A1

MID SUSSEX DISTRICT LOCAL PLAN Finches Field and Hemsleys Nursery Pease Pottage

Agricultural Land Classification ALC Map and Report

November 1997

Resource Planning Team Eastern Region FRCA Reading **RPT Job Number 4206/118/97 MAFF Reference EL42/1507**

AGRICULTURAL LAND CLASSIFICATION REPORT

MID SUSSEX DISTRICT LOCAL PLAN FINCHES FIELD AND HEMSLEYS NURSERY PEASE POTTAGE

INTRODUCTION

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 27 hectares of land south of the Horsham Road Pease Pottage The survey was carried out during November 1997

The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with its statutory input to the Mid Sussex District Local Plan This survey supersedes any previous ALC information for this land including a 1987 survey covering the north east corner of the current site (ADAS Ref 4106/012/87)

3 The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the site was mainly arable There is also an area of permanent grassland in the north of the site In the northeast corner of the site the land had previously been used as a nursery which is now partly derelict. The areas mapped as Other land include a sports field with pavilion and car park and also woodland. There are also areas of residential dwellings and gardens

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

7 The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land A total of 21 borings and 2 soil pits were described

¹ FRCA is an executive agency of MAFF and the Welsh Office

Grade/Other land	Area (hectares)	% surveyed area	% site area
3a	43	20 4	15 1
3b Other land	16 8 7 3	79 6 N/A	59 2 25 7
Total surveyed area	21 1	100	<u></u>
Total site area	28 4	100	100

Table 1 Area of grades and other land

8 The land is classified as Subgrade 3a (good quality) agricultural land and Subgrade 3b (moderate quality) agricultural land on the basis of a slight to moderate soil wetness limitation. Topsoils typically comprise fine silty or fine loamy textures overlying similar and/or clayey subsoils. Over the majority of this site soil drainage is restricted by shallow poorly drained horizons and the land is classified as Subgrade 3b. This soil wetness can restrict the flexibility of cropping stocking and cultivations and reduce crop yields.

9 On the better quality land in the south of the site topsoil texture acts in combination with soil wetness to limit the land to Subgrade 3a Here the slowly permeable layers are deeper and the land is better drained and soils may be more sandy The soils show evidence of wetness from a shallow depth and where they are found poorly structured subsoils occur deeper within the profile Subgrade 3a is appropriate Soil workability is reduced due to the combination of topsoil texture and impeded drainage at this locality This causes the land to be prone to some structural damage during wetter periods were it to be stocked or cultivated

FACTORS INFLUENCING ALC GRADE

Climate

10 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

11 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

12 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

13 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

Factor	Units	Values						
Grid reference	N/A	TQ 258 329	TQ 254 325					
Altitude	m AOD	140	130					
Accumulated Temperature	day C (Jan June)	1368	1380					
Average Annual Rainfall	mm	855	847					
Field Capacity Days	days	179	178					
Moisture Deficit Wheat	mm	93	94					
Moisture Deficit Potatoes	mm	82	83					
	N/A	Grade 1	Grade 1					

Table 2 Climatic and altitude data

14 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Local climatic factors such as frost risk and exposure do not adversely affect land quality at this location. The site is climatically Grade 1. However, climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. At this locality the climate is relatively cool and moist in regional terms. The likelihood of soil wetness problems may therefore be enhanced.

