2 Estimated abundances 

The shipping metric in the fnal model was survey specifc and so prediction was made using the observed 
values for each of the fve survey dates (Figure 4.5.3) and then averaged over all surveys (Figure 4.5.4). 

54 



420000 460000 500000

59
10

00
0

59
50

00
0

0
5
10
15
20
25
30
35

420000 460000 500000

59
10

00
0

59
50

00
0

0
5
10
15
20
25
30
35

420000 460000 500000

59
10

00
0

59
50

00
0

0
5
10
15
20
25
30
35

420000 460000 500000

59
10

00
0

59
50

00
0

0
5
10
15
20
25
30
35

420000 460000 500000

59
10

00
0

59
50

00
0

0
5
10
15
20
25
30
35

Figure 4.5.3 Estimated number of fying common scoter per grid cell (~1 km2) based on the observed values 
for each survey date. The magenta line indicates the boundary of Liverpool Bay SPA. 

The estimated abundances for each survey (and 95% confdence intervals) in the Liverpool Bay SPA using the 
observed values are shown in Table 4.5.5. Although numbers are much lower for fying common scoter than 
for sitting common scoter, the pattern is similar with higher numbers closer to the coast (Figure 4.5.4). There 
was some uncertainty associated with the estimated abundance surface; this uncertainty occurred because 
of large values generated during the bootstrap process for grid cells lying mostly along the seaward edge of 
the southern part of the SPA (Figure 4.5.5). The high uncertainty coincided with parts of the region where 
survey coverage was lowest (Figure 4.1.2) and where there were no observations of fying common scoter, 
elsewhere the uncertainty was low. 

Table 4.5.5 Estimated abundances (N) and percentile-based confdence intervals for fying common scoter for 
each survey date. 

Date Estimated.N CI_2.5 CI_97.5 
12/02/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

Mean 

2621 
2917 
2477 
2570 
2148 
2546 

1981 
2146 
1820 
1821 
1584 
1876 

5719 
6157 
5824 
5976 
5104 
5805 
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Figure 4.5.4 Estimated numbers of fying common scoter per grid cell and averaged over all survey dates. 
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Figure 4.5.5 Coeÿcients of variation associated with the estimated numbers per grid cell for fying common 
scoter and averaged over all surveys. The magenta line indicates the approximate boundary of Liverpool Bay 
SPA. 

4.5.3 Impact of shipping 

For fying common scoter, the only shipping metric included in the fnal model was shipcatAv which described 
segments where ship traÿc was always absent, ship traÿc sometimes present (but not on the day of the 
survey) or ship traÿc present on the day of the survey and divided into fve categories based on ship length. 
The hypothetical scenario considered here was an increase in the length of ships in existing shipping lanes 
and assessing this scenario was somewhat more straightforward than for for sitting common scoter as only 
changes in one variable needed to be specifed. To implement the scenario, the imposed change on the variable 
shipcatAv was that ships moved into the next length category, for example, ships in category 2 moved to 
category 3 and so on for the other categories, noting that category 6 was the longest category allowed. 

The impact is shown in Figure 4.5.6 and to help interpret this plot also see the observed values for shipcatAv 
for the February 2015 survey in Appendix G and ftted values for each factor in Figure 4.5.2. Figure 4.5.6 
shows that there will, in general, be no change and any changes will be small (1 or 2 birds per grid cell). The 
increases are likely due to ships moving from category 4 (>20 - 36 m) to category 5 (>36 - 89 m) as the 
coeÿcient associated with category 5 was slightly larger than for category 4. The e˙ect on abundance in 
Liverpool Bay SPA overall is given in Table 4.5.6. 
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Figure 4.5.6 The di˙erences in numbers of sitting common scoter per grid cell when the length of a ship is 
increased to the next category using observed values for 2015. Symbols indicate signifcant di˙erences, an 
increase in the number of birds (+) and a decrease in the number of birds (o). 

Table 4.5.6 Estimated abundances and 95 percentile-based confdence intervals for sitting common scoter 
under hypothesised change of an increase in the length of ships. 

Date Estimated.N CI_2.5 CI_97.5 Change 
04/02/2015 2148 1584 5104 No change 
04/02/2015 2155 1565 5328 Ship length increase 

4.5.4 Impact of wind farms 

The estimated numbers of fying common scoter per grid cell was generally low. Plotting the estimated 
numbers per grid cell against the closest distance to the centre of a wind farm showed that there were no 
fying common scoter within about 2 km from the centre. Overall the prediction data, numbers increased 
slightly as the distance from the centre increased (Figure 4.5.7). 

