A1

TONBRIDGE AND MALLING BOROUGH LOCAL PLAN
Bushey Wood 'Area of Opportunity'

Agricultural Land Classification ALC Map and Report

March 1998

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 2013/059/97 FRCA Reference EL 20/01393

AGRICULTURAL LAND CLASSIFICATION REPORT

TONBRIDGE AND MALLING BOROUGH LOCAL PLAN BUSHEY WOOD 'AREA OF OPPORTUNITY'

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 131 0 hectares of land at Bushey Wood near Aylesford Kent. The survey was carried out during March 1998.
- The survey was carried out by the Farming and Rural Conservation Agency (FRCA) on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with the Tonbridge and Malling Borough Local Plan This survey supersedes any previous ALC information for this land
- The work was carried out under sub-contracting arrangements by N A Duncan & Associates and was overseen by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I
- At the time of survey the majority of the agricultural land had been sown to peas or winter cereals with three small areas of permanent grass used for pony grazing. A field at the south western edge of the site had been sprayed off and was currently fallow. The areas mapped as Other land include areas of scrub woodland old quarry workings former industrial areas a waste paper storage yard playing fields allotments together with houses and farm buildings.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	163	27 5	12 4
3a	27 2	46 0	20 8
3b	15 7	26 5	12 0
Other land	71 8	N/A	54 8
Total surveyed area Total site area	59 2 131 0	100	45 2

Site

The site is located on the river terrace on the eastern side of the River Medway. The land is relatively flat falling very gently toward the south west. The altitude of the site ranges from approximately 25 m AOD in the north eastern corner near the village of Eccles. to 10 m AOD along the western edge. Gradient microrelief and flood risk do not impose any limitation to the quality of the agricultural land.

Geology and soils

- The two published geology maps which cover the area (BGS 1976 & 1977) show Gault Clay occupying the central part of the site with Pleistocene and Recent Head deposits to the north and east and Head gravel in the south
- On the published reconnaissance scale soil map (SSEW 1983) the northern part of the site has been mapped as Denchworth association which is briefly described as comprising slowly permeable seasonally waterlogged clayey soils with similar fine loamy over clayey soils and some slowly permeable calcareous clayey soils. The eastern part of the site has been mapped as Block association which comprises moderately permeable calcareous loamy soils over chalky gravel variably affected by groundwater. The southern end of the site is shown to comprise soils of the Fyfield 2 association which are described as well drained coarse loamy and sandy soils over sands and siltstone. (SSEW 1984)
- During detailed field examination three different soil types were found on the site which are broadly similar to those described above. The majority of the northern part of the agricultural land on the site comprises poorly drained clayey soils with heavy clay loam or clay topsoils overlying slowly permeable calcareous clay subsoil. The central part of the site is occupied by loamy soils overlying calcareous gravels at depth. These soils are typically free draining medium clay loams becoming sandy clay loam with depth. The soils are variably stony but typically deeper and less stony on the eastern side of the site. At the southern end of the site stonier coarser textured soils were encountered. These soils typically have medium clay loam topsoils over sandy clay loam upper subsoils becoming loamy sand with depth. The upper horizons were slightly stony becoming moderately or very stony with depth.

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

Two areas of Grade 2 land have been mapped on the site. The larger area in the central part of the site comprises the deeper less stony loamy soils described above. These soils typically have a medium clay loam topsoil containing 3.5% total flints over a clay loam upper subsoil becoming stonier with depth (rising to 10% total flints). Many soils were found to be impenetrable to the soil auger at variable depths. However, soil Pit I (see Appendix II)

shows the presence of calcareous stony (25 35% flints by volume) sandy clay loam at depth but with plant roots exploiting the full profile to 1 2 m depth. Moisture balance calculations indicate that these soils are slightly droughty for the shallower rooting crops such as potatoes restricting the land quality to Grade 2

A small area of Grade 2 has been mapped at the northern edge of the site. This area comprises calcareous heavy silty clay loam soils overlying impenetrable chalky material at moderate depths between 70 and 85cm. These soils are free draining (wetness class I) and due to the heavy silty clay loam topsoil textures have a minor workability restriction limiting the land to Grade 2. The land is also limited by minor soil droughtiness arising from the interaction of slightly stony soils and a particularly dry climatic regime.