Site

15 The site lies at altitudes in the range of 130 140m AOD The highest land occurs in the north of the site adjacent to the Horsham Road The site is relatively flat with the land generally falling gently (1 2 degrees) to the west and east in the south of the site with some steeper slopes to the south west The site is not adversely affected by site restrictions such as gradient microrelief or flooding

Geology and soils

16 The most detailed published geological information for the site (BGS 1972) shows the whole of the site to be underlain by Upper Tunbridge Wells Sand Bands of clay within this deposit are found in the southwest and southeast of the site

17 The most detailed published soils information covering the area (SSEW 1983) shows it to comprise entirely soils of the South Petherton association These soils are described as deep well drained silty soils some over soft rock Risk of water erosion (SSEW 1983) Detailed inspection of the site indicated a wider range of soils including those developed on clays and siltstones

AGRICULTURAL LAND CLASSIFICATION

18 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

19 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Subgrade 3a

Land of good quality is found on the slightly elevated area in the south of the site The main limitations are of soil workability in combination with soil wetness

21 Soils typically comprise non calcareous medium silty clay loam or medium clay loam topsoils These are very slightly stony (2 3% total soft sandstone up to 1% >2cm) Topsoils overlie similar upper subsoils which occur either to depth or pass into heavy clay loam or heavy silty clay loam lower subsoils. These subsoils are very slightly stony to slightly stony (2 10% total soft sandstone) Occasionally stoneless sandier subsoils may be found for example of loamy fine sand fine sandy loam or medium sandy loam. At depth very slightly stony (5% total soft sandstone) medium clay loam stoneless sandy clay loam or silty clay subsoils are characteristically found. These soils are generally gleyed at a shallow depth which is evidence of seasonal waterlogging high in the soil profile. Wetness Class II or III describes the drainage status of these soils. In some instances no slowly permeable layer was evident within 80cm but in others particularly where silty clay loam or silty clay horizons were described soils are less permeable at depth (see Pit 2 Appendix II)

22 The combination of imperfect soil drainage topsoil texture and climatic factors gives rise to a land classification of Subgrade 3a Soil wetness may adversely affect crop growth and development as well as limiting the flexibility of the land due to the reduction in the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock. Also in this locally wet climate the workability of the medium clay loam and medium silty clay loam topsoils is restricted. This causes the land to be prone to some structural damage during wetter periods were it to be stocked or cultivated.

Subgrade 3b

23 Moderate quality land is mapped across the majority of the site where soil wetness is the main limitation

24 Soils typically comprise non calcareous medium clay loam or medium silty clay loam topsoils which may contain up to 3% total soft sandstone (up to 1% >2cm) These characteristically overlie similar or heavier textured heavy clay loam or heavy silty clay loam upper subsoils which may be stoneless to slightly stony (up to 2 10% total soft sandstone) and dense in nature Occasionally stoneless to very slightly stony (up to 5% total soft sandstone) silty clay or clay subsoils occur directly under the topsoil (between 27 and 30cm) However these clayey horizons more typically form lower subsoils at a depth of 40 67cm The soils are gleyed within 40cm indicating they are seasonally waterlogged Pit 1 (see Appendix II) shows both the medium silty clay loam and silty clay subsoils to be poorly structured These slowly permeable horizons significantly impede drainage and occur at a depth (25 35cm) to restrict the soils to Wetness Class IV Combined with topsoil textures and the prevailing climatic conditions a land classification of Subgrade 3b is appropriate for these soils This significant soil wetness may adversely affect crop growth and development as well as limiting the flexibility of the land due to the reduction in the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by

livestock There are occasional isolated borings of better quality within this unit however they occur too infrequently to be mapped

Judith Clegg Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1972) Sheet No 302 Horsham (Solid and Drift Edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) *Sheet 6 South East England* SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

۴.

ł

Sample location map

١

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent	LEY	Ley grass	RGR	Rough grazing
	pasture				
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous	BOG	Bog or marsh	SAS	Set Aside
	woodland				
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 **GLEY/SPL** Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1

S Sand LS Loamy Sand SL Sandy Loam SZL Sandy Silt Loam CL Clay Loam ZCL Silty Clay Loam ZL Silt Loam SCL Sandy Clay Loam C Clay SC Sandy Clay ZC Silty Clay OL Organic Loam Р SP LP Peat Sandy Peat Loamy Peat PL PS Peaty Sand Peaty Loam MZ Marine Light Silts

