A1

Proposed Golf Course at Kings Hill, West Malling, Kent Agricultural Land Classification ALC Map and Report September 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

PROPOSED GOLF COURSE, KINGS HILL, WEST MALLING, KENT

1 Summary

- 1 1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for an area of land south of West Malling in Kent The work forms part of MAFF's statutory input to the planning application for a golf course
- 12 Approximately 75 hectares of land relating to the aforementioned site was surveyed in September 1994 The survey was undertaken at a detailed level of approximately one boring per hectare of agricultural land A total of 38 borings 15 topsoil stone measurements and two soil inspection pits were described in accordance with MAFFs revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture
- 13 At the time of the survey the landuse on the site was a mixture of recently harvested cereals hops and set aside Areas marked as woodland include chestnut coppice areas marked as non agricultural include scrubland dirt tracks and parts of the former airfield Areas marked as urban include tarmac roads and the runways of the former airfield
- 14 The distribution of grades and subgrades is shown on the attached ALC map and the areas and extent are given in the table below The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

Grade	Area (ha)	% of Site	% of Agrıcultural Land
2	54	72	13 7
3a	26 5	35 3	67 3
3b	75	10 0	<u>190</u>
Non-agricultural	14 1	188	100% (39 4 ha)
Urban	34	4 5	
Woodland	<u>18 1</u>	<u>24 2</u>	
Total area of Site	75 0	100%	

Table 1 Distribution of Grades and Subgrades

- 15 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 16 The majority of the agricultural land on the site has been classified as Subgrade 3a good quality land with soil droughtiness as the main limitation Soil profiles typically comprise medium clay loam topsoils which become heavier with depth Subsoils tend to be

impenetrable to the auger due to the presence of flaggy soft sandstone below depths of approximately 40 cm. The stony nature of the subsoils along with the soil textures and local climatic regime means that there is a moderate restriction on profile available water such that a classification of Subgrade 3a is appropriate. It should be noted that deeper less stony profiles in some areas of the site have been mapped as Subgrade 3a due to the presence of between 11 14 % total stones greater than 2cm in the topsoil. Towards the south of the site an area of Grade 2 very good quality land has been mapped. These soil profiles tend to be less stony and more lightly textured than elsewhere on the site Consequently these profiles show sufficient reserves of profile available water such that droughtiness is less of a limiting factor. In the north and the west of the site areas of land with topsoils containing in excess of 15% total stones greater than 2 or 6 cm have been classified as Subgrade 3b due to a significant topsoil stone limitation. Excessively stony topsoils may restrict crop establishment and growth and can increase production costs due to increased wear and tear on machinery and tyres.

2 Climate

- 2.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature (degree days Jan June) as a measure of the relative warmth of a locality
- 2 3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site However the field capacity days for the site are relatively low in a national context and therefore the likelihood of any soil wetness problems may be decreased
- 2.4 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolations

Grid Reference	TQ 672 541	TQ 678 548
Altıtude (m)	75	100
Accumulated Temperature	1424	1395
(degree days Jan-June)		
Average Annual Rainfall (mm)	674	680
Field Capacity (days)	139	140
Moisture Deficit Wheat (mm)	112	109
Moisture Deficit Potatoes (mm)	106	101
Overall Climatic Grade	1	1

3 Relief

3 1 The site falls from north to south lying at an altitude of approximately 70 100m AOD Nowhere on the site do gradient or relief pose any limitation on agricultural use

4 Geology and Soils

- 4 1 The relevant geological sheet (BGS 1971) shows the majority of the site to be underlain by head deposits An area of Hythe Beds is mapped in the south of the site
- 4 2 The published Soil Survey map (SSEW 1983) shows the soils on the site to comprise two distinct associations The majority of the site is shown to comprise soils of the Marlow association These are described as well drained fine loamy over clayey and clayey soils Some fine loamy over clayey soils with slowly permeable subsoils and slight seasonal waterlogging (SSEW 1983) Towards the south of the site soils of the Malling association are mapped These are described as well drained fine loamy soils over limestone at variable depths Some fine loamy soils with slowly permeable subsoils and slight seasonal waterlogging (SSEW 1983)
- 4 3 Detailed field examination found the soils on the site to be well drained loamy and clayey soils occasionally with coarse textured subsoils Topsoils tend to contain hard sandstone in some areas of the site subsoils commonly consisting of clay interbedded with sandstone

