Raise the water table on previously drained peat soils using dams.

These pages represent a review of the available evidence linking management of habitats with the ecosystem services they provide. It is a review of the published peer-reviewed literature and does not include grey literature or expert opinion. There may be significant gaps in the data if no published work within the selection criteria or geographical range exists. These pages do not provide advice, only review the outcome of what has been studied.

Full data are available in electronic form from the Evidence Spreadsheet. Data are correct to March 2015.
Fibre: **Strong Evidence:** At a bog in Germany, a raised water table created by a hydrological protection zone demonstrated a significant reduction in tree cover. This has implications for forestry associated with peatland areas.

Biodiversity: **Strong Evidence:**— At Tadham Moor on the Somerset levels, re-wetting of organic rich soils created an initially poorer diversity of plants as the drier species were replaced by a low diversity swamp flora. A similar result in the Netherlands was seen with aquatic invertebrates, where re-wetted areas had lower diversity and increased homogeneity with species assemblages being more similar between patches. However, another UK study showed that drained sites had a lower invertebrate diversity than drain-blocked sites and that streams in drain-blocked catchments had a similar invertebrate richness, species composition and community structure to intact sites.

Environmental Settings: **Strong Evidence:**— A lowering of water table depth can affect archaeological remains by allowing them to dry out, oxidise and decay. **Weak Evidence:**— The effect of managing landscapes by manipulating the water table, can have a number of implications for archaeology, including preservation through re-wetting through to damage caused by mitigation works. Of particular concern are archaeological remains lost or damaged through drying of peat or through the cultivation of former peatlands.
Climate Regulation: Strong Evidence: Recreating wetlands from areas with high soil organic carbon such as former peat workings has benefits and costs. A study tracking restoration of a peatland showed that pre-restoration it acted as a carbon dioxide (CO\(_2\)) source, while two years post-restoration it had returned to being a carbon sink\(^8\). Methane (CH\(_4\)) emissions however are shown to increase when former drained peat agro-ecosystems are returned to natural conditions with a high water table\(^9\). Peatland restoration through flooding can lead to the release of high levels of CO\(_2\) and CH\(_4\) from the initial flooding due to the decomposition of organic matter on the surface\(^10\). The balance of greenhouse gas emissions/sinks is highly dependent on the water table level and management, with a study from Germany showing that minerotrophic fen systems released nitrous oxide (N\(_2\)O) and CH\(_4\) when water tables were high\(^11\). Lowering or raising the water table level by 5cm can affect the CH\(_4\) emission levels by as much as 30-50\% for wet grasslands on peat soils\(^12\). The aboveground biomass of sedges appears to influence the release of methane by stimulating the transport of CH\(_4\) to the surface\(^13\). **Moderate Evidence:** A laboratory study confirmed the potential for newly inundated high carbon soils to produce CO\(_2\) and CH\(_4\). It found that flooded peat produced relatively little greenhouse gas, but that production can be significantly increased where plant material in the form of roots is present. This has implications for the flooding of vegetated areas\(^14\). However, there is some evidence that the restoration of forestry-drained peat-lands results in less methane than expected due to the poor establishment of methanogens (methane producing micro-organisms) even 10-12 years following restoration\(^15\).

Flood Control: Moderate Evidence: A review of the benefits of peatlands for water management in Scotland has shown that undrained mires are most beneficial for delaying storm run-off\(^16\). The study does not establish what happens when previously drained mires are returned to their natural state. Data on water tables at restored peat sites in Northern England suggest that after six years restored sites are intermediate between drained and intact sites but that water table dynamics (and hence flood alleviation) are unpredictable\(^17\).

Water Quality: Strong Evidence: Drains through peatlands in Northern England carry significant amounts of fine sediment. Drains that had been blocked either naturally or artificially were significantly reduced sources of suspended sediment compared with unblocked drains\(^18\). Blocked drains on UK peatlands (both upland and lowland) also had 28\% less dissolved organic carbon and hence less water discoloration than unblocked drains, though the effect was highly site dependent, with some sites showing no difference between blocked and unblocked drains\(^19\). A number of studies show water quality issues following re-wetting of peat through mobilisation of pollutants from the upper degraded peat layers. Phosphorus can be mobilised through re-wetting, though the extent depends on the level of peat degradation and the amount of iron (Fe), the more iron, the less phosphorus is mobilised\(^20\). In Germany, a re-wetted peatland showed seasonal variations in nitrogen and phosphorus balances, but overall, the peatland retained inorganic nitrogen but exported organic nitrogen and phosphate\(^21\). Re-wetting degraded peat can also mobilise other pollutants such as arsenic, deposited during the UK industrial revolution\(^22\), and bromide\(^23\).
Managing for ecosystem services

REFERENCES

Water Quality:- Moderate Evidence :- A modelling approach to phosphorus leaching from re-wet peat in Germany established that there was little danger of water quality deterioration from phosphorus mobilisation\(^2\). The actual link between re-wetting of degraded peat and phosphorus loss into run-off may be due to the higher levels of microbial cycling in degraded peat, the higher the levels of degradation, the greater the phosphorus loss\(^5\).
REFERENCES

