4202-059-98 Ø FRCA

FARMING AND RURAL CONSERVATION AGENCY

An Executive Agency of the Ministry of Agriculture, Fisheries and Food and the Welsh Office

A1

ARUN DISTRICT LOCAL PLAN Objector Sites - Additional Land at Ford Aerodrome, Yapton, West Sussex

Agricultural Land Classification ALC Map and Report

August 1998

Resource Planning Team Eastern Region FRCA Reading

•

RPT Job Number: 4204/059/98 FRCA Reference: EL 42/0460

AGRICULTURAL LAND CLASSIFICATION REPORT

ARUN DISTRICT LOCAL PLAN OBJECTOR SITES - ADDITIONAL LAND AT FORD AERODROME, YAPTON, WEST SUSSEX

INTRODUCTION

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 32 hectares of additional land at the disused Ford Aerodrome, southeast of Yapton in West Sussex. The survey was carried out during August 1998.

2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with MAFF's statutory input to the Arun District Local Plan. This survey supersedes any previous ALC information for this land. Information from ALC surveys on adjacent land (FRCA reference numbers 4202/64/94, 4202/120/97 and 4202/65/94) have been used in the classification of this site.

3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey the agricultural land use on the site consisted mostly of recently ploughed land with the remainder comprising permanent grassland. The areas mapped as 'Other land' include the runway of the disused aerodrome and a small hanger.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Grade/Other land	Area (hectares)	% surveyed area	% site area		
2	27.2	97.1	86.6		
3a	0.8	2.9	2.6		
Other land	3.4	N/A	10.8		
Total surveyed area	28.0	100.0			
Total site area	31.4	-	100.0		

¹ FRCA is an executive agency of MAFF and the Welsh Office

7. The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. In total, 30 borings and 1 soil pit were described.

8. The majority of the agricultural land is mapped as Grade 2 (very good quality) with the remainder shown as Subgrade 3a (good quality). The principal limitations include soil droughtiness and soil wetness.

9. Very good quality agricultural land comprises non-calcareous medium silty clay loam topsoils. These overlie similar textures or heavy silty clay loam upper subsoils before passing to similar or slowly permeable clay lower subsoils. The variable nature of the subsoil horizons means that, where the clay layers are present, there is a soil wetness and a soil droughtiness limitation. Where the clays are absent, it is soil droughtiness alone that is the limiting factor. These minor restrictions may adversely affect the levels of crop yield, the consistency of yield and the crop quality, as well as restricting the number of days when the land is in a suitable condition to work.

10. Good quality land suffers from a soil wetness limitation caused by shallow slowly permeable clay lower subsoils which impede the movement of water down the profile. This limitation will affect the range and yield of crops that can be grown on this land as well as restricting the number of days when the land is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock.

FACTORS INFLUENCING ALC GRADE

Climate

11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

12. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Val	lues
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m, AOD day°C (Jan-June) mm days mm mm	SU 991 026 5 1542 745 153 121 118	SU 991 031 5 1542 750 154 120 117
Overall climatic grade	N/A	Grade 1	Grade 1

Table 2: Climatic and altitude data

13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Local climatic factors, such as frost risk do not affect land quality at this location, but the site's proximity to the sea means that it is shown as an area recorded as 'rather exposed' by the Met. Office (Met. Office, unpublished data, 1968). However, there was no evidence of significant exposure detected at a low level across the site at the time of the survey. The site is, therefore, climatically Grade 1.

Site

16. The site is flat, lying at an altitude of approximately 5 m AOD. It is not affected by any site restrictions, such as gradient, microrelief or flooding.

Geology and soils

17. The most detailed published geology information for the site (BGS, 1975) shows it to be entirely underlain by Brickearth deposits.

18. The most detailed published soils information covering the area (SSEW, 1983) shows it to comprise entirely soils of the Hamble 2 association. These soils are described as 'deep stoneless well drained silty soils and similar soils affected by groundwater; over gravel locally. Usually flat land' (SSEW, 1983). Soils consistent with this description were observed across the site.

AGRICULTURAL LAND CLASSIFICATION

19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 1.

20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Grade 2

21. Very good quality land is mapped over most of the site. Limitations include soil droughtiness and, in places, soil wetness.