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	М	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR friable	EM extremely firm	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations
 - APW available water capacity (in mm) adjusted for wheat
 - **APP** available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

p og am ALCO12

1

SA	MPLE		ASPECT				WET	NESS	WHE	EAT	PC)TS	м	REL	EROSN	FROS	ST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ð	(P	DIST	LIMIT		COMMENTS
_	1 TQ2570329	IN PGR			27	27	4	3B	96	3	99	17	ЗА					WE	3B	See 1P
1P	-				26	42	4	3B	125		100							WE	3B	Dug70A g120
	2 TQ2580329				27	27	4	3B	115		114	32						WE	38	See 1P
2P	-		F	1	50	70	2	3A	134	-	115	33	_					WE	3A	Dug90A g120
	3 TQ2590329		-	•	25	95	2	3A	146		116	34						WE	3A	bagson gize
	4 TQ2550328	io pgr			35	35	4	3B	82	11	82	0	3A					WE	3B	See 1P
	5 TQ2560328	0 PGR			32	32	4	3B	116	23	115	33	2					WE	38	See 1P
	6 TQ2570328	IO PGR			30	30	4	38	72	21	72	10	3B					WD	38	
1	0 TQ2560327	'O ARA			27	27	4	3B	82	11	84	2	3A					WE	3B	See 1P
1	1 TQ2570327	O ARA			35	35	4	3B	106	13	117	35	2					WE	3B	See 1P
— 1	4 TQ2550326	O ARA	W	2	30	30	4	3B		0		0						WE	38	See 1P
_ ¹	5 TQ2560326	O ARA			30	30	4	3B	86	7	92	10	3A					WE	38	See 1P
1	6 TQ2570326	O ARA			30	30	4	3B	151	58	114	32	1					WE	38	See 1P
1	7 TQ2580326	O ARA			35	35	4	3B	93	0	96	14	3A					WE	3B	See 1P
1	9 TQ2550325	O ARA	W	2	30	30	4	3B		0		0						WE	38	See 1P
2	•		W	1	35	35	4	3B		0		0						WE	3B	See 1P
2					30		2	3A	154		117	35						WE		See 2P
	•			1	30		2	3A	167		118	36						WE	3A	See 2P
2	•••••••			2	25	35	4	3B	101		111	29						WE	3B	
2	4 TQ2560324	O ARA	Ε	1	30	60	3	3A	124	31	115	33	1					WE	3A	See 2P
2	5 T02570324				30		2	3A	121	20	118	36	2					ЫĊ	24	Sec. 20
2	•		F	1	30 25	25	۲ 4	38 38	99		111	30 29	2					WE		See 2P
-				1				38 38			93							WE		See 1P
2	7 TQ2590324	U AKA	E.	2	25	73	3	AC.	121	20	33	11	۲					WĘ	3A	See 2P

