A1 Vale of the White Horse Local Plan Land at Abingdon Agricultural Land Classification ALC Map and Report October 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference: 3304/167/96 MAFF Reference: EL 33/0127 LUPU Commission: 02849

.

AGRICULTURAL LAND CLASSIFICATION REPORT

VALE OF THE WHITE HORSE LOCAL PLAN LAND AT ABINGDON

Introduction

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey on 38 hectares of land situated to the south west of Abingdon, Oxfordshire. The survey was carried out during October 1996.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit, in Reading, in connection with the Vale of the White Horse Local Plan. The results of this survey supersede any previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey, the large field to the west of the site was partly in winter sown oilseed rape, the remainder of this area was newly ploughed. Arable crops cover the field in the far east and the remainder of the smaller fields are in permanent pasture. The areas shown as 'Other Land' comprise numerous farm buildings, some wooded areas, private gardens and wetland areas. Approximately 3-4 ha of land was not surveyed in the central part of the site.

Summary

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf.

7. The fieldwork was conducted at an average density of 1 boring per 2 hectares. A total of 19 borings and three soil pits were described.

8. Extensive areas of land at this site have been classified as 'best and most versatile'. Grade 2 land (very good quality) and Subgrade 3a land (good quality) has been mapped on the basis of soil wetness and/or soil droughtinesss limitations. The remaining smaller pockets of land have been divided into two agricultural land classes. Subgrade 3b (moderate quality land) to the east of the site is relatively inextensive and has been designated on the basis of a soil wetness limitation. The area of Grade 4 land (poor quality agricultural land) to the west of Stonehill House, suffers from an extreme droughtiness limitation.

Grade/Other land	Area (hectares)	% site area	% surveyed area
2	8.6	22.6	27.5
3a	19.8	52.1	63.3
3b	0.9	2.4	2.8
4	2.0	5.3	6.4
Other Land	3.3	8.7	-
Area not surveyed	3.4	8.9	
Total surveyed area	31.3	-	100.0
Total site area	38.0	100.0	-

Table 1: Area of grades and other land

Factors Influencing ALC Grade

Climate

9. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

10. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values
Grid reference	N/A	SU 482 961
Altitude	m, AOD	60
Accumulated Temperature	day°C (Jan-June)	1450
Average Annual Rainfall	mm	603
Field Capacity Days	days	126
Moisture Deficit, Wheat	mm	116
Moisture Deficit, Potatoes	mm	110

Table 2: Climatic a	ind altitude data
---------------------	-------------------

11. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

12. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (ATO, January to June), as a measure of the relative warmth of a locality.

13. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation (Climatic Grade 1). However, climatic factors do interact with soil properties to influence soil wetness and droughtiness. At this locality the climate is relatively dry, in regional terms, such that the risk of soil droughtiness will be enhanced.

14. Local climatic factors such as frost risk and exposure are not thought likely to adversely affect agricultural land use on this site.

Site

15. The land on this site ranges from 50m AOD along the south-eastern side of the site to 65m AOD in the north-west. Gradient and microrelief does not affect agricultural land quality across the site.

16. Flooding does not appear to be limiting on this site.

Geology and soils

17. The relevant geological sheet (BGS, 1971) shows the majority of the site in the central and western sections of the site to be underlain by Kimmeridge Clay which is often dark grey in colour and calcareous. Over towards the eastern part of the site, fluvial gravels associated with thames deposits are mapped.

18. The most recently published soils information for this area (SSEW, 1983) maps the Charity 1 Association in the eastern half of the site which is developed over fluvial gravel deposits. In the western half of the site, the Wickham 2 Association is shown to occur. These are developed over the Kimmeridge Clay deposits. The soils of the Charity 1 Association are described as 'well drained fine silty and fine silty over clayey soils, locally very flinty, some shallow over flint gravel.'(SSEW, 1983). The soils of the Wickham 2 Association are described as 'slowly permeable seasonally waterlogged fine loamy over clayey, fine silty over clayey and clayey soils. Small areas of slowly permeable calcareous soils on steeper slopes.'(SSEW, 1983).

Agricultural Land Classification

19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 2.

20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III.

Grade 2

21. Very good quality land has been mapped across the south-eastern part of the site interspersed with patches of poorer quality. The land is limited to a minor extent by soil droughtiness and/or soil wetness/workability.