5 Agricultural Land Classification

- 5 1 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

Grade 2

53 An area of agricultural land towards the south of the site has been classified as Grade 2 very good quality land with soil droughtiness as the main limitation Profiles proved to be deeper to the auger than elsewhere on the site and subsoils tend to be slightly stony (8-15% total v/v > 2mm sandstone) Profile textures tend to comprise medium silty clay loam or medium clay loam topsoils overlying medium clay loam or heavy silty clay loam upper subsoils Occasionally lower subsoils consist of a silty clay which extends to depth Soil inspection pit no 2 which is typical of this mapping unit was dug to investigate the textures and structures of the subsoil At the location of the pit the profile was found to comprise a slightly stony (6 % total v/v > 2mm hard sandstone) medium clay loam topsoil overlying a similarly textured upper subsoil containing 8% total soft sandstone extending to a depth of 45cm A stoneless medium silty clay loam subsoil was found to extend to a depth of 90cm where a stoneless heavy silty clay loam lower subsoil commences Although the lower subsoil shows evidence of gleying there is no significant wetness limitation (Wetness Class I) However the pit profile and profiles elsewhere exhibit a slight restriction on the amount of profile available water for plant growth Consequently this can affect the level and consistency of crop yields such that a classification of Grade 2 is appropriate

Subgrade 3a

5.4 Good quality Subgrade 3a land covers a large proportion of the site The key limitations within this mapping unit being soil droughtiness and in some areas of the site topsoil

The majority of soil observations within this mapping unit proved to be stoniness impenetrable to the soil auger at depths of between 30 65cm this can be attributed to the presence of flaggy sandstone within the subsoils Above this depth profiles tend to comprise a slightly stony (6 15% total v/v > 2mm hard sandstone) medium clav loam topsoil prevailing as an upper subsoil which was occasionally found to rest upon a moderately stony (25% total v/v >2mm soft sandstone) heavy clay loam or clay lower subsoil The impenetrable nature of the soil auger samples means that it was necessary to dig a soil inspection pit (pit no 1) to investigate the nature of the subsoil particularly the stone contents The soil profile at the location of the pit (where the soil augering proved impenetrable at 40cm) was found to comprise a slightly stony (15% total v/v > 2mm hard sandstone) medium clay loam topsoil overlying a moderately stony (25% total v/v >2mm soft sandstone) clay upper subsoil extending to a depth of 48cm The lower subsoil comprised a heavy clay loam extending to 95cm containing 25% total soft sandstone to a depth of 65cm and 35% total soft sandstone below this A medium sandy loam containing 35% total soft sandstone was observed between 95 120cm Subsoils contain some manganese concretions yet the profile is well drained and assigned to Wetness Class I The combination of soil texture structures the presence of interbedded sandstone in the subsoil and the local climatic regime means that there is a moderate restriction on the amount of profile available water for plant growth Consequently this will have an affect upon the level and consistency of crop yields such that a classification of Subgrade 3a due to droughtiness is appropriate. The impenetrable nature of the soils within this mapping unit means that for the purpose of assigning an overall grade it has been necessary to assume that subsoils resemble those observed in the soil inspection pit

5 5 Some deeper less droughty soils were observed within this mapping unit yet the principal limitation proved to be topsoil stoniness due to the presence of between 11 14% total hard sandstone greater than 2cm in size in the topsoils

Subgrade 3b

5 6 The remainder of the agricultural land on the site has been classified as Subgrade 3b moderate quality land with topsoil stoniness as the main limitation. Topsoil stone measurements with a 2cm mesh sieve across much of the site showed certain areas to be excessively stony such that a classification of Subgrade 3b is appropriate. Within this mapping unit a range of stone contents in the top 25 cm of soil were recorded (8 15% > 2 6cm 2 8% > 6cm in size). However, the total volume of stones larger than 2cm (i e both stones >2cm and stones >6cm) ranged between 16 18%. The main effects of high topsoil stone contents are to act as an impediment to cultivation harvesting and crop growth. A high stone content can increase production costs by causing extra wear and tear to implements and tyres. Stones can also impair crop establishment by causing reduced plant populations in precision drilled crops and significantly reduce the available water capacity of the soil, thereby increasing the susceptibility of crops to drought.