Subgrade 3a

Three areas of Subgrade 3a have been mapped which correlate with the shallower stonier soils in the central and southern parts of the sites. These soils are typically free draining (wetness class 1) and have medium clay loam topsoils over sandy clay loam upper subsoils becoming stony loamy sand with depth. Topsoil stone contents are typically 5-10% flints rising to 15.25% in the subsoil. Soil pit 3 shows that plant roots exploit the full profile depth to 1.2 m. However, the available water capacity of these soils is moderate due to the amount of stone in the profile. Soil moisture balance calculations indicate that these soils are moderately droughty especially for shallower rooting crops, restricting the land quality to Subgrade 3a.

Subgrade 3b

- Three areas of Subgrade 3b have been mapped in the central and northern part of the site which correlate with the poorly drained clayey soils developed on the Gault Clay Typical soil profiles have heavy clay loam or clay topsoils over slowly permeable strongly gleyed clay subsoils. These soils have been assessed as Wetness Class III or IV which under the prevailing climatic conditions results in a moderately severe wetness and workability restriction. Timing of cultivations trafficking and stocking therefore needs to be carefully controlled to prevent structural damage occurring to these soils. This moderately severe limitation therefore restricts the land to Subgrade 3b.
- A further small area of Subgrade 3b has been mapped on the southern edge of the site Some soil disturbance has occurred in this area resulting in very shallow soils overlying sand and gravel. These soils therefore have a very low moisture holding capacity and as such are very droughty. The land is restricted to permanent pasture and used for horse grazing.

N A Duncan for the Resource Planning Team Eastern Region FRCA, Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 Maidstone 1 50 000 scale Solid & Drift edition BGS London

British Geological Survey (1977) Sheet No 272 Chatham 1 50 000 scale Drift edition BGS London

Ministry of Agriculture Fishenes and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 South East England SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

oc	Overall Climate	ΑE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				_

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat MBP moisture balance potatoes

99 TQ72006020 FAL SW

100 TQ72086019 FAL

DR

WE

ЗΔ

3B IMP 45

SAMPLE --WETNESS - -WHEAT -POTS-M REL EROSN FROST CHEM **ASPECT** GRONT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS GRID REF USE 2 124 5 2 T071906130 PGR 1 3 123 -3Δ WD 2 2 108 ~13 120 2 34 WD 2 TQ71906120 PGR 1 35 R 107 -14 105 -13 **3**A WE 38 IMP FLINT 90 28 TQ72686099 PEA MU 35 27 27 Δ ЗR าห 37 TQ72616089 PEA NE 3 122 1 100 -18 34 WF 38 TQ72706090 PEA 28 28 4 3B 124 3 101 -17 34 WE 3В 39 TQ72806090 PEA N 28 4 38 122 1 99 -19 34 WF 38 1 28 4 38 WE 38 48 TQ72606080 PEA NE 3 28 28 124 3 101 -17 32 4 3B 0 0 WE 38 TQ72006070 SAS N 2 32 52 T072106070 PLO W 25 25 3B 0 0 WE 38 3 30 4 55 T072416068 PLO SE 30 38 Ð 0 WE 38 1 28 125 4 102 -16 WE 3B CALC 28 PLUS 56 T072506070 PEA NE 28 3B 1 45 3 3B 0 0 WE 3B 59 T072026061 SAS 45 3 45 3 Λ n WE 34 TQ72106060 SAS 2 45 .34 93 -28 100 -18 DR 3B POSS 3A TQ72206060 PLO SE 1 40 3 87 34 93 -25 WE 3B 62 T072306060 PLO E 38 1 30 TQ72406060 PLO E 45 45 3 3B 0 0 WE 38 64 T072506060 PEA W 40 40 3 38 130 9 106 -12 34 WE 38 CALC 40+ 50 3 3B 130 9 106 WE 38 65 TQ72606060 PEA 30 ~12 34 -8 DR 68 TQ72106050 BRA S 2 1 1 144 23 110 2 2 69 TQ72206050 PEA S 75 75 2 34 113 -8 109 -9 WE 3A DISTURBED 70 TQ72306050 PEA 1 1 81 40 81 -37 3B DR 3A I FLINTS 50 3P DΡ 3A I FLINTS 60 3P 71 TQ72406050 PEA 91 -30 96 -22 1 1 3B 72 TQ72506050 PEA 130 9 113 -5 DR 2 I FLINTS 100 1 1 55 2 2 105 -16 107 -11 WD 2 SEE 1P 73 TQ72606050 PEA 3A 74 TQ72906050 PEA 81 -40 B1 -**37** DP 3B TMP 50 CALCTS 1 30 38 0 0 WĘ 38 79 TQ72106040 PGR 30 38 IMP 90 30 4 n WF 81 TQ72306040 PGR 38 n 0 TQ72406040 PEA 1 1 147 26 112 -6 DR 2 83 T072506040 PEA 1 0 0 DR IMP 80 SEE 1P 1 1 0 0 DR IMP 95 SEE 1P 84 T072606040 PEA 85 TQ72706040 PEA 1 1 149 28 113 -5 2 DR 2 IMP 80 88 TQ71976029 FAL 70 70 2 2 107 -14 112 -6 DR 3A n n WF 38 90 TQ72206030 PGR 25 4 38 0 90A TQ72246030 PGR 0 25 4 3B 126 5 102 -16 **3**A WE 38 11 107 91 T072306030 PGR 65 65 2 132 -11 DR ЗА 92 TQ72406030 PL0 65 65 2 2 136 15 112 -6 2 WD 2 30 112 93 TQ72506030 PL0 -6 DR 3A SEE 1P PROB G2 0 0 DR 1 1 94 T072606030 PEA 3A IMP 95 SEE 3P DR 1 122 1 111 -7 3A 97 TQ71806020 FAL 1 IMP 80 SEE 3P TQ71906020 FAL SW 1 102 19 106 -12 34 DR 34