22. Soils within this mapping unit were found to comprise calcareous, medium clay loam topsoils which may contain up to 5% total hard limestone and flint fragments. Subsoils are variable but commonly comprise similarly textured or clay subsoils which may contain up to 40% hard rock with occasional profiles containing soft limestone limestone fragments. A few profiles were found to become sandier with depth. The stonier profiles were impenetrable to the soil auger at depths between 85 and 90cm, but the soil resource below this was assumed to continue to 120cm depth.

23. The majority of soils in the Grade 2 mapping unit show signs of slightly impeded drainage through the presence of ochreous mottling at depths below 38cm. In very occasional

profiles a slowly permeable clayey horizon exists. The soils are thereby assessed as wetness classes I, II, or III, (see Appendix II) resulting in an ALC wetness grade of 1, or 2.

24. The overriding limitation to most of the Grade 2 land is minor soil droughtiness. The soil characteristics described in para. 22 above, combine with the prevailing climatic conditions (which are relatively dry in a regional context), to restrict the amount of water in the profile which will be available to plants. Moisture balance calculations indicate that there is insufficient soil moisture to meet the demands of a growing crop throughout the growing season. As a result the yield potential may be reduced, such that land cannot be classified higher than ALC Grade 2.

Subgrade 3a

25. Good quality land has been mapped across the western part of the site. Soils are variable within this unit but they are affected by either soil droughtiness or soil wetness restrictions.

26. Soil profiles affected by wetness comprise calcareous or non-calcareous, medium or heavy clay loam topsoils which may be very slightly stony (i.e., 1-5% total flint fragments) or slightly stony (6-8% flint). These overlie heavy clay loam and clay subsoils which are gleyed and slowly permeable between 28cm and 50cm depth. As a result, soil drainage will be impeded to the extent that wetness classes II and III are appropriate, which when combined with local climatic conditions, gives rise to a land classification of Subgrade 3a on the basis of soil wetness. Soil pit 3 (see Appendix III) is representative of these soils. This is likely to cause crop growth and development to be adversely affected, as well as restricting the timing of landwork and/or grazing.

27. Towards the central part of the site, soils were found to be impenetrable to the soil auger at shallow depths between 30cm and 48cm due to the presence of stony subsoil horizons. Calcareous and non-calcareous, medium clay loam and heavy clay loam topsoils containing 4-8% flint fragments with occasional soft limestone fragments were described. Some upper subsoils were impenetrable to the auger but where they were not, they consisted of calcareous, heavy clay loams with 5-10% total flint fragments. The soil pit (2P, see Appendix III) was described to determine the nature of the subsoil characteristics. They were found to be heavy clay loams, grading to medium sand at depth, which are freely draining (wetness class I), but which contain up to about 50% total stone by volume. Upper subsoil structures were found to be moderately developed and lower subsoils had a poorly developed structural condition. Despite part of the lower subsoil being extremely compacted , plant roots were able to penetrate it. A rooting depth of 120cm was assumed. The interaction between these stony soils and the prevailing climate (i.e., relatively dry), gives rise to soil droughtiness which will adversely affect the yield potential of crops.

Subgrade 3b

28. Moderate quality, Subgrade 3b land is limited by soil droughtiness restrictions. This land is confined to the far eastern section of the site and is limited in extent.

29. Soils with more severe soil droughtiness restrictions occur as a result of coarser textured (medium sand) subsoils occurring at shallower depths in the profile e.g. 50cm depth together

with a high percentage of total flint rock e.g.40%. In view of soil the soil characteristics, Subgrade 3b is the most appropriate classification for the land.

Grade 4

30. The area of Grade 4 land (poor quality agricultural land) occurs in the central part of the site to the west of Stonehill House.

31. This land suffers from an extreme droughtiness limitation. Soils were found to be impenetrable to the soil auger at shallow depths (e.g. 25 cm) due to the presence of stony subsoil horizons. The topsoils comprise calcareous, slightly to moderately stony, (2% > 2cm., 7-17% total flint fragments) medium clay loams overlying similar, but moderately or very stony (40-64% flint fragments) medium clay loam or medium sand subsoils. The soil pit (1P) was described to determine the nature of the subsoil characteristics. They were found to be medium clay loams, grading to medium sand at depth, which are freely draining (wetness class I), but which contain up to about 64% total stone by volume. The subsoil structure was found to be moderately developed with a loose consistency. The combination of soil textures, structures and very high stone contents together with the prevailing climate (i.e., relatively dry), gives rise to severe soil droughtiness restrictions. This will adversely affect the crop growth and yield potential on this land.