58 



0

10

20

30

0 2500 5000 7500 10000

cdist

es
tN

factor(windfarm)

0

1

Figure 4.5.7 Estimated numbers of fying common scoter per grid cell against the closest distance to a centre 
of a wind farm using all the prediction data. Values have been limited to a distance of 10 km from the centre 
of a wind farm and colour distinguishes points outside (0) or inside (1) the footprint of a wind farm. The 
grey region is the 95% confdence interval around a smooth function ftted to these data. 

The impact of removing the wind farms was illustrated using the February 2015 prediction data. Figure 4.5.8 
indicated that the numbers per grid cell increased within the footprint of the wind farm when the wind farm 
was removed compared to when the wind farm was present. The increase in predicted abundance over all 
within the SPA is given in Table 4.5.7. 
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Figure 4.5.8 The di˙erences in numbers of fying common scoters per grid cell when the wind farms were 
removed compared to wind farms being present using prediction data for February 2015. Symbols indicate 
signifcant di˙erences, an increase in the number of birds (+) and a decrease in the number of birds (o). 

Table 4.5.7 Estimated abundances of fying common scoter with and without wind farms for the February 
2015 prediction data. 

Date Estimated.N CI_2.5 CI_97.5 Scenario 
04/02/2015 2148 1584 5104 No change 
04/02/2015 2266 1724 5252 Wind farms removed 

Within the footprint of a wind farm, the di˙erences in the estimated numbers per grid cell with and without 
wind farms extended out to approximately 3 km from the centre of a wind farm (Figure 4.5.9). 
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Figure 4.5.9 Di˙erences in estimated numbers of fying common scoter per grid cell (di˙.estN) with and 
without wind farms against the closest distance to the centre of a wind farm (cdist, m) using all prediction 
data. The grey region is a 95% confdence interval around a smooth function ftted to these data. 

5. Discussion 

5.1 Selected models 

Models were ftted to data for sitting red-throated divers and sitting and fying common scoter. Backward 
selection was used to select from the candidate list of environmental and shipping metric variables. In terms 
of the ft scores, the model ftted to sitting common scoter explained the most variation observed in the 
data and the model ftted to fying common scoter the least. All three fnal models contained variables for 
the presence/absence of a wind farm (at the time of the survey), a one-dimensional term of depth and a 
two-dimensional term for location. Including location substantially improved the ft score for red-throated 
divers and sitting common scoter and this term is essentially a proxy for potentially many factors that a˙ect 
the bird distributions. 

Other variables included in the models depended on species. In terms of the metrics representing the ship 
traÿc on the day of the survey, it was the length metrics that were selected rather than the metric describing 
the number of ships. 

5.1.1 Red-throated diver 

This was the only model to select inside/outside of Liverpool Bay SPA and the coeÿcients indicated an 
increase of numbers inside the SPA compared to outside. This perhaps was not surprising since the boundary 
of the SPA was defned on the basis of red-throated diver distributions. Several shipping metrics were selected 
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in the model for red-throated divers but these were all survey specifc (i.e. recorded on the day of the survey); 
the more general variables representing presence/absence of shipping over longer time periods were not 
included. The metrics included were length of the nearest ship, average length of the ships intersecting 
the segment and distance to the nearest ship. Based on the ftted function for distance to nearest ship, 
2 km appeared to be a critical distance; numbers increased substantially as the distance increased up to 
approximately 2 km, beyond that distance the changes in numbers as distance increased were smaller. 

The relationships of the length variables to the number of birds had opposite e˙ects as length increased; as 
the length of the nearest ship increased, the numbers of birds decreased, whereas, when the average length of 
ships intersecting the segment increased, the numbers of birds increased. There were relatively few, large 
ships observed, and so particularly for the average length of a ship there were very few observations with 
large values and this has driven the relationship and resulted in wide confdence intervals. 