22 107 -11

n

34

0

1

38

1

4

27 27

143

SAMP	LE	A	SPECT				-WETI	NESS-	-WH	EAT-	PO	TS-	м	REL	EROSN	FF	ROST	CHEM	ALC		(
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D) [EXP	DIST	LIMIT		COMM	ENTS
	*********								105	_		^	24					D D	_	7145 4	20 0== 14
103	TQ72406020						1	1	125		110	-8	3A					DR Dr	2		00 SEE 18
104	TQ72506020						1	1		0		0							2		O SEE 1P
105	TQ72606020						1	1	100	0	107	0	34					DR DB			5 SEE 1P
106	TQ72706020						1	1	106	-15		-11	3A					DR DR	2 3A		SO SEE 1P
107	TQ71806010	FAL					1	1	123	2	107	-11	3A					UK	ЗА	IMP 1	00
108	TQ71906010	FAL					1	1	143	22	107	-11	3A					DR	ЗА		
109	T072006010						1	1		0		0						DR	3A	IMP 7	5 SEE 3P
110	TQ72106010						1	1	101	-20	112	-6	3A					DR	2	IMP 7	O SEE 1P
111	TQ72206010						1	1		0		0					Y	DR	4	140 N	IOTS NONAG
112	TQ72306010						1	1	151	30	111	-7	2					DR	2		
	-																				
113	TQ72406010	CER					1	1		0		0						DR	3 A	IMP 5	.0
114	TQ72506010	PLO					1	1		0		0						DR	3 A	IMP 5	.5
115	TQ72606010	PLO					3	1	150	29	110	-8	2					DR	2		
117	TQ71906000	FAL					1	1	139	18	103	-15	3A					DR	3 A		1
118	TQ72106000	RGR					1	1		0		0						DR	38	IMP 4	0 X3
																					1
120	TQ72306000	CER					1	1		0		0						DR	3A	IMP 5	O SEE 3P
121	TQ72406000	CER					1	1	119	2	113	-5	3A					DR	2	IMP 9	0 SEE 1P
122	TQ72506000	CER					1	1		0		0						DR	ЗА	IMP 6	60 SEE 3P
123	TQ72606000	CER					1	1		0		0						DR	ЗА	IMP 6	O SEE 3P
125	TQ72205990	RGR					1	1		0		0					Y	DR	38	IMP 4	,5
126	TQ72305990	CER					1	1	104	-17	104	-14	3A					DR	ЗА	IMP 8	Ō
127	TQ72405990	CER					1	1	131	10	107	-11	3A					DR	3A		
128	TQ72505990	CER					1	1		0		0						DR	3A	IMP 6	O SEE 3P
129	TQ72605990	CER					1	1	97	-24	108	-10	3B					DR	ЗА	IMP 7	O SEE 3P
130	TQ72405980	CER					1	1		0		0						DR	ЗА	IMP 7	0
131	TQ72505980	CER	SE	1			1	1	133	12	104	-14	3 A					DR	3A		
132	TQ72605980	CER					1	1	118	-3	106	-12	3A					DR	3A	IMP 1	00
133	TQ72595973	CER					1	1	143		106	-12						DR	3A		
1P	TQ72506020	PL0					1	1	129	8	110	-8	2					DR	2		
2P	TQ72606080	PEA			30	30	4	38	125	4	102	-16	3A					WE	3B	CALC	CLAY 58
													_								1
3P	TQ71906020	FAL	SM	2			1	1	131	10	106	12	3A					DR	ЗА		