Sharron Cauldwell, Resource Planning Team, Guildford Statutory Centre, ADAS, Reading.

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No. 253 (1:50,000 Scale).

Ministry of Agriculture, Fisheries And Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Meteorological Office (1989) Climatological Data for Agricultural Land Classification. Meterological Office: Bracknell.

Soil Survey of England and Wales (1983) *Sheet 6, Soils of South East England.* SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England, Bulletin No. 15.SSEW: Harpenden.

program: ALCO12

SAMP	LE	A	SPECT				WETH	NESS	-WH	EAT-	-P0	TS-	м.	REL	EROS	N FRO	DST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEN	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
1	SU48209630	OSR			050	060	2	2	132	16	112	2	2					WD	2	
1P	SU48509560	PGR					1	1	049	-67	051	-59	4					DR	4	
2	SU48109620	OSR	N	01	050	050	2	3A	115	-1	117	7	3A					WE	3A	
2P	SU48209580	PLO	N	02			1	1	100	-16	094	-16	3A					DR	3A	ASSUME TO 120
3	SU48309620	OSR	N	01	028	028	3	3A	107	-9	115	5	3A					WE	3A	
ЗP	SU48109620	OSR	Ν	02	045	045	2	3A	111	-5	109	-1	3A					WE	3A	
4	SU48009610	OSR	N	01	042	042	2	3A		0		0						WE	3A	
5	SU48209610	OSR	Ν	02	035	035	3	38		0		0						WE	38	
6	SU48109600	OSR	N	03	040	040	3	3A		0		0						WE	3A	
7	SU48309600	PLO					1	2	052	-64	052	-58	4					DR	3A	IMP32 SEEPIT 2
8	SU48009590	PLO			050	050	2	3A		0		0						WE	3A	
9	SU48209590	PLO					1	2	078	-38	078	-32	38					DR	3A	IMP48 SEEPIT 2
10	SU48109580	PLO			030	030	3	3B		0		0						WE	3B	POSS 3A
11	SU48309580	PLO					1	2	067	-49	067	-43	38					DR	3A	IMP40 SEEPIT 2
12	SU48809570	ARA			075		1	2	122	6	096	-14	2					DR	2	IMP90 ASS 120
13	SU49009570	ARA			070		1	1	137	21	113	3	2					DR	2	IMP85 ASS 120
14	SU48509560	PGR					1	1	038	-78	038	-72	4					DR	4	IMP25 SEEPIT 1
15	SU48709560	PGR	SE	02			1	1	154	38	110	0	2					DR	2	
16	SU48909560	PGR					1	1	082	-34	080	-30	3B					DR	38	
17	SU48309550	PGR	S	01	038	038	3	3A		0		0						WE	3A	
18	SU48409550	PGR	S	01	038	038	3	2		0		0						WE	2	
19	SU48809550	PGR	Е	02			1	1	137	21	113	3	2					DR	2	
20	SU48309590	PLO	S	01			1	1	050	-66	050	-60	4					DR	3A	IMP30 SEEPIT 2

.