5.1.2 Sitting common scoter 

The model selected for sitting common scoter was the most complicated, containing shipping metrics describing 
the ship traÿc on the day of the survey and also a more general picture of the presence/absence of ship 
traÿc. Presence of shipping over a longer time period indicated a negative e˙ect. The ‘combination’ factor 
described a segment in terms of ships absent from a segment, sometimes present (but not on the day of the 
survey) or ship traÿc present and divided into categories based on average length. The estimates for these 
factor levels indicated that a ship being present on the day of the survey had a negative e˙ect and the larger 
the boat in general, the larger the negative e˙ect (Figure 4.4.1). 

5.1.3 Flying common scoter 

Common scoter were observed fying in only a small number of aerial survey segments and the simplest model 
was selected. The ft score indicated that the least amount of variation in the observed numbers per segment 
had been estimated by the model compared to the ft scores for the models ftted to the other species. There 
were regions where there were no observations and survey e˙ort was lower than in other regions resulting in 
large uncertainties in the estimates in these regions (e.g. seaward edge of the southern part of the SPA) and 
hence overall the region. 

The only shipping metric selected for fying common scoter was the combination variable describing a segment 
in terms of a ship traÿc absent from a segment, sometimes present (but not on the day of the survey) or 
ship traÿc present on the day of the survey and divided into categories based on average ship length. This 
variable was also selected in the model for sitting common scoter and the patterns of the estimates were 
similar in that the presence of large boats (greater than 15 m) had a negative e˙ect. For fying common 
scoter the presence of smaller boats (10 - 15 m) showed a positive e˙ect. This may be a coincidence in that 
birds may have been fying to or across regions where small boats may occur and small boats may be under 
represented in these data, particularly for 2011 (see later). 

5.2 Impact of wind farms and other anthropogenic activities 

The variable indicating presence/absence of a wind farm was selected in the fnal models for all species and in 
all cases the presence of a wind farm was associated with a signifcant decrease in the number of birds within 
the footprint of the wind farm. The bu˙ering e˙ect around the wind farms was assessed by plotting the 
estimated numbers per grid cell against the closest distance to the centre of a wind farm. For red-throated 
divers, numbers increased out to a distance of 3 km from the centre of the wind farm and remained constant 
beyond 3 km. For common scoter, the increase occurred over a distance of approximately 8 km. 

The variable indicating anthropogenic e˙ects (other than wind farms) was only selected in the model for fying 
common scoter and again the presence of an e˙ect (i.e. wind export cable, gas storage, aggregate extraction) 
was associated with a signifcant decrease in the number of birds. These data, and also the variable describing 
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the presence/absence of the wind export cable, were based on 2015 locations and thus their presence would 
have been over represented for the 2011 survey data. 

The variable describing the presence/absence of fshing was not selected in any of the models. This may 
indicate that this was not important for these species or that the fshing data used did not capture the 
relevant information. These data were a summary of fshing activity that occurred during 2011 rather than 
being a description of fshing activity on the day of the survey. In addition, the 2011 fshing data may not 
represent the location of fshing activity during 2015 if there have been substantial changes in fshing activity 
between these two years. 

5.3 Limitations of data 

Some limitations of the data have been mentioned already and this section further describes gaps in, or 
limitations of, the data underlying the candidate explanatory variables. 

5.3.1 Aerial survey data 

On two surveys the spatial extent of Liverpool Bay SPA was not covered completely, the southern part was 
covered on 12/01/2011 and northern part covered on 18/03/2011. There could have been a substantial change 
in distribution, or abundance, of birds between these dates from one part of the SPA to the other. However, 
on the other three days (07/03/2011, 24/01/2015 and 04/02/2015) the spatial extent of the SPA was covered 
by the aerial surveys. 

Data on birds along the transects were captured digitally and it has been assumed all birds within the image 
would be detected. Birds that were diving when the plane few over would not be detected; this could lead to 
an under-representation if the birds dived in response to the plane, however, it is thought because of the 
altitude of the survey plane few birds would react. The species of birds may be misidentifed from the digital 
image. To try and ensure all detections of common scoter and red-throated diver records were included, all 
records assessed as defnitely, probably and possibly the species of interest were included and in addition 
records of diver sp. were treated as red-throated diver. 

5.3.1 Shipping data 

Only the shipais.co.uk data set could be queried by time and thus requested and compared over periods 
contemporary with the aerial surveys. Personal communication with Ian McConnell (owner of shipais.com) 
suggested that in 2011, the data set may not have included smaller fshing boats, lifeboats and private yachts, 
but by 2015 most of these vessels would have carried an AIS system. Navy and Coastguard vessels are not 
required to carry AIS, but are rarely found in Liverpool Bay. 