program ALCO11 COMPLETE LIST OF PROFILES 27/03/98 TONBRIDGE - BUSHEY WOOD ---------- -MOTTLES---- PED -- -STONES---- STRUCT/ SUBS

				MUII	LE9		PED	-	:	SIU	NF2-	SIRUCI/	20R2			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABL	IN	CONT	COL	GLEY	2 >6	5 L	ITH	TOT CONSIST	STR POR IMP	SPL C	ALC	
2	0.25	L/7C1	100022							_	un	2			v	
۲	0 25	HZCL	10YR33						0		HR	2			Y	
	25-60	HZCL	10YR64						0			0	M		Y	
	60 85	MZCL	10YR74						0	0	СН	2	М		Y	IMP CHALK 85
5	0-25	HZCL	10YR33						0	0	HR	2			Υ	
	25-40	ZC	10YR64								СН	1	м		Y	
	40-72	HZCL	10YR64								СН	2	M		Ÿ	IMP CHALK 72
	40-72	HECE	1011104						ŭ	Ŭ	CA1	2	•••		•	THE GIALK 12
28	0-35	HCL	75YR42						1	0	HR	2				
	35~65	С	25Y 63	10YR66	С	D		γ	0		HR	5	Р	Υ	Υ	
_	65 90	C	25Y 73	10YR68	М			Y			HR	5	P	Y	Y	+3% CHALK
	00 30		201			_				·		•	•	•	•	· or or or or or
37	0-27	С	10YR42						1	0	HR	2				
_	27-60	С	25Y 53 63	10YR66	Ç	D		Υ	0	0	HR	2	Р	Y		
	60-120	С	05Y 62	25Y 66	С	D		Y	0	0	HR	3	Ρ	Y	Y	
38	0-28	С	75YR42						1	0	HR	2				
	28-65	С	25Y 64	10YR66	С	D		Y	0	0	HR	1	P	Y		
	65 120	С	05Y 72	25Y 66	С	D		Υ	0	0		0	Р	Y	Υ	
39	0-28	HCL	10YR42						3	0	HR	4				
	28-65	С	25Y 63	10YR68	C	D		Y	0	0	HR	8	P	Y		
	65-120	С	05Y 72	10YR66	С	D		Y	0	0	HR	2	P	Y	Υ	
-																
48		С	10YR42								HR	2				
	_	С	25Y 63	10YR66	С			Y			HR	1	P	Y		
_	80 120	С	05Y 62	25Y 66	С	D		Y	0	0		0	Р	Y	Y	
	• ••		05:4-23						_	_		_				
51	0-32	HCL	25Y 31	35115-6	_	_					HR	1	_			
	32-70	С	10YR53	75YR58	С	D		Y	U	0		0	Р	Y		
52	0 25	HCL	25Y 31						2	Λ	HR	3			Υ	
52	25 70	C	25Y 5152	75VD50	м	n		Y			HR	5	Р	Υ		
	23 /0	·	231 3132	7311(30	• •	U		•	Ū	٠	111	3	r	,	•	
55	0-30	HCL	10YR31						a	o	HR	ī				
	30-60	С	25Y 53	10YR58	С	F		Y	0	0		0	P	Y		
_	60-80	C	25Y 62	75YR68	М		OM MN	Υ		0		0	P	Y		
n										•		·	•	•		
56	0-28	С	10YR42						0	0	HR	1				
_	28 40	С	25Y 63	10YR66	С	D		Υ	٥	0	HR	1	P	Υ		
_	40-55	С	05Y 62	25Y 66	С	D		Y	0	0		0	Р	Y		
	55-120		05Y 72	10YR68	С	D		Y	0		СН	2	Р		Υ	
59	0 30	HCL	10YR31						0	0	HR	2				
	30 45	С	10YR42						0	0	HR	5	М			
	45 70	С	10YR41 51	10YR58	С	D		Y	0	0		0	Р	Υ		
60	0 32	MCL	10YR31						3	0	HR	8				
60	32 45	С	25Y 32						0	0	HR	5	М			
	45 80	С	25Y 52	10YR58	С	D		Y	0	0		0	P	Y		
_																