ADAS Ref 2013/220/94 MAFF Ref EL 20/982 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No 287 Sevenoaks 1 50 000 Series (solid and drift edition)

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft after-uses may apply

Woodland

Includes commercial and non-commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of Waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
п	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
V	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Definition of Soil Wetness Classes

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions Database Printout Boring Level Information Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	LEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
НТН	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop)S			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			0

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described
 - F few <2% C common 2-20% M many 20-40% VM very many 40% +
- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamo	orphic ro	ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub angular blocky PL platy	M massiveAB angular blockyPR prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- **MBP** moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	e ₩EST N	ALLING GOLF	F COURSE	Pit Numbe	er 1	P				
Grid Ref	erence T(267595438	Average A Accumulat Field Cap Land Use Slope and	nnual Rainfal ed Temperatur bacity Level Aspect	l1 67 -e 142 139	4 mm 4 degree days degrees	days			
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	E LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 27	MCL	10YR43 00) 10	15	HR					
27- 48	С	10YR56 44	۰ ۱	25	MSST	с			м	
48- 65	48- 65 HCL 10YR44 56			25	MSST	F			м	
65- 95	HCL	75YR54 53	30	35	MSST	F			м	
95-120	MSL	257 53 00) 0	35	MSST				м	
Wetness	Grade 1		Wetness C	lass I						
			Gleying		cm					
			SPL	No	s SPL					
Drought	Grade 34	A Contraction of the second seco	APW 123	mm MBW	17 mm					
			APP 95	mm MBP -	-17 mm					
FINAL AL	C GRADE	3A								

MAIN LIMITATION Droughtiness

SOIL PIT DESCRIPTION

Site Name	e ₩EST M4	ALLING GOL	F COURSE	<u>:</u>	Pit 1	Number	2	P				
Grid Refe	erence 1Q6	57505404	Average	e Annua	al Ra	nfall	67	4 mm.				
			Accumu	lated '	Temper	rature	142	4 degree	days			
			Field (Capaci	ty Le	vel	139	days				
			Land Us	se								
			Slope a	and Asi	pect			degrees				
HORIZON	TEXTURE	COLOUR	STON	ES >2	TOT	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	0- 29 MCL 10YR42			3	(6	HR					
29- 45	9-45 MCL 10YR53		4 (0 8		MSST		MDCSAB	FR	м		
45- 90	MZCL	10YR54 0	0 0) 0		С		MDCSAB	FR	м		
90-120	HZCL	75YR53 0	0 0)	(D		С			м	
Wetness (Grade 1		Wetnes	s Clas	S	I						
			Gleyin	9		090	cm					
			SPL			No	SPL					
Drought (Grade 2		APW	151mm	MBW	4	5 mm					
			APP	115mm	MBP		3 mm					
FINAL ALC	C GRADE 2	2										