Data from MMO Anonymised AIS derived track lines from 2011 were used to describe the general pres-
ence/absence of shipping and was applied to both the 2011 and 2015 aerial survey data. This may have under 
estimated the presence of shipping in 2015, particularly in regions where only smaller vessels were likely to 
go. Incorporating the 2015 MMO data set would reduce this problem. In terms of the model selection, it 
is likely that using the 2015 MMO data for 2015 aerial survey data would increase it’s similarity to other 
variables being considered and hence not be considered in an initial model. 

Comparison between the position of vessels recorded during aerial surveys and the shipais.co.uk tracks of 
the same day or same day and previous days showed poor correspondence. This suggested the ais data set 
should be viewed as a proxy for shipping activity but has omissions. Comparing the vessels recorded during 
aerial surveys with the AIS tracks from the 10 days comprising the 48 hour blocks around each of the surveys 
showed better correspondence, indicating that vessels tend to use ‘lanes’ which are captured in a time series 
of tracks, but not necessarily in daily samples. 

Though recorded, speed was not used as a metric for vessel activity in this project due to constraints on time. 
Vessel speed is a dynamic variable, changing regularly depending on activity, thus any size vessel may travel 
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at slower speeds at any time, though only some vessels can travel at faster speeds. Mapping this constantly 
changing variable across large numbers of vessels (typically around 100 in the region each day) would be 
challenging, though vessel name has been included in the compiled and formatted data so this could be linked 
back to vessel type (categorical variable) or to perhaps to the average or maximum speed recorded by that 
vessel that day. 

The survey specifc shipping metrics summarised shipping activity that had been recorded for the whole day 
(i.e. 24 hours) and although the aerial surveys took place over several hours there will be di˙erences in the 
amount of time between a ship being present and a bird being surveyed. In some cases birds will have been 
surveyed before a ship was present on that day. Burger et al. (2016) only included shipping information up 
to 5 hours prior to the survey and included a ‘time since last ship’ variable. This could be investigated in 
future studies with consideration given to the time limit prior to the survey given that Burger et al. (2016) 
were interested in di˙erent species. 

Information on presence/absence of fshing was derived from 2011 data but was used to represent fshing 
activity in both 2011 and 2015, and potentially the location of fshing activity could have changed between 
these two years. 

5.3.2 Environmental data 

Many of the environmental data sets used in previous studies had been compiled under contract for other 
projects and were only available commercially at additional cost. Thus, only water depth and salinity, both 
used in previous studies and found to be useful in modelling, were sourced where data access was granted for 
this project. The salinity data set was only freely available for years up to 2004 and at a course resolution. 
There were some problems ftting salinity as a smooth function and having salinity recorded on a fner 
resolution may have reduced these issues. Nonetheless, it was selected as a signifcant term in one of the 
models, however, depending on how changeable salinity is from year to year, it may have been more important 
for other models had more up to date information been available. 

Wind farms were assumed to be present if the foundations had been constructed at the time of the survey. 
However, there may be di˙erent levels of activity associated with di˙erent phases of construction. The centres 
of the wind farms were based on the wind farm footprints defned in the prediction grid, and thus may not be 
exact. 

The variable describing the presence/absence of wind farms was survey specifc, however, for the two variables 
describing the presence/absence of other anthropogenic infrastructure, data from 2015 was used and applied 
to both the 2011 and 2015 aerial survey data. This would have over represented the infrastructure in place at 
the time of the 2011 survey because, for example, the wind export cables for the wind farms not constructed 
in 2011 were included. 

Other variables considered in previous studies may also have been useful to consider here, such as sea 
surface temperature, chlorophyll-a, sediment type, seabed complexity and food distribution. All these can be 
incorporated if available (see section 5.5). 

5.4 Interactive web tool 

As part of this project an interactive web tool was produced to allow di˙erent scenarios to be assessed by a 
user. Details are available in Appendix H (in a separate document). 

