A1

TEST VALLEY LOCAL PLAN REVIEW Sites 114 117 Romsey Hampshire Agricultural Land Classification ALC Map & Report Semi Detailed Survey

January 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number1512/188/96FRCA ReferenceEL 15/00292LURET Job Number02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITES 114 117 ROMSEY HAMPSHIRE

INTRODUCTION

1 This summary report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey on approximately 89 hectares of land between Upton Lane and Coldharbour Lane at Upton near Romsey in Hampshire The survey was carried out during January 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land

3 Prior to the 1st April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by members of the same team as part of the Farming and Rural Conservation Agency (FRCA) Reading The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land was in either permanent pasture or arable use Land shown as Other mainly comprises woodland farm buildings residential and school buildings an electricity sub station and various trackways

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Grade/Other land	Area (hectares)	/ surveyed area	/ site area
2	193	30 5	21 9
3a	+ 2	66	4 7
3b	399	62 9	45 0
Other land	25 2	N/A	28 4
Total surveyed area	63 4	100 0	71 6
Total site area	88 6		100 0

Table 1	Area of	grades and	other I	and
---------	---------	------------	---------	-----

7 The fieldwork was conducted at an average density of approximately 1 boring every 2 hectares A total of 57 borings and 4 soil pits were described

8 To the north and west of the site the agricultural land has been classified as Grade 2 (very good quality) The soil profiles comprise variably stony medium textured topsoils over heavier subsoils At depth the profiles generally become poorly structured thus impeding drainage and causing slight seasonal wetness As a result seed germination and crop development will be inhibited and the timing and flexibility of cultivations will be restricted. In this local climatic regime the combination of soil textures structures and stone content also reduces the amount of profile available water for crops in some borings. This land is therefore limited by either a minor soil wetness and/or soil droughtiness limitation.

In the north west corner of the site the land has been classified as Subgrade 3a Some of these profiles are similar to those described above However the poorly structured subsoils occur at slightly shallower depths and therefore lead to a slightly more severe soil wetness limitation. In general however, the soil profiles are better drained comprising very slightly to moderately stony medium and heavy textured topsoils and upper subsoils over gravel at moderate depths. Soil droughtiness is therefore limiting in these areas

10 The majority of the agricultural land on this site has been classified as Subgrade 3b (moderate quality) mainly due to a soil droughtiness limitation Most of these soil profiles comprise moderately or very stony medium textured topsoils and upper subsoils over gravel at shallow depths. The amount of profile available water for crops is therefore significantly depleted resulting in less consistent crop yields. Other profiles in this mapping unit are limited by soil wetness. Here the poorly structured clays occur at shallow depths thus causing prolonged waterlogging. In addition, a small area to the south of the site is believed to have been disturbed during the construction of the M27.

FACTORS INFLUENCING ALC GRADE

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2 Climatic and altitude data

Factor	Units		Values	
Grid reference	N/A	SU 368 174	SU 365 166	SU 375 169
Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit Wheat Moisture Deficit Potatoes	m AOD day ^o C (Jan June) mm days mm mm	25 1527 826 173 108 102	10 1545 822 172 110 105	45 1505 833 174 106 99
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However, climatic factors can interact with soil properties to influence soil wetness and droughtiness. At this locality the field capacity day values are relatively high which will have an impact upon the assessment of soil wetness.

16 Local climatic factors such as frost risk and exposure are unlikely to adversely affect agricultural land use on this site The site is climatically Grade 1

Site

17 The land on this site is gently undulating ranging in height from 9m AOD in the south west to 48m AOD in the north east

18 Gradient microrelief and flooding do not affect land quality in this area

Geology and soils

19 The relevant geological sheet (BGS 1987) maps London Clay across all of this site with a narrow band of the Nursling Sand cycle trending south west north east However drift deposits overlie most of this solid geology comprising river terrace deposits which trend north south in three broad bands

The most recently published soils information for this area (SSEW 1983) maps the Hurst soil association across most of the site with a small area of Wickham 3 soils across the north east corner and a narrow strip of Hamble 2 soils down the western edge The Hurst association soils are described as comprising Coarse and fine loamy permeable soils mainly over gravel variably affected by groundwater (SSEW 1983) while the Wickham 3 soil association are as described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging Some deep coarse loamy soils affected by groundwater Landslips with irregular terrain locally (SSEW 1983) The Hamble 2 soils on the other hand are described as Deep stoneless well drained silty soils and similar soils affected by groundwater over gravel locally Usually flat land (SSEW 1983)