MAIN LIMITATION Droughtiness

LIST OF BORINGS HEADERS 23/01/95 WEST MALLING GOLF COURSE

SAMPL	E	A	SPECT				-WET	NESS	-WH	EAT-	PC	DTS-	м	REL	EROSN	FR	DST	CHEM	ALC		
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	l	EXP	DIST	LIMIT		COMMEN	ΠS
1P	TQ67595438	STB					1	1	123	17	95	-17	3A					DR	3A		
1S	T068075467	SAS					1	1		0		0						ST	3B		
2P	T067505404	STB			090		1	1	151	45	115	3	2					DR	2		
25	T068015477	SAS					1	1		0		Ō	-					ST	- 38		
35	T067875473	SAS					1	1		0 0		0						ST	38		
		-										-						•			
4S	TQ67945458	SAS					1	1		0		0						ST	3A		
55	1067985464	SAS					1	1		0		0						ST	38		
6S	1068115451	STB					1	1		0		0						ST	2		
75	106/905439	SIB					-			0		U						ST	JA		
85	1067795440	STB					1	1		0		0						ST	3B		
9S	TQ67695439	STB					1	1		0		0						ST	2		
10S	TQ67505438	STB					1	1		0		0						ST	3A		
11S	TQ67355447	STB					1	1		0		0						ST	2		
12S	TQ67255446	STB					1	1		0		0						ST	2		
13S	TQ67255437	STB					1	1		0		0						ST	3B		
14S	TQ67185428	STB					1	1		0		0						ST	2		
15S	TQ67325422	STB					1	1		0		0						ST	2		
22	TQ68105470	STB					1	1		0		0						ST	3B		
24	TQ67475458	STB			S45		1	2	77	-29	77	-35	ЗB					ST	3B	I 50SST	
28	TQ67905460	STB					1	1	39	67	39	-73	4					ST	3B		
29	1068805460	STR					1	2	69	-37	69	43	38					NP	34	155991	SEE1D
30	T068105460	STR					1	1	75	-31	75	-37	38					DP	30	150SST	SEE1P
31	T067275451	STB					1	1	87	-19	99	-13	34					DR	30	1655ST	SEE1P
32	T067405450	STB			S28		1	1	64	-42	64	-48	3B					DR	34	140SST	SEE1P
38	TQ68035451	STB					1	1	50	-56	50	-62	4					DR	3A	130SST	SEE1P
20							•	1		•			•								
39	1068105450	218			060		1	1	115	9	113	1	Z					DR	3A	190551	
40	1067205440	SIR					1	1	67	-39	67	-45	38					SI	38	145551	
41	1067305440	218	c				1	1	84	-22	88	-24	38					SI	38	TEUSST	05510
42	1067405440	SIR	5	~1			1	1	87	-19	94	-18	JA DD					DR	3A	145551	SEEIP
43	(00/505440	218	N	ui			ι	ı	84	-22	87	-25	78					ÛK	3A	155551	SEETP
44	TQ67605440	STB					1	2	63	-43	63	-49	3B					DR	ЗА	140SST	SEE1P
45	TQ67705440	STB			S30		1	2	97	9	109	3	3A					DR	3A	I65SST	SEE1P
46	TQ67825438	STB	Ν	03	S40		1	1	152	46	116	4	2					ST	2		
47	TQ67925440	STB	N	02			1	1	61	-45	61	-51	3B					DR	ЗA	138SST	SEE1P
48	TQ68005440	STB					1	1	151	45	113	1	2					DR	2		
50	TQ67105430	STB	s	03			1	1	76	-30	76	-36	3B					DR	3A	150SST	SEE1P
51	TQ67205430	STB	S	02			1	1	149	43	123	11	1						1		
52	TQ67305430	STB	s	04			1	1	152	46	115	3	2					DR	2		
53	TQ67405430	STB	S	03			1	1	48	-58	48	-64	4					DR	3A	I 30SST	SEE1P
54	TQ67505430	STB					1	1	49	-57	49	-63	4					DR	3A	I 30SST	SEE1P
55	1067605422	STD	ç	02			1	2	74	_ 22	74	20	20					00	24	TARGET	\$551D
55 61	T067205420	STR	5	92			1	د ۱	/ 7	-32 -18	94	30 19	30					ער הס	AC AF	T22001	SEE1P
\mathbf{v}	-401500450	010					•	•	~	10	27	10	20					DR		100001	OCC IP

SAMP	LE	ASPECT				WETNESS		-WH	-WHEAT-		POTS		REL	EROSN FROST		ST	CHEM	ALC			
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	КР	DIST	LIMIT		COMMEN	ITS
62	T067305420	STR.					1	2	119	12	103	_9	2					οĐ	2	1100551	r
63	T067405420	STB	F	01			1	1	57	-49	57	-55	2 38					DR	2 3A	135SST	SEE 1P
64	T067505420	STB	E	02			1	2	58	-48	58	-54	3B					DR	3A	135SST	SEE1P
65	TQ67605420	STB					1	2	51	~55	51	-61	4					DR	3A	135SST	SEE1P
66	TQ67705420	STB					1	1	88	-18	96	-16	3A					DR	3A	I60SST	SEE1P
69	TQ67205410	STB					1	1	69	-37	69	-43	3B					DR	3A	145SST	SEE1P
70	TQ67305410	STB					1	1	79	-27	79	-33	3B					DR	3A	150SST	SEE1P
71	TQ67405410	STB	Е	01			1	1	113	7	113	1	2					DR	2	182SST	SEE2P
72	TQ67505410	STB	Е	01			1	1	127	21	116	4	2					DR	2	190SST	SEE2P
73	TQ67605410	STB					1	1	99	-7	110	-2	3A					DR	2	155SST	SEE2P
74	T067705410	STB					1	1	151	45	114	2	2					DR	2		
75	T067405400	SAS					1	2	61	-45	61	-51	- 38					DR	4	TAOSST	SEE1P
76	T067505400	242					1	1	151	45	115	3	2						2	140001	00011
,0	1007000000	545						•	.51	45	,15	5	-					UK	-		