page 1

program: ALCOll

page 2

					NOTTLES		PED			-SI	TONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	тот	CONSIST	STR POR	IMP SPL	CALC	
10	0-30	hc1	10YR42 00								HR	5					
	30-70	c	25Y 62 63	10YR5	B 00 M	0	OMN00	00 Y	0	0	HR	3		Р	Ŷ	Ŷ	
11	0-28	mcl	10YR32 00						2	0	HR	4				Y	
	28-40	hcl	10YR42 00								HR	5		м		Y	IMP FLINT
									•	-		-					
12	0-25	mcl	10YR43 00						0	0	HR	5				Y	
	25-40	mcl	10YR44 00						0	0	HR	5		М		Y	
	40-75	mcl	25Y 63 00						0	0	HR	40		M		Y	
	75-90	msl	25Y 63 00	10YR5	B 00 C			Y	0	0	HR	40		M		Y	IMP FLINT
		-							-	_		_					
13	0-25	mc]	10YR42 00								HR	5				Y	
	25-38	hcl	10YR43 00	10005	~ ~ ~ ~				0		HR	5		M		Y	
	38-70	hc]	25Y 63 72								HR	2		M		Ŷ	
	70-85	acl	25Y 63 00	10YR5	8 00 M			Ŷ	0	0	HR	30		м		Y	IMP FLINT
14	0-20	mc)	10YR42 00						2	0	HR	10				Y	
	20-25	mcl	10YR43 00						0	0	HR	40		м		Y	IMP FLINT
15	025	mcl	10YR42 00						0	0	HR	5				Y	
	25-58	hc1	10YR44 00						0	0	HR	5		Μ		Y	
	58-120	ms 1	10YR53 00						0	0	HR	5		м		Y	
16	0-28	1	10YR42 00						•	0	HR	7				Y	
10		mcl									HR	40		м		Ŷ	
	28-50	mcl	10YR43 00									40 5				Y	
	50-75 75-90	ms	10YR63 53						0		HR	40		M M		Ŷ	IMP FLINT
	75-90	ms	10YR63 53						U	U	HR	40		ri		T	166 66100
17	0-29	hc1	10YR43 53						0	0	SLST	2				Y	
	29-38	с	25 Y53 00						0	0	SLST	2		M		Y	
	38-80	с	05 Y52 00	10YR5	8 00 C			Y	0	0	SLST	5		Ρ	Y	Y	
18	0-28	mcl	10YR43 00						n	•	SLST	2				Y	
10	28-38		10YR53 00								SLST			м		Ý	
	28-30 38-80	c	05 Y52 00	10705	e oo c			Y			SLST			P	Ŷ		
	JO-0U	c	03 132 00	IUTKO				ſ	U	Ű	JLJI	د		r	r	T	
19	0-25	mcl	10YR44 00						0	0	HR	5				Y	
	25-45	hc1	10YR44 00						0	0	HR	5		м		Y	
	45-120	c	10YR36 00						0	0		0		м		Y	
20	0-30	നറി	10YR32 00						3	0	HR	8				Y	IMP FLINT

program: ALCOll

COMPLETE LIST OF PROFILES 20/12/96 LAND AT DRAYTON ROAD, AB

page 1

				M	OTTLES	s	PED			-sto	NES-		STRUCT	/ :	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR										CONSIST			OR IMP	SPL	CALC	
1	0-30	hc1	10YR32 00						1	0 1	łR	5						Y	
	30-50	с	25 Y42 00							0 1		5			M			Y	
	50-60	с	25 Y53 00					Y	0			5			М			Y	
	60-68	c	25 Y53 00	10YR56	00 C			Y		0 н		1			Ρ			Y	
	68-120	с	05 Y41 00	10YR68	00 C			Y	0	0 5	SLST	2			P		Y	Y	
10	0-25	നറി	10YR42 00						2	0 1	łR	17						Y	
	25-70	ms	10YR56 00							0 1		64	SG	L	м			Ŷ	ROOTS TO 70
									•										
2	0-32	hc1	10YR33 00						1	0 H	IR	7							
	32-50	с	10YR34 00						0	0 F	IR	2			м				
	50-70	с	25 Y53 00	10YR58	00 C			Y	0	0.8	SLST	1			P		Y	Y	
	70-90	с	25 Y43 00	25 Y56	00 C			Y	0	0.5	SLST	1			Ρ		Y	Y	
2P	0-32	mcl	10YR42 00						3	0 H	IR	8						Y	BORDER HCL
	32-53	hc]	10YR42 43						0	0 H	IR	15	MDCSAB	FM	М			Y	
	53-76	hc1	10YR54 00						0	0 ⊁	łR	38			P			Y	
	76-95	ms	10YR56 00						0	0 H	łR	51	SG	L	M			Y	
2	0-28	h.a.]	25 Y42 00						1	0 F	10	3						Y	
3	28-80	hcl c	25 Y53 00	107050	00 C			v	0			2			Р		v	Ŷ	
	20-00	C	23 133 00	101836	00 0			T	v	ų r	ж	2			Г		•	r	
3P	0-27	hc]	10YR42 00						1	0 F	IR	7							BORDER HCL
	27-45	c	10YR43 00							0 F		2	MDCSAB	FM	м			Y	
	45-57	с	25Y 53 00	10YR56	00 M			Ŷ	0	0		0	STCAB	FM	P	(Y	Y	
	57-90	с	05Y 41 00	10YR58	00 M			Y	0	0			STCAB				Y	Y	
4	0-28	hc1	25 Y42 00						0	0 1	IR	1							
	28-42	с	25 Y54 00	10YR58	00 F				0	0.5	SLST	1			Μ			Y	
	42-80	c	25 Y53 00	10YR58	00 C			Y	0	0.5	SLST	1			Р		Y	Y	
												_							
5	0-35	hc1	25 Y33 00							0 H		5			_				
	35-60	с	25 Y53 00								SLST				Р		Y		
	60-80	с	05 Y41 00	25 Y56	00 C			Ŷ	0	0 5	SLST	2			Ρ		Ŷ	Y	
6	0-30	hc1	25 Y43 00						٨	1 H	P	8						Y	
Ŭ	30-40	c	25 Y33 00								SLST				м			Ŷ	
	40-45	c	25 Y54 00	10YR56	00 C	ſ	001100	00 Y			SLST				P		Y	Ŷ	IMP FLINT
	40 10	č							•	•••		-			•			-	•
7	0-25	mcl	10YR43 00						0	0 H	IR	7						Y	
	25-32	hc]	10YR43 00						0	0 H	łR	10			м			Y	IMP FLINT
8	0-30	hc1	25Y 42 00						1	0 H	R	5							
	30-50	c	25Y 54 53						0	0 Η	IR	5			м				
	50-75	c	25Y 62 63	10YR58	00 C	C	OOMNOO	00 Y	0	0 H	IR	5			Ρ		Y	Y	
-	0.35	47	100000 00						~	~ ·									
9	0-35	hcl	10YR32 00	100050	00 F					0 1		6			м			Ŷ	IMP FLINT
	35-48	hc1	10YR42 00	104858	UU F				0	0 1	1K	10			M			Ŧ	TURE LETUR