21 Detailed field examination broadly confirmed the existence of soils similar to those described above

AGRICULTURAL LAND CLASSIFICATION

The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2

The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

A narrow strip of land to the north and west of the site has been classified as Grade 2 The soil profiles comprise slightly stony (4 15% flints by v/v with 6 8% >2cm in diameter) medium clay loam topsoils over moderately well structured slightly to moderately flinty (5 20%) medium heavy or sandy clay loam upper subsoils At 70 85cm depth most profiles become impenetrable to the soil auger. However, soil inspection Pits 1 and 2 show that the soil resource continues to depth with a combination of moderately well structured moderately to very stony (18 45%) medium and heavy clay loam or clay lower subsoils. The combination of soil textures structures and the high stone content slightly reduces the amount of available water for crops. In addition, the amount of large stones (i e those >2cm in diameter) in the topsoil may damage root crops and causes increased wear on farm machinery or tyres. This land is therefore equally limited by soil droughtiness and/or topsoil stoniness limitations.

25 Some of these borings are also limited to Grade 2 due to soil wetness These profiles are gleyed from the upper subsoil probably as a result of fluctuating groundwater levels and have therefore been classified as Wetness Class II Wet soils such as these in combination with the locally warm and wet climatic regime and the medium clay loam topsoils are susceptible to structural damage through over trafficking by agricultural machinery and grazing livestock As a result the timing and flexibility of cultivations is slightly restricted

Occasional borings of slightly higher or lower quality were also included in this mapping unit as they were too limited in number and extent to map separately

Subgrade 3a

A small area of Subgrade 3a land has been mapped in the north west corner of the site The soil profiles here are similar to those described as Grade 2 in paragraph 24 above so a separate pit was unnecessary The main difference between the two mapping units is that the Subgrade 3a profiles become impenetrable to the soil auger at slightly shallower depths (60 68cm) As a result there is less profile available moisture for crops which leads to a slightly more severe soil droughtiness limitation Occasional poorly structured slowly permeable subsoils also occur thus causing a slight drainage impedance This land has therefore been classified as wetness class III and is placerd in Subgrade 3a due to the combination of the slightly wet soils medium textured topsoils and the local climatic regime Soil wetness and/or droughtiness wetness is therefore limiting on this part of the site

Subgrade 3b

Other profiles within the Subgrade 3b mapping unit comprise variably stony (2 25% total flint) medium clay loam topsoils over gleyed moderately well structured medium and heavy clay loam upper subsoils with 0 35% flint At 35-46cm depth the profile becomes distinctly less stony (0 20%) The lower subsoils comprise poorly structured slowly permeable clay subsoils which significantly impede drainage through the profile In this local climatic regime the soil wetness limitation is consistent with Wetness Class IV and the land is placed in Subgrade 3b due to the fact that wet soils such as these can restrict crop establishment and reduce the period of time when the land can be effectively cultivated

30 A small area of land to the south of Northcliffe School is believed to have been disturbed by the temporary erection of a site office during the construction of the M27 The soil profiles here could not be examined to depth they comprise medium clay loam topsoils which become impenetrable to the soil auger at approximately 20cm depth. This may be due to the presence of building rubble which will significantly reduce the level of profile available water and nutrients for crops. If it is consolidated and cannot be penetrated by cultivation implements or plant roots it will also provide insufficient anchorage for plants as well as cuasing damage to agricultural equipment. This land is therefore limited to Subgrade 3b due to a soil droughtiness and soil depth limitation

31 Again some of the profiles within this mapping unit are of either slightly higher or lower quality They have not been mapped separately however as they are too limited in number and extent

> Helen Goode Resource Planning Team Eastern Region FRCA, Reading

SOURCES OF REFERENCE

British Geological Survey (1973) Sheet 315 Southampton 1 50 000 Series Solid & Drift BGS London

British Geological Survey (1980) Sheet 299 Winchester 1 50 000 Series Solid & Drift BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
НТН	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set asıde	OTH	Other
HRT	Horticultural Crop	os			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