COMPLETE LIST OF PROFILES 23/01/95 WEST MALLING GOLF COURSE

 	 -	 -	 	 	 	-

				M	OTTLES		PED			-S	TONES-		STRUCT/	' SUB	s				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	6	LITH	TOT	CONSIST	STR	POR	IMP	SPL	CALC	
1P	0-27	mcl	10YR43 00						10	0	HR	15							
	27-48	с	10YR56 44	000000	00 C				0	0	MSST	25		м					
	48-65	hcl	10YR44 56	00MN00	00 F				0	0	MSST	25		м					
	65-95	hc]	75YR54 53	000000	00 F				Ó	0	MSST	35		м					
	95-120	msl	25Y 53 00						0	0	MSST	35		M					
15	0-25	wcj	10YR44 00						17	8	HR	20							SIEVED
2D	0.29		10VP42 00						3	0	ШΒ	6							
L.	20 45		107852 54						0	~	меет	0	MOCCAD	E0 M	v				
	29 45		101853 34					•	0	0	1001	•	MUCSAD	FK [1]	T				
	45-90	mzcl	10YR54 00	10YR56	00 C			S	0	0		0	MDCSAB	FRM	Ŷ				
	90-120	hzc1	75YR53 00	75YR 56	00 C		00MN00	00 Y	0	0		0		M	Y				
25	0-25	mcl	10YR43 00						18	3	HR	20							SIEVED
3 S	0 25	mcl	10YR43 00						18	5	HR	25							SIEVED
4S	0 25	mcl	10YR43 00						11	3	HR	18							SIEVED
55	0-25	mcl	10YR44 00						18	6	HR	25							SIEVED
6S	0 25	mcl	10YR43 00						9	0	HR	15							SIEVED
7S	0-25	mcl	10YR43 00						13	3	HR	16							SIEVED
85	0-25	mcl	10YR44 43						16	2	HR	18							SIEVED
95	0-25	mcl	10YR43 44						6	0	HR	10							SIEVED
105	0 25	mcl	10YR43 00						10	0	HR	16							SIEVED
11\$	0-25	mcl	10YR43 00						8	0	HR	12							SIEVED
125	0-25	mc]	10YR43 00						6	0	HR	12							SIEVED
135	0-25	mc]	10YR42 00						16	8	HR	25							SIEVED
145	0-25	mcl	10YR43 00						7	0	HR	12							SIEVED
155	0-25	mcl	10YR43 00						8	0	HR	13							SIEVED
22	0-20	mcl	10YR43 00						14	0	MSST	20							SIEVED
24	0 25	hcl	10YR43 00						5	0	MSST	10							
	25-45	с	75YR56 00	10YR58	00 C		00MN00	00 S	0	0	MSST	10		м					
	45-50	c	75YR56 00	10YR58	00 C		00MN00	00 S	0	0	MSST	20		м					
28	0-25	mcl	10YR43 00						16	0	HR	25							SIEVED