SOIL PIT DESCRIPTION

Site Name : LAND AT	DRAYTON ROAD, AB	Pit Number	r: 1P							
Grid Reference: SU4	-	ty Level	I : 603 mm e : 1450 degree days : 126 days : Permanent Grass : degrees							
HORIZON TEXTURE 0-25 MCL 25-70 MS	COLOUR STONES >2 10yr42 00 2 10yr56 00 0	2 TOT.STONE 17 64	LITH MOTTLES HR HR	structure Sg	CONSIST L	SUBSTRUCTURE	CALC Y Y			
Wetness Grade : 1	Wetness Cla Gleying SPL	:	cm cm							
Drought Grade : 4	AP₩ : 049mm APP : 051mm		57 mm 59 mm							
FINAL ALC GRADE : 4	L									

MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Name	: LAND AT	DRAYTON	ROAD, AB	Pi	t Number	r: 2	P				
Grid Refe	erence: SU4	18209580	Average Accumul: Field Ca Land Usa Slope an	ated Tem apacity e	perature Level	e : 145 : 126 : Plo	13 mm i0 degree i days sughed degrees N				
HORIZON	TEXTURE	COLOUR	STONES		T. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 32	MCL	10YR42		5 72 10	8	HR	NOTICES	STRUCTURE	0010101	0000110001010	Y
			-		-			MOCCAD	EM		Ŷ
32- 53	HCL	10YR42			15	HR		MDCSAB	FM	M	
53- 76	HCL	10YR54	00 0		38	HR				Р	Y
76- 95	MS	10YR56	00 0		51	HR		SG	L	M	Ŷ
Wetness (Grade : 1		Wetness Gleying SPL	Class	: I : :	CTT CTT					
Drought (ârade : 3A		APW : 10 APP : 09			16 mm 16 mm					

.

FINAL ALC GRADE : 3A MAIN LIMITATION : Droughtiness

. ን

SOIL PIT DESCRIPTION

Site Nam	e:LANDA	T DRAYTON	ROAD, AB	Pit Number	: 3	3P							
Grid Refe	erence: SU	48109620	Average Annu Accumulated Field Capact Land Use Slope and As	Temperature ty Level	: 1450 degree days								
HORIZON	TEXTURE	COLOUR	STONES >2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC			
0- 27	HCL	10YR42 0		7	HR								
27- 45	C	10YR43 0	-	2	HR		MDCSAB	FM	м	Ŷ			
45- 57	Ċ	25Y 53 0		0		м	STCAB	FM	P	Ŷ			
57- 90	c	05Y 41 0		0		M	STCAB	FM	P	Ŷ			
Wetness (Grade : 3A		Wetness Clas Gleying SPL	s : II :045 :045									
Drought (Grade : 3A		APW : 111mm APP : 109mm		5 mm 1 mm								
FINAL ALC	GRADE :	3A											

_ _ _ _

MAIN LIMITATION : Wetness