5.5 Further work 

The analysis was conducted in R (R Core Team, 2017) and all the documents have been generated using R 
Markdown (Allaire et al. 2015) which allows text (in plain text format) and R code to be combined. All 
documents containing R code and the data fles necessary to run the code will be provided to NE, thus 
allowing anyone with suÿcient knowledge of R to reproduce the analyses. 
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As discussed some of the explanatory variables were not contemporary with the survey data (e.g. salinity, 
MMO AIS data and fshing data) and only a limited suite of environmental data were available to the project. 
Thus, any updates or additions to the explanatory variables can be incorporated. The MMO anonymised 
AIS derived track lines and 2015 fshing activity are now available on the data.gov website. 

The impact of hypothesised changes on the numbers of birds to shipping were considered as part of this project 
by comparing estimated numbers before and after an imposed change in the values of relevant explanatory 
variables. Relatively simple scenarios were considered, for example, increasing the size of the ships where 
ships were already observed to be present. Considering the e˙ects of, for example, a new shipping lane would 
be possible using this approach but is outside the scope of this project. Implementing this would be relatively 
straightforward by changing the values of the explanatory variables in the prediction grid to refect the new 
shipping lane. However, the interaction of the shipping metrics would need to be carefully considered, for 
example, changing a presence/absence shipping metric from absence to presence may also impact on other 
variables, such as distance to nearest ship. The length metrics were included in the models and so the lengths 
of ships in the new shipping lanes would also need to be considered. 

Similarly, considering the extension of a wind farm, or any of the anthropogenic activities, could also be 
assessed by imposing a change on the relevant variables in the prediction grid from absence to presence. 

6. Conclusions 

Common scoter and red-throated diver over winter in Liverpool Bay SPA and are known to be sensitive to 
shipping traÿc. Ships regularly cross Liverpool Bay SPA to enter or leave the port of Liverpool and boats 
travel within the SPA to service the wind farms and other anthropogenic e˙ects (also within the SPA) or for 
fshing activities. 

Aerial surveys of Liverpool Bay SPA were conducted in winter 2011 and 2015 and collected information on 
the numbers of common scoters and red-throated divers. This project has collated and processed shipping 
and other anthropogenic activity data and combined it with the aerial survey data to model the distribution 
of wintering common scoters and red-throated divers within Liverpool Bay SPA. 

A statistical modelling approach using the MRSea package (Scott-Hayward et al. 2017) provided a fexible 
framework within which to ft the statistical models and to assess the impact of shipping and other anthro-
pogenic activities on the distribution and number of birds. Backwards model selection was used to select 
signifcant variables from a suite of candidate explanatory variables. Geographic location was included as a 
two-dimensional smooth term. 

Statistical models were ftted to observations of red-throated diver, sitting common scoter and fying common 
scoter. Flying common scoter had only been recorded in a few data points and thus any models on this basis 
are necessarily speculative and the fnal model struggled to capture the variability observed in these data and 
resulted in uncertainty in these estimates. The models for the other species were more successful in capturing 
some of the variability, which was substantial for sitting common scoter. 

All selected models contained terms for depth, presence/absence of a wind farm and location. Other selected 
terms were species specifc. In all cases, the presence of a wind farm (defned by when the foundations had 
been constructed) had a signifcant negative e˙ect on the numbers of birds per grid cell. The hypothesized 
change due to removing the wind farms (e.g. post operation) indicated that there would be an increase in the 
numbers of birds within the footprint of the wind farm but the increase in abundance within the Liverpool 
Bay SPA as a whole was small. 

For red-throated divers other variables chosen were: inside/outside Liverpool Bay SPA and inside the SPA 
had a positive e˙ect on numbers compared to outside the SPA; the nearest distance to a ship and 2 km 
appeared to be a critical distance with number increasing as the distance to the ship increased from 0 to 2 km; 
two variables described the length of ships with a mixed message. The predicted average numbers reduced as 
the length of the nearest ship increased but were predicted to increase as the average length of the ships 
present increased, however, this latter relationship might be due to a small number of large covariate values. 
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Several shipping metrics were included in the model for sitting common scoter and they related to both ships 
present on the day of the survey and the presence/absence of shipping over longer time periods. Based on 
the estimated model coeÿcients, compared to the absence of ships, there were signifcant negative e˙ects 
associated with ships being present generally (defned by ships present in a 10 day period) and ships over 15 
m being present on the day of the survey. The average length of ships present, included as a linear term, 
indicated a positive e˙ect, however, there was substantial uncertainty in the ftted function for this term. 