				MOT	TI ES		- PED		S	TONES	STRUCT/	SURS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABI		CON					TOT CONSIST		MP SPL CALC	;
61	0-32	MCL	10YR31						1	O HR	2		Y	1
	32-50	MCL	10YR32						0	O HR	10	M	Y	'
	50-65	MCL	10YR32						0	O HR	30	М	Y	/ IMP FLINTS 65
62	0-30	HCL	10YR32							O HR			Y	
	30-40	C	10YR53	10YR58	С		FEW MN	Y	0	O HR	5	M	Υ	
	40-60	С	10YR53	10YR58	М	D	COM MN	Υ	0	O HR	5	Р	YY	' IMP FLINTS 60
63	0-30	HCL	10YR31						0	0 HR	1			
03	30-45	C	25Y 53						0	0	0	М	Y	,
	45-80	c	25Y 53	10YR58	С	D	COM MN	Υ	0	0	0	ρ	, Y Y	
	40 00	ŭ	20. 00	. 411.33	Ŭ			•	•	•	·	•		
64	0-27	HCL	10YR42						1	0 HR	2			
	27-40	HCL	25Y 53						0	0 HR	2	М		
	40-65	С	25Y 53	75YR56	С	D		Υ	0	0 HR	2	P	Y Y	,
	65-120	С	05Y 82	10YR68	С	D		Υ	0	0 CH	2	P	Y Y	•
65	0-30	HCL	75YR42						2	1 HR	4			
	30-50	HCL	10YR53	10YR56	С			Υ	0	O HR	5	М		
	50-70	С	25Y 63	10YR68	C			Υ	0	0 HR	10	Р	Y	
	70 120	С	05Y 82	25Y 68	С	D		Y	0	0	0	Р	Y	
68	0 30	MCL	75YR32						4	O HR	7			
00	30 45	MCL	10YR44							0 HR	7	м		
	45 90	HCL	10YR54	75YR56	С	D		s		O HR	8	M	N	
	90-120	SCL	10YR66	10YR68	C			S		O HR	10	M	N.	
					•	-		-	•			• •		
69	0-30	HCL	10YR32						3	1 HR	5			
	30-75	HCL	10YR34						0	O HR	10	М		
	75-90	HCL	10YR64	75YR56	С	D		Y	0	0 HR	10	P	Y	
70	0-30	MCL	75YR42						3	O HR	5			
	30-50	HCL	75YR55						0	0 HR	8	М		IMP FLINTS 50
71	0-30	MCI	10YR32						3	0 HR	4			
//	30-50	MCL MCL	75YR44						0	O HR	7	М		
	50-60	HCL	75YR45							0 HR	10	 М		IMP FLINTS 60
	30 00	1102	7511115						·	• ///		••		17.1 121110 00
72	0-30	MCL	75YR43						2	0 HR	3			
	30-75	MCL	75YR54						0	0 HR	5	M		
	75-95	HCL	75YR56						0	0 HR	5	M		
	95-100	SCL	75YR56						0	O HR	10	М		IMP FLINTS 100
	_									_	_			
73	0 30	MCL	75YR43						4	O HR	5			
	30-55	HCL	75YR54	750-4	_	_	0011	_	0	0 HR	5	M		
	55 70	C	10YR54	75YR56	С	F	COM MN	S	0	O HR	10	P M	Y	THO PLANTS OF
	70 80	HCL	25Y 74						0	0 HR	10	М		IMP FLINTS 80