22. Most of the land classified as Grade 2 is affected by soil droughtiness restrictions. Soils comprise non-calcareous medium silty clay loam topsoils. These soils contain between 1 and 3 % total flints by volume (1 % > 2 cm in size). Topsoils overlie similar upper subsoils which pass to slightly gleyed heavy silty clay loam lower subsoils at moderate depths (48–72 cm). These soils are similar to those observed in Pit 1 from an adjacent survey (FRCA ref: 4202/120/97). The variable depth to the slightly gleyed horizons is suggestive of a fluctuating water-table and minor seasonal waterlogging. Consequently, these soils are assigned to Wetness Class 1. The combination of soil properties interacting with the locally dry climate reduces the amount of available water to growing crops in these soils. The resulting moisture balance calculations classify this land as Grade 2. A minor droughtiness limitation such as this may affect the level and consistency of yields, especially in drier years.

23. The Grade 2 land along the western boundary is also restricted by a soil wetness limitation. These profiles have similar topsoils and upper subsoils (MZCL), but pass to slowly permeable clay lower subsoils which commence from 55–75 cm. Pit 1 is typical of these soils (see Appendix II). The pit confirmed the existence of these poorly structured clay subsoils, which are slowly permeable and which impede the movement of water through the soil profile. The depth to gleying and the slowly permeable layer assigns these soils to Wetness Class II, and this combination of imperfect drainage, topsoil texture and the local climate gives rise to a land classification of Grade 2.

Subgrade 3a

24. Good quality land occupies a very small area along the western boundary. These soils are similar to those of the Grade 2 land with the slowly permeable clay layer beginning at shallower depths (from approximately 43 cm). The depth to these poorly structured clays assigns these soils to Wetness Class III and this, combined with the topsoil texture, and climatic regime, restricts land quality to Subgrade 3a. This degree of soil wetness may adversely affect crop growth and development, as well as limiting the flexibility of the land due to a reduction in the number of days when the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock.

Colin Pritchard and Edgar Black Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1975) Sheet No. 332, Bognor. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

٠

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils of South-East England, 1:250,000. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

•

Sample location map

Soil abbreviations - explanatory note

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats .	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent pasture	LEY:	Ley grass	RGR:	Rough grazing
SCR:	Scrub	CFW:	Coniferous woodland	ОТН	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL:	Microrelief limitation	FLOOD:	Flood risk	EROSN:	Soil erosion risk
EXP:	Exposure limitation	FROST:	Frost prone	DIST:	Disturbed land
CHEM:	Chemical limitation				•

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC:	Overall Climate	AE:	Aspect	ST:	Topsoil Stoniness
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure				

Soil Pits and Auger Borings

1. **TEXTURE:** soil texture classes are denoted by the following abbreviations:

S:	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL:** Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology one of the following is used:

HR:	all hard rocks and stones	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	CH:	chalk
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered	GH:	gravel with non-porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development	WK: ST:	weakly developed strongly developed	moderately developed			
Ped size	F: C:	fine coarse	M :	medium		
Ped shape	S: GR: SAB: PL:	single grain granular sub-angular blocky platy	M: AB: PR:	massive angular blocky prismatic		

9. **CONSIST:** Soil consistence is described using the following notation:

L: loose	FM: firm	EH: extremely hard
VF: very friable	VM: very firm	·
FR: friable	EM: extremely firm	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations:

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

program: ALCO12

٠ .