0 C	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	ss			

Soil Pits and Auger Borings

1

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamo	orphic ro	ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extrem	nely firm	EH extremely	hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations
 - APW available water capacity (in mm) adjusted for wheatAPP available water capacity (in mm) adjusted for potatoesMBW moisture balance wheat
 - MBP moisture balance potatoes

Site Name	TEST V	ALLEY SITE	114 117	Pit Numbe	1P				
G 1d Refe	erence SU		Accumul t	nual Rainfall ed Tempe ature acity Level Aspect					
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 26	MCL	10YR42 00	-	4	HR	MOCCAR	50	м	
26 45	MCL	10YR43 00		10	HR	MDCSAB	FR		
45 90	C	75YR53 00	_	18	HR	WKCSAB	FR	M	
90-120	С	75YR53 00	0	20	HR			М	
Wetness G	iade 1		Wetness C	lass I					
			Gleying		cm				
			SPL	No	SPL				
Drought G	irade 2		APW 125	mm MBW 1	7 mm				
			APP 106	mm MBP 4	4 mm				
FINAL ALC	GRADE	2							

MAIN LIMITATION Droughtines

Site Name	TEST V	ALLEY SITE	114 117	PtNmbe	2	P				
G id Refe	erence SU:		Accumulate	nual Rai fall ed Temperature acity Level Aspect	152 173 Cer	26 mm 27 degree 3 days reals degrees W	-			
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
028 28-45	MCL MCL	10YR43 00 10YR63 53		12 10	HR HR	с	MDCSAB	FR	м	
45- 43	HCL	107R63 53		8	HR	M	MDCSAB	FR	M	
43- 07 67 105	MCL	10YR02 00		37	HR	M	nucano	FΚ	M	
105-120	MCL	10YR71 72	-	45	HR	M			M	
Wetness (Wetness C Gleying SPL		cm					
Drought G	Gade 2		APW 126 APP 105		8 mm 3 mm					
FINAL ALC	GRADE	2								

MAIN LIMITATION Soil Wetness/Droughtiness

Site Nam	ne TEST V	ALLEY SITE 1	14 117	Pit Number	3	3P				
G 1d Ref	ferrence SU	369 1710 A	ne age An	u l Rai fall	82	?6 mm - 6?				
		A	cumul ted	Tempe ature	152	27 degree	d ys			
		F	leid Capac	ity Level	173	3 days				
		Li	and Use		A	ble				
		S	lope nd A	spect	01	degrees W	1			
HORIZON	TEXTURE	COLOUR	STONES 2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 28	MCL	10YR42 00	7	27	HR					
28 47	MCL	10YR41 51	0	41	HR			FR	м	
47 77	GH	10YR53 00	0	0					м	
77 120	SCL	25Y 63 00	0	54	HR	с		FM	Ρ	
Wetness	Gade 1	1.1.	etnes Cla	s I						
Metness	G aue I			077	•					
			leying							
		SI	1	No	SPL					
Drought	Grade 38	A			1 mm					
		A	PP 61 mm	MBP 4	1 man					
FINAL AL	.C GRADE	38								

MAIN LIMITATION Droughtiness

ł

Site Name	TEST V	ALLEY SITE	114 117	Pit	. Numbe	4	P						
G id Reference SU37391690 Ave age Annual Rainfall 826mm Acc mulated Temperature 1527 degree d ys Field Capacity Level 173 d ys L nd Use A able Slope and Aspect degrees													
HORIZON 0 29 29 46 46 70	texture MCL MCL C	COLOUR 10YR43 00 10YR53 00 10YR64 00	0 0		5 STONE 20 30 10	LITH HR HR HR	MOTTLES C M	STRUCTURE WKCSAB	CONSIST FM	SUBSTRUCTURE M P	CALC		
Wetness G	rade 38		Wetness (Gleying SPL	lass	IV 029 046								
Drought G		38	APW 79 APP 90		-	29 mm 12 mm							