65 90

90 120 LMS

HCL

10YR64

10YR66

10YR66

C F

FEW MN

0 0 HR

0 HR

10

5

М

М

Υ

----STONES---- STRUCT/ SUBS - --MOTTLES---- PED GLEY 2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL 74 Δ 0 30 MCL 75YR42 3 2 HR 30-50 HCL 10YR54 0 0 HR 10 М IMP FLINTS 50 79 0 30 0 0 0 HZCL 10YR32 C D 30 70 С 25Y 54 10YR56 0 0 HR 5 Υ 70-120 C 05Y 62 10YR56 CD 0 0 0 Р 81 0-30 MCL C D 10YR42 75YR46 Υ 0 0 HR 2 30-55 С 25Y 52 10YR56 M D Y 0 0 HR 3 55-90 10 IMP FLINTS 90 SCL 10YR66 05Y 62 C D 0 HR 82 0-30 MCL. 75YR42 4 0 HR 5 30-80 75YR55 5 MCL 0 0 HR 8 80 120 HCL 10YR55 75YR56 C F FFW MN S 0 0 HR М 83 0 33 75YR42 0 HR MCL 33 65 0 O HR 4 MCI 75YR54 IMP FLINTS 80 65-80 O HR 8 SCL 75YR56 n М 0-30 MCL 10YR42 3 0 HR 30-85 75YR55 0 0 HR 5 М MCL IMP FLINTS 95 85-95 HCL 75YR46 0 HR 10 М 85 0 30 MCL 10YR42 2 0 HR 30 50 10YR54 O 0 HR 5 MCL 50 80 HCL 75YR56 FEW MN 0 0 HR 5 80 120 SCL 10YR56 0 HR 0-30 MCL 10YR32 4 0 HR 6 30-55 HCL 75YR45 0 HR 5 М 55-70 10YR54 C D 5 HCL COM MN S 0 O HR IMP FLINTS 80 70-80 5 С 25Y 63 10YR56 C D COM MN Y 0 0 HR 90 0 25 HZCL 25Y 32 05YR46 C D 0 0 0 C D Υ 0 0 HR 2 Ρ 25 120 C 05Y 62 10YR56 0 25 25Y 32 75YR46 0 0 HZCL C D Υ 25 40 HCI 25Y 54 10YR56 C D Y 0 0 HR 5 40 65 С 05Y 62 10YR66 C D Y 0 0 HR 2 Y 65-80 SC 10YR64 10YR66 C D 0 0 HR 15 Ρ 80-120 C 05Y 62 10YR66 C D 0 0 0 Ρ 0 30 MCL 10YR43 05YR46 C D 0 HR 5 0 0 HR 10 30 50 HCL 10YR54 м 50 65 SCL 10YR54 COM MN S 0 0 HR 12 М 65 120 C 05Y 62 10YR56 C D 0 0 0 Р 92 0-30 MCL 10YR43 4 0 HR 6 30-50 MCL 10YR54 0 0 HR 5 М 50 65 10YR65 FEW MN 0 HR 5 М