p og am ALCO11

				MOT	TLES		PED		s	то	NES	s	TRUCT/	SUI	BS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	UN	CONT	COL	GLEY	26	ίL	тн то	лα	ONSIST	ST	r po	R IMP SP	L CALC	
_																		
1	0 27	MCL	10YR32			_			0		FSST	2			_			RootMottl s
	27 50	ZC	25Y71	10YR58	C	D		Ŷ	0	0		0			P		Y	PlasticFirm
-	50 120	ZC	05Y71	75YR56	м	D		Y	0	0		0			P		Y	Plast c
1P	0 26	MZCL	10YR42						0	0	FSST	1						
	26 42	MZCL	25762	10YR58	С	D		Y	0		FSST		WKCPR	FM	Ρ	Y	Y	QueryHZCL
	42 120	ZC	05Y71	75YR58	м		OOMNOO	Y	0	0		0	WKCAB	FM	Ρ	Y	Y	Tend ngPR
2	0 27	MCL	10YR32		_	_			0	0		0			_			RootMottles
	27 45	MZCL	25Y7253	75YR58	С	Ð		Y	0	0		0			Ρ		Y	Ve yMo st
	45 58	HCL	25Y7164	75YR58	М	-		Y	0	0		0			Ρ		Y	Ve yMoist
	58 85	ZC	2577271	75YR58	м	D		Y	0	0		0			Ρ		Ŷ	ICompacted
	0 27	MCL	10YR32						0	0	FSST	2						
	27 50	MCL.	10YR54	10YR56	F	D			0		FSST	5	MDCSAB	FR	м			Tend i ngWKDe
	50 70	HZCL	10YR63	10YR56	С	D		Y	0	0	FSST		MDCSAB					TendingAB
-	70 90	HZCL	10YR63	10YR56	С	D		Y	0		FSST		WKCAB	FR		Y	Y	·
-	90 120	ZC	10YR63	10YR56	M			Ŷ	0	0		0		FM		Ŷ	Ŷ	Ass meStruct re
						-			•	·		•			•	·	·	
3	0 25	MCL	10YR33						0	0	FSST	2						FSand
_	25 35	MCL	10YR53	10YR56	С			Y	0	0		0			м			FSand
	35 95	MCL	10YR53	10YR56	М	Ð		Ŷ	0	0		0			м			Sat ated
	95 120	MCL	25Y64	10YR58	М	D	000000	Y	0	0	FSST	2			м		Y	VMoistCompact
-			101040	100000	~				•			•						
4	0 35	MZCL	10YR42	10YR58	C	D	0010100		0		FSST				~			<i>c.</i>
	35 50	HZCL	25Y63	10YR58	М	D	OOMNOO	Y	0	U	FSST	10			Þ		Y	FirmImpStones
5	0 32	MZCL	10YR32	10YR56	F	D			0	0	FSST	2						
	32 55	MCL	05Y72	75YR58	С	D		Y	0	0		0			Ρ		Y	FSandWTat32cm
	55 67	HZCL	05Y71	75YR58	С	D		Y	0	0		0			Ρ		Ŷ	Firm
-	67 120	ZC	N7	75YR58	м	D	00mn00	Y	0	0	FSST	5			Ρ		Y	F rmPlastic
	0.05		10/022							~		~						•
6	0 25	MZCL	10YR32	100055	~				0		FSST							RootMottles
-	25 30	MZCL	10YR32	10YR56	F	D			0		FSST				M			1.00
	30 45	HZCL	25Y62	10YR58	М	D		Y	0	U	FSST	10			Ρ		Y	WTat30cmI45Stones
10	0 27	MZCL	10YR42						0	0	FSST	2						RootMottles
-	27 55	ZC	25Y71	75YR58	М	Ð	OOMNOO	Y	0	0		0			Ρ		Y	WTat27cmIStones
11	0 35	MZCL	10YR32						0	0	FSST	3						
_	35 70	MCL	25Y71	75YR58	Μ	D	00mn00	Y	0	0	FSST	10			Ρ		Y	FSandIStones
	0 70	N70	10/022						-	~	F007	•						
14	0 30	MZCL	10YR32		~				1		FSST				~		.,	
_	30 40	HZCL	25Y62	75YR58	C	D		Ŷ	0		FSST	2			P		Y	01
	40 120	ZC	05YR71	75YR58	M	U		Y	0	0		0			Ρ		Y	Pl ti Firm
15	0 30	MCL	10YR32						1	0	FSST	2						FS nd
	30 120		25771	75YR58	М	D	OOMNOO	Y	, o	ŏ		0			Р		Y	FirmPlastic
		-			••	-		•	•						•		•	