E 6A	MPL	E	4	SPECT				WETI	NESS	-WH	EAT-	-P0	TS-	м.	REL	EROSN	FRO	DST (CHEM	ALC	
NO NO		GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
		000000000000000000000000000000000000000	0.0					•	•				~	~					50	~	SEE 100 (02)
		SU99100310 SU99200310						ו ו	1 1	160 160		124	6 6	2 2					DR	2 2	SEE1P(120/97)
		SU99200310 SU99100300						1	1	160 160		124 124	6	2					DR DR	2	SEE1P(120/97) SEE1P(120/97)
		SU99200300						1	1	160		124	6	2					DR	2	SEE1P(120/97)
-		SU99100290						1	1	122		124	6	2 3A					DR	2 3A	SEE1P(120/97)
	3	2033100230	PLU					,	1	124	'	124	0	AC					DK		SEEIF(120/97)
-	6	SU99200290	PLO					1	1	159	38	123	5	2					DR	2	SEE1P(120/97)
	7	SU99300290	PLO					1	1	160	39	124	6	2					DR	2	SEE1P(120/97)
	8	SU99100280	PLO					1	1	160	39	124	6	2					DR	2	SEE1P(120/97)
	9	SU99200280	PL0					1	1	157	36	120	2	2					DR	2	SEE1P(120/97)
_ 1	0	SU99300280	PGR					1	1	159	38	123	5	2					DR	2	SEE1P(120/97)
1	1	SU99400280	PLO				50	3	3A	139	18	116	-2	2					WE	3A	
1.	2	SU98900270	PGR			56	66	2	2	133	12	124	6	2					WD	2	SEE1PATAB21
1		SU99000270						1	1	159	38	123	5	2					DR	2	SEE1P(120/97)
1	5	SU99200270	PLO			77	77	2	2	151	30	124	6	2					DR	2	SEE1PATAB21
1	6	SU99300270	PL0			65	65	2	2	149	27	124	6	2					DR	2	SEE1PATAB21
								_					_	_							
		SU99400270						1	1	160		124	6	2					DR	2	SEE1P(120/97)
1		SU99500270					62	2	2	143		121	3	2					WD	2	00010474021
		SU99000260				30	90	2	2	152		122	4	2					WD	2	SEE1PATAB21
2		SU99100260				52 55	52	3 2	3A	146		121	3	2					WD WD	3A 2	SEE1PATAB21 SEE1PATAB21
2	1	SU99200260	PLU			22	55	2	2	145	24	121	3	2					NU	۷	SECTRATADET
a 2	2	SU99300260	PLO			75	75	2	2.	150	29	123	5	2					WD	2	SEE1PATAB21
2		SU99400260						1	1	159	38	123	5	2					DR	2	SEE1P(120/97)
2	4	SU99500260	PLO					1	1	154	33	121	3	2					ÐR	2	
_ 2	5	SU99300250	PL0			56	56	2	2	147	26	123	4	2					WD	2	SEE1PATAB21
2	6	SU99400250	PL0			70	70	2	2	149	28	121	3	2					WD	2	SEE1PATAB21
2		SU99500250				85	85	1	1	153	32	124	6	2					DR	2	SEE1PATAB21
21		SU99600250					70	2	2	151		125	7	2					WD	2	
2		SU99400240				43	43	3	3A	113		121	3	3A					WE	3A	SEE1PATAB21
30		SU99600240				95	95	1	1	150		121	3	2					DR	2	
1 3 ³	1	SU99700240	PGR				90	1	1	145	24	117	-1	2					DR	2	
ПP		SU99200260	PLO			54	54	2	2	146	25	122	4	2					WD	2	PIT1ATAB21

program: ALCOll

• .