COMPLETE LIST OF PROFILES 23/01/95 WEST MALLING GOLF COURSE

					-MOTTLES		PED			S	TONES		STRUCT/	SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	тот	CONSIST	STR POR	IMP S	SPL C	ALC		
29	0-25	hc1	10YR43 44						5	0	HR	10							
	25 45	с	10YR56 00	05Y !	54 00 C			s	0	0	MSST	15		м				IMP	SANDSTONE
30	∩_22	mc 1	10VP43 00						8	0	нр	12							
50	22_40	ac 1 mc 1	107845 00						0	0	T22M	10		м					
	40-50	hcl	75YR56 00						0	0	MSST	25		M				IMP	SANDSTONE
31	0–28	mcl	10YR43 00						10	0	HR	15							
	28-40	hc1	10YR56 00						0	0	MSST	20		М					
	40–65	с	10YR54 66						0	0	MSST	5		М				IMP	SANDSTONE
32	0-28	mcl	10YR43 00						5	0	HR	10							
	28-40	hcl	10YR56 00	10YR6	68 00 C		00MN00	00 S	0	0	MSST	10		М				IMP	SANDSTONE
38	0-30	mcl	10YR42 52						5	0	HR	10						IMP	SANDSTONE
30	0_30	m c1	107043 00						2	n	มอ	3							
39	30_60	hel	107845 00	1070	58 00 C			ç	0	0	MCST	י ב		м					
	50-00 60_90	лст с	107854 64					5 5	ñ	n n	T22M	10		м				TMD	SANDSTONE
	00-50	C C	101834 04	TOTRO	08 00 0			5	Ŭ	Ű	1001	10							SANDSTONE
40	0-30	mcl	10YR42 00						15	0	HR	25							
	30-45	hc]	10YR56 00						0	0	MSST	20		м				IMP	SANDSTONE
41	0-24	mcl	10YR42 00						14	0	HR	20							
	24-50	hcl	10YR56 00						0	0	MSST	15		м					
	50-60	scl	10YR56 00						0	0	MSST	20		М				IMP	SANDSTONE
12	0_27	a c1	100043 00						5	0	UD	a							
42	27 45	hol	101843 00						0	0	меет	10		м					
	45-60	c	75YR44 00						0	0	MSST	10		M				IMP	SANDSTONE
43	0-27	mcl	10YR43 00						5	0	HR	8							
	27-55	mcl	10YR54 00						0	0	MSST	10		М				IMP	SANDSTONE
44	0-27	mcl	75YR43 00						5	0	HR	10							
	27-40	с	10YR56 54						0	0	MSST	15		М				IMP	SANDSTONE
45	0_30	hc]	10VP43_00						2	0	HP	5							
75	30_38	hacl	107854 00	1078	56 00 C			s	0	ñ	TZZM	5		м					
	38 65	c	10YR54 53	75YR	56 58 M			s	0	0	MSST	10		M				IMP	SANDSTONE
			1000-00 00						-	~		~							
46	0 30		107843 00						5	0	HK	8		м					
	30 40	MCI haal	101854 00	1000	EE 00 0		100000	00.0	0	0	MSS	8		m M					
	40-80	nzci hal	101054 00	TUYK:			IUTKOS	00 5	0	0		0		ri M					
	80-120	NC I	101854 00	TUYR:	50 03 C			5	U	U		U		m					
47	0-28	mcl	10YR42 00						2	0	HR	8							
	28-38	hc]	10YR56 00						0	0	MSST	10		м				IMP	SANDSTONE