The estimated model coeÿcients for fying common scoter indicated that there was a negative e˙ect with the 
presence of anthropogenic e˙ects (wind export cable, mineral extraction, gas storage). The e˙ects due to 
ships being present sometimes or on the day of the survey (and categorised by length) compared to ships 
being absent, although selected in the model, were less severe than for sitting common scoter. 

The statistical models allowed various hypothesized changes to be assessed by estimating the numbers of birds 
using observed values of explanatory variables, imposing the required change on the values of the explanatory 
variables and re-estimating the number of birds. Within the scope of this project, the number of scenarios 
that could be considered was limited, however, these models and framework could be used further to assess 
impacts outside the scope of this project. Within the MRSea package (Scott-Hayward et al. 2017) there are 
specifc functions to allow the impacts of hypothesized scenarios to be determined. 

66 



References 

Allaire JJ, Horner J, Marti V and Porte N (2015) markdown: ‘Markdown’ Rendering for R. R package version 
0.7.7. https://CRAN.R-project.org/package=markdown 

APEM (2016) Assessment of displacement impacts of o˙shore wind farms and other human activities on 
red-throated divers and alcids. Natural England Commissioned Reports, Number 227 

Black J, Dean BJ, Webb A, Lewis M, Okill D and Reid JB (2015) Identifcation of important marine areas in 
the UK for red-throated divers (Gaviastellata) during the breeding season. JNCC Report No: 541 

Burger C, Schubert A, Diederichs A, Nehls G and Heinänen S (2016) E˙ects of shipping traÿc on the spatial 
and temporal distribution of seabirds in the Baltic Sea. Presented at the red-throated diver conference, 
Hamburg, 2016 

Furness RW, Wade HM and Masden EA (2013) Assessing vulnerability of marine bird populations to o˙shore 
wind farms. Journal of Environmental Management 119:56-66 

Garthe and Huppop (2004) Scaling possible adverse e˙ects of marine wind farms on seabirds: developing and 
applying a vulnerability index. Journal of Applied Ecology 41: 724-734 

Heinänen S (2016) Distribution modelling of red-throated diver based on aerial digital surveys & hydrody-
namics. Presented at the red-throated diver conference, Hamburg, 2016 

Hostetter NJ, Gardner B, Gilbert AT, Connelly EE, Duron M (2015) Modelling species assignment in strip 
transect surveys with uncertain species identifcation. In: Wildlife densities and habitat use across Temporal 
and spatial scales on the mid-Atlantic outer continental shelf: Final report to the Department of Energy 
EERE Wind & Water Power Technologies Oÿce. Williams KA, Connelly EE, Johnson SM, Stenhouse IJ 
(eds.) Award Number: DE-EE0005362. Report BRI 2015-11, Biodiversity Research Institute, Portland, 
Maine. 15pp 

Kaiser M, Elliott A, Galanidi M, Ivor E, Rees S, Caldow R, Stillman R, Sutherland W and Showler D (2002). 
Predicting the displacement of common scoter Melanittanigra from benthic feeding areas due to o˙shore 
wind farms. Report by Bangor University and Natural Environment Research Council (NERC). 288pp 

Kaiser MJ, Galanidi M, Showler DA, Elliott AJ, Caldow RWG, Rees EIS, Stillman RA and Sutherland 
WJ (2006) Distribution and behaviour of common scoter MelanittaNigra relative to prey resources and 
environmental parameters. Ibis, 148, 110-128 

Maclean IMD, Skov H, Rehfsch MM and Piper W (2006) Use of aerial surveys to detect bird displacement 
by wind farms. BTO Research Report No. 446 to COWRIE. BTO, Thetford 

Natural Power (2014) Results of ornithological analysis for a UK o˙shore wind farm. Talk by Dr. Ross 
McGregor at International Energy Agency’s Wind Task 34 Webinar, 9th December 2014 

O’Brien SH, Webb A, Brewer MJ and Reid JB (2012) Use of kernel density estimation and maximum 
curvature to set Marine Protected Area boundaries. Biological Conservation 156:15-21 

Petersen IK (2007) Modelling total numbers and distribution of common scoter Melanittanigra at Horns 
Rev. Report request commissioned by DONG Energy 