COMPLETE LIST OF PROFILES 25/08/98 ARUN DLP: FORD AERODROME

page 1

•				-MO	TTI ES		PED		S	TONES-	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A		CONT					•	STR POR IMP SPL CAL	с
-													
n 1	0-27	MZCL	10YR43						0	0 HR	٦		
	27-50	MZCL	10YR44						0	0	0	M	
-	50-120	HZCL	10YR54	10YR58	С	F		S	0	0	0	м	BORDER C
2	0-30	MZCL	10YR43						0	0 HR	2		
	30-70	MZCL	10YR54						0	0	0	м	BORDER HZCL
	70 -120	HZCL	10YR54	10YR72	С	D		S	0	0	0	м	BORDER C
									_		_		
3	0-28	MZCL	10YR43						0		1		
	28-56	MZCL	10YR44						0	0	0	M	
	56-68	HZCL	10YR56						0	0	0	M	
	68-120	HZCL	10YR56	10YR72	С	D		S	0	0	0	м	BORDER C
4	0-29	MZCL	10YR43						0	0 HR	1		
	29-48	MZCL	10YR54						0	0	0	M	
	4872	HZCL	10YR56						0	0	0	Μ	BORDER C
	72-120	HZĊL	10YR56	10YR58	С	D		S	0	0	0	м	BORDER C
5	0-26	MZCL	10YR43						0	0 HR	1		
	26-38	MZCL	10YR54						ō	0	0	Μ	BORDER HZCL
	38-58	HZCL	10YR54	10YR58	С	D		S	Ō	0	0	M	
	58-82	HZCL	10YR56	10YR58	č			s	0		0	M	IMP FLINT
5		LUC		••••••	-	-		•	•	•	-		
6	0-23	MZCL	10YR43						0	0 HR	1		
•	23-56	MZCL	10YR56						0	0	0	M	BORDER HZCL
	56-66	HZCL	10YR56	10YR58	С	D		S	0	0	0	м	
-	66-120	HZCL	10YR56	10YR72	С	D		S	0	0	0	М	
7	0-26	MZCL	10YR43						0	0 HR	1		
	26-45	MZCL	10YR44						ŏ	0	0	м	
	45-65	HZCL	10YR56						Ő	0	0	м	BORDER HZCL
	65-120		10YR56	10YR72	с	D		s	ō		0	M	BORDER C
8		1.202	101100	1011(12	Ū			Ŭ	Ŭ	·	0		LONDER C
8	0-26	MZCL	10YR43						0	0 HR	1		
	26-58	MZCL	10YR44						0	0	0	м	BORDER HZCL
	58-80	HZCL	10YR56	10YR58	С	D		S	0	0	0	M	
-	80-120	HZCL	10YR56	10YR72	С	D		S	0	0	0	м	BORDER C
9	0-30	MZCL	10YR43						0	O HR	1		
	30~55	MZCL	10YR44						0	O HR	10	м	DIST? COKE
	55-70	MZCL	10YR56						0	0	0	м	BORDER HZCL
	70-120	HZCL	10YR56	10YR72	С	D		S	0	0	0	м	BORDER C
	• • •								_		-		
10		MZCL	10YR43							0 HR	3		
		MZCL	10YR44	A AL 15 20	~			~		0 HR	1	M	
5	50-120	HZCL	10YR56	10YR58	С	U		S	0	U	0	м	BORDER C
_ 11	0-28	MZCL	10YR43						0	0 HR	1		
		HZCL	10YR44						0	0	0	М	
	50-71		10YR54	10YR58	м	D		S	0	0	0	Р Ү	
_	71-120	С	10YR54	10YR56	F	D			0	0	0	Р Ү	BORDER HCL

•

program: ALCO11

COMPLETE LIST OF PROFILES 25/08/98 ARUN DLP: FORD AERODROME

----STONES---- STRUCT/ SUBS ---- MOTTLES----- PED COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 12 0-30 MZCL 10YR43 0 0 HR 2 10YR58 C D S 0 0 0 М 30-56 MZCL 10YR54 56-66 HZCL 10YR64 10YR58 C D Y 0 0 0 М М Y 10YR58 M D Υ 0 0 0 66-100 C 10YR64 0 O HR 2 13 0-30 MZCL 10YR43 0 0 HR 2 Μ 10YR54 30-68 MZCL. М 68-120 HZCL 10YR54 10YR72 C D S 0 0 0 0 O HR 1 0-27 MZCL 10YR43 15 BORDER HZCL M 0 0 0 27-48 MZCL 10YR44 BORDER C 10YR54 10YR58 C D S 0 0 0 Μ 48-77 HZCL М Y 77-120 C 10YR63 10YR58 C D Υ 0 0 0 16 0-28 MZCL 10YR43 0 O HR 1 0 0 0 Μ 28-45 MZCL 10YR44 0 0 0 Μ 10YR54 45-65 MZCL Y Y 0 М 65-120 C 10YR63 10YR58 C D 0 0 10YR43 0 O HR 1 17 0-29 MZCL Μ F D 0 10YR54 10YR56 0 0 29-75 HZCL SORDER C 10YR54 10YR56 C D S 0 0 0 Μ 75-120 HCL 0 O HR 1 18 0-30 MZCL 10YR43 BORDER HZCL 0 Μ 30-62 MZCL 10YR44 0 0 Y 10YR56 10YR58 S 0 0 0 Ρ 62-120 C CF 0-30 MZCL 10YR43 0 O HR 2 19 DIST? COKE 10YR63 10YR58 C D Y 0 O HR 10 М 30-40 MZCL 0 0 Μ 10YR63 10YR68 C D γ 0 40-50 MZCL BORDER HZCL 0 0 Μ Ω 50-90 MZCL 10YR54 Y М Y 90-120 C 10YR63 10YR58 M D 0 0 0 0 0 HR 2 20 0-26 MZCL 10YR43 0 0 ۵ м 26-52 MZCL 10YR44 Y 52-120 C 10YR63 10YR58 C D Y 0 0 0 М 0 0 HR 1 21 0-18 MZCL 10YR43 10YR44 0 0 0 Μ 18-55 MZCL Y 10YR58 Y 0 0 0 М 55-120 C 10YR63 C D 22 0-27 MZCL 10YR43 0 0 HR 3 10YR44 0 0 0 Μ 27-65 MZCL 0 0 М 10YR54 10YR58 CF S 0 65-75 HZCL Y Y 0 0 0 м 75-120 C 10YR63 10YR58 м D MZCL 10YR43 0 0 HR 1 23 0-27 Μ 27-120 HZCL 10YR54 0 O HR 1