					MOTTLES		PED		S	TONES	STRUC	t/ Subs			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLEY				ST STR POR	IMP SPL (CALC	
D/ 1 22	02		55250.												
93	0-30	MCL	10YR42						4	O HR	5				
	30-45	MCL	75YR54						0	O HR		м			
	45-70	HCL	75YR55				FEW MN		0	O HR		M			
	70-100	SCL	10YR56							O HR		м			
		MSL	10YR65							O HR		м		Υ	
94	0-30	MCL	10YR42						3	O HR	4				
	30-60	MCL	75YR54							O HR		м			IMP FLINTS 60
97	0-30	MCL	75YR43						5	O HR	8				
	30-65	MCL	75YR45						0	O HR		м			
	65-80	HCL	75YR56							O HR		м			
	80-95	SCL.	75YR56							0 HR		М			IMP FLINTS 95
		00 2	, 511100							•					
98	0-30	MCL	75YR43						5	O HR	7				
	30 40	MCL	75YR45							O HR		М			
	40 65	SCL	75YR55						0	O HR		M			
	65 80	LMS	10YR55							O HR		M			IMP FLINTS 80
									_		- -				
99	0 30	MCL	75YR33						5	2 HR	8				
	30 50	MCL	75YR44							O HR		M			
	50 120	SCL	75YR56							O HR		M			
		552	, 5, 11, 00						•		-				
100	0 27	HCL	10YR43						4	O HR	6				
	27 45	C	25Y 53	10YR5	6 C	D		Υ		O HR		Р	Υ	Υ	IMP FLINTS 45
		_													
103	0-30	MCL	10YR43						5	2 HR	7				
	30-85	MCL	10YR56				FEW MN		0	O HR		м			
	85-100	MCL	10YR65 75						0	0 HR		м		Y	
104	0 30	MCL	10YR43						4	O HR	6				
	30 60	MCL	75YR55						0	O HR		м			
	60-70	HCL	75YR55				FEW MN		0	O HR	12	М			IMP FLINTS 70
105	0 30	MCL	10YR43						4	O HR	6				
	30 65	MCL	75YR54						0	0 HR	5	М			
	65 75	SCL	75YR54						0	0 HR	10	м			IMP FLINTS 75
106	0-30	MCL	10YR33						6	1 HR	8				
	30-65	HCL	75YR44						0	O HR	10	м			
	65-80	SCL	10YR54						0	0 HR	10	м			IMP FLINTS 80
107	0-30	MCL	10YR33						6	O HR	8				
	30 55	MCL	75YR45						0	O HR	10	М			
	55-100	HCL	10YR56						0	O HR		M			
108	0-30	MCL	75YR43						5	O HR	8				
	30~50	MCL	75YR45						0	O HR		М			
	50-120		75YR56						0	O HR	10	М			

				 MOTTLES	·	PED	 · S	TONES	STR	RUCT/ SUB	s			
SAMPLE	DEPTH	TEXTURE	COLOUR	ABUN	CONT					SIST STR		MP SPL (CALC	
109	0-28	MCL	75YR43				6	O HR	10					
	28 50	MCL	75YR45				0	O HR	12		M			
	50 75	SCL	75YR46				0	O HR	20		M			IMP FLINTS 75
.														
110	0-30	MCL	75YR43					O HR						
	30-70	MCL	75YR56				U	O HR	5		М			IMP FLINTS 70
111	0-4	MC71	75YR43				٨	0 HR	5					
111	4-40	MSZŁ MCL	751R45 75YR56					O HR			M			140-DIST/NONAG
_	4-40	INL	751130				Ū	0 1			''			140-015171101010
112	0-30	MCL	75YR43				5	O HR	6					
112	30-65	MCL	75YR56				o	O HR			м			
_	65-85	SCL	10YR56				0	O HR	5		м			
_	85-120	MSL	10YR56				0	O HR	5		M			
113														
113	0 30	MCL	75YR43					O HR	8					
_	30 50	HCL	75YR56				0	O HR	10		М			IMP FLINTS 50
114							_							
114	0-30	MCL	75YR43					1 HR	9				.,	TE OUALK
_	30-55	SCL	10YR54				U	O HR	10		М		Y	+5% CHALK
115	0-30	MCL	75YR43				Δ	O HR	6					
113	30-45	MCL	75YR45					O HR	7		М			
_	45 80	HCL	75YR56					0 HR	10		M			
	80 120	MSL	10YR56					O HR	5		М			
117	0 30	MCL	75YR43				7	1 HR	10					
	30-90	SCL	75YR55					O HR	10		М			
	90-120	HCL	75YR55				0	O HR	10		M			
***	0.00		254542				^	0.40	-					
118	0 20 20-40	MSL	75YR43					0 HR 0 HR	5 10		u			IMP FLINTS 40
	20-40	MSL	75YR56				U	UNK	10		M			TWD FEINIO 40
120	0 30	MCL	75YR43				6	1 HR	8					
	30 50	MCL	75YR46					O HR	15		М			IMP FLINTS 50
											•			
121	0-27	MSZL	75YR43				5	O HR	8					
	27-70	MCL	75YR56				0	0 HR	5		М			
	70 90	SCL	75YR56				0	O HR	12		M			
122	0 30	MCL	75YR43					1 HR	7					
	30 55	MCL	75YR56					O HR	7		M			
_	55 60	HCL	75YR46				0	0 HR	15	١	М			IMP FLINTS 60
100	0.30	MOI	35VD43					3 110	e					
123	0-30 30 55	MCL MCL	75YR43 10YR56					2 HR 0 HR	6 10		u			
	55 60	HCL	104K56					0 HR	15		4 4			IMP FLINTS 60
_	33 00	INCL	1011074				•	J IIK	13		•			THE LETTERS OF