Petersen IK, MacKenzie ML, Rexstad E, Wisz MS and Fox AD (2011) Comparing pre- and post-construction 
distributions of long-tailed ducks Clangulahyemalis in and around the Nysted o˙shore wind farm, Denmark: 
a quasi-designed experiment accounting for imperfect detection, local surface features and autocorrelation. 
CREEM Technical Report 2011-1 

Petersen IK and Nielsen RD (2011) Abundance and distribution of selected waterbird species in Danish 
marine areas. Report commissioned by Vattenfall A/S. National Environmental Research Institute, Aarhus 
University, Denmark. 62pp 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.org/ 

67 

https://CRAN.R-project.org/package=markdown
https://www.R-project.org/


Scott-Hayward LAS, Oedekoven CS, Mackenzie ML, Walker CG and Rexstad E (2017) MRSea package 
(version 0.99): Statistical Modelling of bird and cetacean distributions in o˙shore renewables development 
areas_. University of St. Andrews: Contract with Marine Scotland: SB9 (CR/2012/05), URL: http: 
//creem2.st-and.ac.uk/software.aspx 

Schwemmer P, Mendal B, Sonntag N, Dierschke V and Garthe S. (2011) E˙ects of ship traÿc on seabirds 
in o˙shore waters: implications for marine conservation and spatial planning. Ecological Applications 21: 
1851-1860 

Skov H, Piper W and Leonhard SB (2008) Horns Rev II o˙shore wind farm monitoring of resting waterbirds 
baseline studies 2007-08. Report to DONG Energy 

Skov H, Heinänen S, Thaxter CB, Williams AE, Lohier S and Banks AN (2016) Real-time species distribution 
models for conservation and management of natural resources in marine environments. Marine Ecology 
Progress Series 542: 221-234 

Walker C, Mackenzie M, Donovan C and O’Sullivan M (2010) SALSA - a Spatially Adaptive Local Smoothing 
Algorithm. Journal of Statistical Computation and Simulation 81(2):179-191 

Zydelis R, Heinänen S, Dorsch M, Nehls G, Kleinschmidt B, Quillfeldt P and Morkunas J (2016) Red-throated 
diver habitat use in the German North Sea based on telemetry data. Presented at the red-throated diver 
conference, Hamburg, 2016 

68 

http://creem2.st-and.ac.uk/software.aspx
http://creem2.st-and.ac.uk/software.aspx


Glossary 

Coeÿcient of variation - a measure used to describe the amount of variation in a population and expressed as 
standard.deviation/mean. The larger the value, the more variation in the population. 

Confdence interval (CI) - a range of values likely to contain the true value of a parameter being estimated. 
The width of the CI will depend on the variability of the observations being used to estimate the parameter 
and the number of observations. CI around estimated coeÿcients and ftted functions indicate the uncertainty 
in the coeÿcients/functions; the wider the interval, the more uncertainty in the estimated values. 

Cross validation (CV) - an approach used to assess the ft of competing models where a smaller CV score is 
preferred. Data are divided into ‘training’ and ‘validation’ sets, the model is ftted to the training set and 
then compared to validation set. This process is repeated and the results are averages to obtain a score. In 
k-fold cross validation, the data are randomly divided into k equally sized subsets and each subset is used as 
the validation set in turn. The average of the k values is used as the CV score. 

Explanatory variable - also called independent, or predictor, variable. Used to estimate the response variable. 

Generalized variance infation factor - a measure to quantify the severity of multi-collinearity in a generalized 
linear model. 

Mean - average 

Multi-collinearity - two or more explanatory (or predictor) variables are highly correlated. 

p-value - probability assessing the signifcance of an explanatory variable in a model. 

pseudo R2 ft statistic - a measure of the squared correlation between the observed values and the values 
estimated from the model. It takes values between 0 (no correlation) and 1 (perfect correlation). 

Response variable - the measurement of interest in a statistical model and estimated from a combination of 
explanatory variables. Also called the dependent variable. 

Zero-infated - zero values more frequently observed than expected for a particular distribution. 
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Appendix A. Summary of aerial survey data 

Six digital aerial surveys were fown over the Liverpool Bay SPA on fve days (Table A1). Plots of the 
numbers of birds per segment identifed during each survey are shown overleaf. Note that the colour scales are 
di˙erent for each plot because of the large variation in the numbers of birds identifed per segment between 
surveys (Table A2). 