page 2

program: ALCO11

۰.

COMPLETE LIST OF PROFILES 25/08/98 ARUN DLP: FORD AERODROME

				MOTTLES		PED	PEDSTONES STRUCT/			SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY >	2 >6	LITH	TOT CONSIST	STR PC	OR IMP	SPL CALC	
a 24	0-28	MZCL	10YR43						0	0 HR	1				
	28-42	HZCL	10YR44						Ó	D	0	м			
	42-75	с	10YR54						0	0	0	M			
	75-90	HCL	10YR54						0	0	0	M			SL. SANDY
	90-120	HZCL	10YR56	10YR5	8 C	F		S	0	0	0	м			BORDER C
25	0-28	MZCL	10YR43						0	0 HR	1				
•	28-56	MZCL	10YR54	10YR5	6 C	F		S	0	0	0	м			
	56-120		10YR63	10YR5		D		Ŷ	0		0	M		Y	
- 26	0-27	MZCL	10YR43						0	0 HR	1				
	27-45	MZCL	10YR54	10YR5	6 F	D		N	0	0	0	м			
	45-70	HCL	10YR54	10YR5				S	ō	õ	õ	M			BORDER C
_	70-120		10YR62	10YR5		D		Ŷ	ō		0	M		Y	SL. SANDY
									•	A 110					
27	0-29	MZCL	10YR43						0	0 HR	1				
	29-45	MZCL	10YR54	10YR5	ь с	D		S	0	0	0	M			
	45-85	MZCL	10YR54		.	-			0	0	0	M		.,	
	85-120	с	10YR62	10YR5	8 M	0		Ŷ	٥	0	0	м		Y	
28	0-35	MZCL	10YR54	•					0	0 HR	1				
	35-45	MZCL	10YR54						0	0	0	M			
	45-70	MZCL	10YR56						0	0	0	м			BORDER HZCL
_	70-120		10YR54	10YR5	8 M	D		S	0	0	0	Р		Y	
20	0-27	MZCL	10YR43						0	0 HR	,				
29		MZCL		10YR5	с г	F				0 nk	1 0	м			BORDER HZCL
_	27-43		10YR54			F		N Y	0	0		P		Y	SL. SNADY
	43-80	С	10YR63	10YR5	o ri	D		T	U	U	0	r		,	JL. 34401
- 30	0-30	MZCL	10YR54	10YR5	6 C	D		S	0	0 HR	2				
-	30-65	MZCL	10YR44	10YR5	6 C	F		S	0	0 HR	5	M			
	65-95	MZCL	10YR44	10YR5	8 C	D		S	0	0	0	M			
	95-120	с	10YR64	10YR5	8 C	D		Y	0	0	0	M		Y	SL. SANDY
31	0-30	MZCL	10YR44	10YR5	6 C	D		s	0	0 HR	2				
	30-45	HCL	10YR44	10YR5		D		S	0	0 HR	2	м			BORDER C
	45-90	HCL	10YR54	10YR5		D		S	0	0 HR	7	м			BORDER SC
	90-120	с	10YR54	10YR5		D		S	0	0	0	Ρ		Y	
П 1Р	0-25	MZCL	10YR43						1	0 HR	2				
16	25~55	MZCL	10YR54						, 0	0	0 MDCSAE	S FR M	N		
	25-55 55-120		10YR64	10YR5	8 M			Y	ō	õ	0 MDCPR		Y	Y	
	55-120	v	1011.04	10103	- n			•	0	v				•	

.

page 3

.