FINAL ALC GRADE 3B MAIN LIMITATION Wetness

page	1
------	---

	ampl	F	٨	SPECT				WETH	IESS-		FAT	PŰ	TS-	м	REL	EROSN FR	0ST	CHEM	ALC	
	0	GRID REF			GRDNT	GLEY	SPL	CLASS		AP	MB	AP	MB	DRT	FLOOD		DIST	LIMIT		COMMENTS
	•		000													_				
	1	SU36491697	CER			045	045	3	3A	88	20	94	-8	3A				WD	3A	I60 Flints
	1P	SU36491701						1	1	125	17	106	4	2				DR	2	At AB 24
_		SU36611746		W	04	032	050	3	3A	96	12	95	7	3A				WE	3A	185 Fli ts
		SU37391687			04	028		2	2	126	18	105	3	2				WD	2	At AB 4
								1	1	97	11	106	4	3A				DR	2	I68 See 2P
	3P	SU369 1710	ARA	W	01	077		1	1	77	31	61	-41	3B				DR	3B	Pots Limit
	4	SU37391687	CER	W	04	025		2	2	99	9	111	9	3A				WD	2	170 See 2P
	4P	SU37391690	ARA			029	046	4	38	79	29	90	12	38				WE	3B	At AB 31
	5	SU36801750	PGR	S	02			1	1	57	51	57	-45	4				DR	3B	3B T/S Stone
	6	SU36491740	PGR	Ε	03			1	1	58	50	58	44	38				DR	38	I40 V Flinty
	7	SU36691740	PL0	W	04	035		2	2	64	-44	64	38	38				DR	38	I45 V Flinty
	8	SU36901740	ARA	W	02			1	1	93	15	98	-4	3A				ÐR	2	I75 See 2P
	9	SU36401730	CER					1	1	82	26	84	18	3B				DR	3A	I55 Fli ts
-	10	SU36591731	CER	W	04	050		1	1	147	39	113	11	1					1	
	11	SU36791730	SAS	W	01	030		2	2	65	43	65	37	38				DR	3B	I47 See 3P
	12	SU37001730	SAS	W	03			1	1	44	64	44	58	4				DR	3B	I35 See 3P
	13	SU37181726	PGR	W	01	033	050	3	3A	107	1	98	-4	3A				WE	3A	
	14	SU36391720	PGR			020		2	3A	81	27	85	17	3B				DR	3B	I65 Q Ditbed
	15	SU36491720	CER			055	055	3	3A	135	27	112	10	2				WE	3A	
	16	SU36691721	CER	W	03	025	025	4	3B	114	6	92	10	2				WE	38	
	17	SU36851719	SAS	W	01	030		2	2	103	5	101	1	3A				WD	2	185 See 2P
-	18	SU37091720	PGR	М	02	0	045	4	38	76	32	83	19	38				WE	3B	Surface W te
	19	SU36591710	CER					1	1	57	51	57	45	4				DR	3B	I35 See 3P
		SU36791710			01			1	1	63	-45	63	39	3B				DR	3B	I45 See 3P
•	21	SU37031709	PGR	W	02	0	035	4	3B	76	32	87	15	3B				WÉ	3B	Surface Wate
		SU37201710		W	01	065		2	2	102		100	2	3A				WD	2	188 Flints
						075	090	1	1	136		105	3	2				DR	2	
		SU36491701						1	1	59	-49		43	38				DR	2	I35 See 1P
		SU36771700			01			1	1	66		66		38				DR		145 See 3P
	26	SU37101700	PGR	N	01			1	1	60	-48	60	42	38				DR	38	I45 See 3P
-								_						-					20	105 0 30
		SU37261699			00			1	1	47		47	55					DR		135 See 3P
		SU36591690			02	•		1	1	99		109		3A				DR	2	170 See 2P/1P
		SU37031685			01		028	4	3A	46		46 06	56					DR		I35 V Fli ty
		SU37171691		2	02	028		4	3A 20	98 07		96		3A 24				WE	3A 20	105 51/mbs
	31	SU37391690	ARA			032	046	4	3B	97	11	99	3	3A				WE	38	185 Flints
	~~	00000000000	BA -					•	1	25		25	<u> </u>					20	20	120 See 20
		SU36501681				~		1	1	35		35	67 52					DR		I20 See 3P I30 See 3P
		SU36401671		c	01	0		2	38 1	49 56		49 56	53					WD		130 See 3P 140 See 3P
		SU37001670			01	020	045	1	1	56		56	46					DR	3B 20	140 366 35
		SU36501661		Ł	01	030	V45	4	38	150		112	10					WE	38 38	Imp Q Dist bed
	36	SU36691661	PGR					1	1	35	13	35	67	4				DR	50	THE A DISC DEC
		01126501650	000					,	,	20	70	20	C A	^				00	20	Imp Q Dist bed
	37	SU36591650	PGR					1	1	38	70	38	64	4				ÐR	30	THE A DIST DEG