					MATTI EG	2	DEN		ç	TANEC		TDIPCT/ CUDE				
SAMPLE	DEDTH	TEXTURE	COLOUR		MOTTLES ABUN	CONT	PED					STRUCT/ SUBS CONSIST STRI	OOD TE	MD SDI CAI	_	
SATIFIC	DEFIN	IEXIONE	COLOGIC	COL	ADON	COIT	W.L	ULL! >	2 70	CIIII	.0. 0	2013131 31K P	OK II	TE SEC CAL	.0	
125	0-10	MSL	75YR43						0	O HR	5					
	10-35	SCL	75YR56						0	O HR	10	м				
	35-45	LMS	10YR66						0	O HR	20	м				IMP FLINTS 45
126	0-30	MSL	75YR43						6	0 HR	8					
	30-75	SCL	75YR56						0	0 HR	5	м				
	75-80	HCL	75YR46						0	0 HR	15	м				
127	0-30	MCL	75YR43						8	2 HR	12					
	30-55	MCL	75YR56						0	0 HR	5	м				
	55-85	MSL	75YR56						0	0 HR	5	М				
	85-120	LMS	10YR56						0	0 HR	5	М				
100			754042						-		••					
128	0-30	MCL	75YR43							1 HR	10					
	30-55	MCL	75YR56 75YR56							O HR	8	M				THO EL THEO CO
	55 60	HCL	751850						U	O HR	15	М				IMP FLINTS 60
129	0-30	MCL	75YR43						7	2 HR	10					
123	30-65	MCL	75YR56							O HR	7	м				
	65-70	HCL	75YR56							0 HR	15	 M				IMP FLINTS 70
	03-70	1100							·	• • • • • • • • • • • • • • • • • • • •	. •	,,				114 1211110 10
130	0-30	MSL	10YR32						6	1 HR	8					
	30-50	SCL	75YR44						0	0 HR	12	м				
	50-70	HCL	75YR56						0	0 HR	15	м				IMP FLINTS 70
131	0-30	MSL	75YR43							0 HR	8					
	30-70	SCL	75YR56						0	0 HR	5	М				
	70-95	MSL	75YR56						0	0 HR	5	М				
	95 120	MS	10YR66						0	U	0	М				
132	0-30	MCL	75YR43						8	1 HR	10					
132	30-50	HCL	75YR46						0	0 HR	12	м				
	50 85	SCL	75YR56						-	0 HR	5	M				
	85 100		10YR75							0 HR		м			Υ	+5% CHALK
	03 100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						·	• • • • • • • • • • • • • • • • • • • •	,,,				•	TON CHILA
133	0-25	MCL	10YR32						6	0 HR	8					
		MCL	10YR46						0	O HR	12	М				
	55 120		10YR46						0	0 HR	5	м				
1P	0-30	MCL	75YR43						3	1 HR	5					
	30-65	MCL	75YR56						0	0 HR		MDCSAB FR M				
	65 85	SC		75YR56	6 C	F F	EW MN	S		0 HR		WDCSAB FM M				
	85-120	SCL	10YR64						0	0 HR	35	MASSIV FM P			Y	
		_	0514 65						_	A .:=	_					
2P	0-30		25Y 42	10000						0 HR	3	MDC4D FILE	4.5			
	30-58			10YR56				Y	0			MDCAB FM P		Y	v	
	58 120	L	25Y 62 72	IOAKP	8 C			Υ	0	U	U	MDCAB FM P	Y	Y	7	

- --MOTTLES----- PED ----STONES- -- STRUCT/ SUBS

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

3P 0-30 MCL 10YR32 3 0 HR 6
30-55 MCL 75YR44 0 0 HR 6 MDCSAB FR M
55-78 SCL 75YR46 FEW MN 0 0 HR 25 M
78-95 MSL 75YR58 0 0 HR 25 M
95-120 LMS 75YR58 0 0 0 HR 10 M