Table A1. Summary of the realised coverage for each survey; k is the number of transects, Nseg is the number 
of segments, L is the total length of search e˙ort (km); w is the total strip width (km) and a (= L x w) is the 
area covered during the survey (km2). 

Survey Date k Nseg L w a 
1 
2 
3 
4 
5 
6 

Total 

12/02/2011 
07/03/2011 
07/03/2011 
18/03/2011 
24/01/2015 
04/02/2015 

58 
58 
38 
38 
44 
44 
280 

711 
695 
587 
591 
742 
713 
4039 

708.4 
697.8 
585 
591 
742 
717.3 
4041 

0.175 
0.175 
0.175 
0.175 
0.5 
0.5 

124 
122.1 
102.4 
103.4 
371 
358.6 
1182 

Table A2. The numbers (N) of common scoter (CS) and red-throated diver (RTD) identifed sitting on the 
water (sit) and fying (fy) for each survey. 

Survey N CS sit N CS fy N RTD sit N RTD fy 
1 6697 29 208 3 
2 4726 544 152 2 
3 2390 25 61 0 
4 4505 23 92 4 
5 34380 946 242 3 
6 41122 496 286 10 

Total 93820 2063 1041 22 
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Figure A1. Numbers of common scoter sitting on the water per segment for each survey. 
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Figure A2. Numbers of fying common scoter per segment for each survey. 
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Figure A3. Numbers of red-throated divers sitting on the water per segment for each survey. 
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Figure A4. Numbers of fying red-throated divers per segment for each survey. No red-throated divers were 
identifed during survey 3. 
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Appendix B. Shipping data 

Table B1. Details of felds contained in the 2011 UK commercial fshing data for boats 15 m and over. 

FieldName Description 
tottime Total time (minutes) by all vessels 
mobtime Total time (minutes) using Mobile gear 
passtime Total time (minutes) using passive gear 
totqty Total quantity (tonnes) liveweight of fsh 

landed by all vessels 
mobqty Total quantity (tonnes) liveweight of fsh 

landed using Mobile gear 
passqty Total quantity (tonnes) liveweight of fsh 

landed using passive gear 
totval Total value of fsh landed by all vessels 
mobval Total value of fsh landed using Mobile 

gear 
passval Total value of fsh landed using passive 

gear 
totkwh Total fshing e˙ort (kilowatt/hours) by all 

vessels 
mobkwh Total fshing e˙ort (kilowatt/hours) using 

Mobile gear 
passkwh Total fshing e˙ort (kilowatt/hours) using 

passive gear 

Table B2. Details of the changes made to AIS tracks. Date is in yyyymmdd format. 

Date Boat name Change 
20110318 South Stack delete 
20110318 
20110318 

Waterfall 
Neptune Mariner 

delete part 
delete part 

20110318 Ctruck Advance delete part 
20110317 South Stack delete 
20110317 Delivener delete part 
20110317 Windcat 23 delete part 
20110317 
20110317 

Wind Transporter 
Oakgarth 

delete part 
delete part 

20110307 South Stack delete 
20110307 Oakgarth delete 
20110307 Ashgarth delete 
20110212 
20110211 

Oakgarth 
HBC Supporter 

delete 
delete 

20110211 HBC Reformer delete 
20110211 Sea Hex delete 
20110211 Pompeii delete part 
20110211 
20110211 

Normand Prosper 
Henly Pioneer 

delete part 
delete part 

20110211 Ashgarth delete part 
20110211 Oakgarth delete part 
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Appendix G. Plots of shipping metrics for the February 2015 

To illustrate the hypothetical changes imposed on the observed data, the shipping traÿc recorded on 
04/02/2015 were used. Below are plots of the variables included in the fnal models showing the observed 
values for this date throughout Liverpool Bay SPA. Other variables included in the models were not survey 
specifc and are shown in Appendix C. 

• shipcatAv - a factor with six levels; no ships present (0), ships present but not on the day of the survey 
(1) and using the average length of ships present on the day of the survey the other factor levels were, 
small ship 10-15m in length on average (2), ships >15-20m (3), ships >20-36m (4), ships >36-89m (5) 
and ships >89m in length on average (6) 

• shiplenav - average length (m) of ships intersecting with the segment 

• shiplennear - length (m) of the nearest ship 

• shipnear - nearest distance to a ship (km). The black dots in this plot indicate grid cells where ships 
were present on the day of the survey. 
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