pg 1

program ALCOll

				MOT	TLES		PED		S	STONE	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABI	UN	CONT	r col	GLEY	26	5 L M	гн то	T CONSIST	STR POR	IMP SPL CALC	
16	0 30	MCL	10YR32						0	0 F	SST	3			FSand
	30 80	MCL	25762	10YR58	м	D		Ŷ		0 F		5	Р	¥	WT t30cm
	80 120	MCL	0547172	75YR58	M			Ŷ			SST		P	Ŷ	+MSand QMSL
	00 120		0011172			-			-			-			
17	0 35	MZCL	10YR41						0	01	SST	3			
	35 55	MZCL	2576272	10YR58	Μ	D	000000	Y	0		SST		Р	Y	ImpStones
19	0 30	MZCL	10YR32						0	0 1	SST	2			Su faceVWet
	30 65	HZCL	25Y63	10YR56	С	D	OOMNOO	Ŷ	0	0 1	SST	10	ρ	Y	
	65 100	HZCL	25Y62	10YR58	М	D	00MN00	Ŷ	0	0 8	SST	10	Ρ	Y	ImpStones
20	0 35	MZCL	10YR32						0	0 8	SST	2			
	35 42	HZCL	25Y63	10YR58	С	D	00MN00	γ	0	0 8	SST	5	Р	Y	
_	42 120	ZC	05Y71	75YR58	М	D	000000	Ŷ	0	0		0	Ρ	Y	Pl ticfirm
21	0 30	MZCL	10YR42						1	01	SST	3			
	30 55	MCL	10YR53	75YR54	С	D		Y	0		SST		м		FSand
	55 120	MCL	10YR63	10YR56	С	D		Y	0	01	FSST	5	М		FSand
22	0 30	MZCL	10YR42						0		SST	2			
	30 65	MCL	25Y63	10YR58	С	D	00MN00	Y	0		FSST	5	M		FS nd
	65 80	LFS	25Y72	10YR58	М			Y	0			0	M		
	80 100	FSL	25Y72	10YR58	M			Y	0	0		0	M		WT t80cm
	100 120	SCL	05Y71	75YR68	М	D		Y	0	0		0	M	Y	Firmer
									^		-007	<u>^</u>			
23	0 25	MZCL	10YR4243	10YR58	c	~		v	0	0	SST	2			FC 4
_	25 35	MCL	10YR53	10YR58	C C	D	0011100	Y Y	0	0		0 0	M	Y	FSand
	35 50 50 120	HCL ZC	10YR53 25Y71	75YR56	M		000000	Y	0			0	M P	Y	FirmPl ti
	30 120	20	23171	751100		Ŭ	00,1100		Ŭ	v		v	r	,	
24	0 30	MCL	10YR42						3	0 1	FSST	2			FSand
	30 60	MCL	25Y63	10YR58	С	D		Y	0		FSST		м		
	60 80	HCL	25Y63	75YR56	С	D		Ŷ	0		FSST	2	M	Y	+FSand
	80 90	MSL	25762	10YR58	С	Ø		Y	0	0		0	м		ImpStone
															·
25	0 30	MZCL	10YR42						0	0	FSST	2			
-	30 55	MCL	25Y71	10YR58	С	D	00MN00	Y	0	0 1	FSST	5	м		
	55 85	MCL	05Y71	10YR58	М	D	00MN00	Y	0	0 1	FSST	5	м		ImpStones
26	0 25	MZCL	10YR42						0	0	FSST	2			
_	25 30	MZCL	25Y71	75YR56	Ċ	D		Y	0	0		0	P	Y	
	30 42	HCL	25Y71	75YR58	C	D		Y	0			0	Р	Y	Que ySCL
	42 120	С	05Y71	10YR58	M	D		Y	0	0		0	Р	Y	FirmPl tic
_															
27	0 25	MZCL	10YR42		•				0		FSST	1			
	25 32	MCL	25Y63	10YR56	C			Ŷ	0	0		0	M		FSandWTat30cm
	32 73	LMS	25Y63	10YR58	C			Y	0	0		0	M		
	73 120	C	05Y71	10YR58	М	υ		Ŷ	U	0		0	Р	Y	Plast cF rm

page 2