					MOTTLES		PED			-S	TONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR POR	IMP SPL CALC		
48	0-27	mcl	10YR42 00						2	Ð	HR	5					
	27-38	mc]	10YR54 43						0	0	MSST	4		м			
	38 55	mcl	10YR44 54						0	0	MSST	5		м			
	55-120	mc]	10YR44 00	10yre	53 00 C	(DOMNOO	00	0	0		0		м			
50	0-27	ന്റി	10YR43 00						6	Ô	HR	10					
	27-50	msl	25Y 53 00						0	0	MSST	10		м		IMP	SANDSTONE
51	0-27	mzcl	10YR43 00						1	۵	HR	3					
01	27-70	hzcl	75YR44 00						, 0	ň		ñ		м			
	70-120	zc	75YR44 00						õ	0		õ		M			
50	0.25		10/042-00						•	0		~					
54	0-25	mzci	101R43 00						0	0	нк	2					
	25-60 60 120	zc hcl	10YR56 00	10YR6	3 00 F				0	0		0		M M			
									•	Ť		•					
53	0 25	mcl	10YR43 00						6	0	HR	10					
	25-30	с	10YR56 54						0	0	MSST	15		М		IMP	SANDSTONE
54	0-27	mcl	75YR43 00						6	0	HR	10					
	27-30	hcl	10YR54 00						0	0	MSST	15		м		IMP	SANDSTONE
			100010 00						_			-					
55	0-30	nci	10YR42 00						2	0	HR	5					
	30-45	hcl	10YR54 00						U	Û	MSST	10		м		IMP	SANDSTONE
61	0-27	mcl	10YR42 00						5	0	HR	8					
	27-50	hc1	10YR54 00	OOMNO	10 00 F				0	0	MSST	10		М			
	50-60	hcl	10YR54 00	OOMNC	10 00 F				0	0	MSST	10		М		IMP	SANDSTONE
62	0-26	hc]	10YR43 00						5	0	HR	10					
	26~50	hc1	10YR54 00						0	0	MSST	15		М			
	50-100	hc1	10YR54 00						0	0	MSST	20		М		IMP	SANDSTONE
63	0-27	നംപ	10VR42 00						٦	0	HR	8					
05	27-35	c	10YR56 54						0	õ	MSST	10		м		IMP	SANDSTONE
64	0-27	hc]	10YR43 00						2	0	HR	5					
	27-35	hcl	10YR56 68						0	0	MSST	15		М		IMP	SANDSTONE
65	0-27	hc1	10YR43 44						2	0	HR	5					
	27-30	hcl	10YR56 68						0	0	MSST	15		м		IMP	SANDSTONE
66	0-2R	mcl	10YR43 44						2	Λ	HR	5					
00	28_50	с.	10YR56 00						ר ה	n	MSST	R		м			
	50-60	c	10YR56 00						ñ	ñ	MSST	12		M		IMP	SANDSTONE
		-							v	v							
69	0-27	mcl	10YR42 43						8	0	HR	12					
	27-45	hc1	10YR54 00						0	0	MSST	15		M		IMP	SANDSTONE

COMPLETE LIST OF PROFILES 23/01/95 WEST MALLING GOLF COURSE

				-MOTTLES	1	PED		-STONE	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT	COL GLEY	>2 :	>6 LITI	н тот	CONSIST	STR POR I	MP SPL CALC	
70							-	0.00					
70	0-28	mC I	10YR42 43				5	U HR	10				
	28-40	mzci	10YR54 00				0	UMSS			M		
	40-50	mc]	10YR56 00				0	0 MSS	F 15		м		IMP SANDSTONE
71	0-30	mc]	10YR43 00				1	0 HR	3				
	30-50	с	10YR44 54				0	0 MSS	Г 5		м		
	50-82	hc]	10YR54 00				0	0 MSS	г 8		м		IMP SANDSTONE
72	0-28	നവി	10YR43 00				1	0 HR	4				
	28-40	mc]	10YR54 00				0	0 MSS	Т 8		м		
	40-50	mcl	10YR56 00				0	0 MSS	Т 8		Μ		
	50-95	hzc1	10YR56 00				0	0 MSS	T 15		М		IMP SANDSTONE
73	0-30	mcl	10YR43 00				3	0 HR	6				
	30-38	mcl	10YR43 54				0	0 MSS	т 10		М		
	38-70	mcl	10YR56 54				0	0 MSS	T 10		м		IMP SANDSTONE
74	0-30	mc1	10YR43 00				1	0 HR	4				
	30-60	mc]	10YR44 00				0	0 MSS	T 4		М		
	60-80	mc]	10YR44 00				0	0 MSS	т 8		м		
	80-120	mcl	10YR44 00				0	0 MSS	Т2		Μ		
75	0-26	hc]	10YR43 00				5	0 HR	10				
	26-40	scl	25Y 53 00				0	0 MSS	T 15		М		IMP SANDSTONE
70	0.05		100042 42				2	0 40	c				
/0	U-23	mCl	101K42 43				ა ი		0 T 1 F		м		
	20-40	riÇ i 51	101630 00				0	0 1100	- 10 0		т м		
	40-70	nzci	101854 00	00000000			0	0	0		l™I Ma		
	70-120	mzcl	107854 00	UUMINUU UU F			Ų	U	Ų		M		