COMPLETE LIST OF PROFILES 25/04/97 TEST VALLEY SITE 114 117

				-MOTTLES	PED		STONE	s	STRUCT/ SUB	s	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT COL GLEY	2	6 LIT	н тот	CONSIST STR	POR IMP SPL CALC	
-						-		_			
1	0 30	mc)	10YR43 00	100050 00 0	0000000000		0 HR	5	м		6.0
	30-45 45-60	hcl		10YR58 00 C	00MN00 00 S	0		2	M P	v	Soft
	45-00	c	101804 00	10YR58 00 M	00MN00 00 Y	0	0 HR	2	۲	Y	Firm/Imp Fli ts
1P	0 26	mcl	10YR42 00			o	0 HR	4			
	26 45	mcl	10YR43 00			-	0 HR		MDCSAB FR M		
	45-90	c	75YR53 00			ō	OHR	18	WKCSAB FR M		
	90 120		75YR53 00			Ō	0 HR	20	M		
		•				-	• • • • •				
2	0 32	mcl	10YR53 00			11	4 HR	16			
	32 50	mcl	10YR63 00	10YR58 00 C	00MN00 00 Y	0	0 HR	20	м		Moist
	50-85	hc1	05Y 62 00	75YR68 00 M	Y	0	0 HR	5	P	Y	V Firm with nd
2P	028	mcl	10YR43 00			6	0 HR	12			Few MN Concs
	28-45	mcl	10YR63 53	10YR58 00 C	00MIN00 00 Y	0	O HR	10	MDCSAB FR M		
	45–67	hc]	10YR62 00	75YR46 00 M	00MIN00 00 Y	0	O HR	8	MDCSAB FR M		
	67 105	wcl	10YR71 72	10YR58 00 M	00MN00 00 Y	0	0 HR	37	м		Wet Sieved
	105-120	mcl	10YR71 72	10YR58 00 M	00MN00 00 Y	0	0 HR	45	м		
-						_	A	-			
3	0 32	mcl	10YR43 00			2	0 HR	5			
	32 50	mcl b-l	10YR44 00	100050 00 0	0000000000	0	0 HR	5	M		
	50 68	hcl	101834 00	10YR58 00 C	00mn00 00 s	U	OHR	20	M		Imp Fli t
3P	0 28	mcl	10YR42 00			7	2 HR	27			Wet Sieved All
	28 47	mcl	10YR41 51			0	22 HR	41	FR M		MN Concs
	47 77	gh	10YR53 00			0	35	0	м		
	77 120	scl	25Y 63 00	10YR58 00 C	Y	0	22 HR	54	FM P		Roots Continu
4	0 25	mcl	10YR53 00			6	0 HR	10			
	25-35	mcl		75YR46 00 C	00MN00 00 Y	0		5	м		
	35 70	hcl	10YR63 00	75YR46 00 M	00MN00 00 Y	0	0 HR	2	м		Imp Flint
40	0.00		1000043 00			~	0 UD	20			
4P	029 2946	mcl mcl	10YR43 00	75YR66 00 C	Y		OHR OHR	20 30	м		Moist
	29 40 46 70	nici C		75YR68 00 M	10YR53 00 Y		0 HR		WKCSAB FM P	Y	Firm
	40 70	L		751K08 00 M	101833 00 1	Ŭ	U IIK	10		•	* *141
5	0 30	നവി	10YR43 00			20	5 HR	30			
	30 48	mcl	10YR43 00			0	0 HR	40	м		Imp Flt ts
6	0 30	mcl	10YR43 00			9	OHR	15			
	30 40	hc1	10YR54 00	75YR58 00 C	S	0	0 HR	30	м		I Fli ts not SPL
			_								
7	0 35	mcl	10YR52 53				0 HR	15			
	35-45	hc1	10YR64 63	10YR68 00 M	00MIN00 00 Y	0	0 HR	15	Р		Firm/Imp Fli ts
~	0.00		100044 00			^	A 115	15			
8	0 30	mc] 	10YR44 00	100050 00 0	0000000000		0 HR	15 20	•		Ten Elista
	30 75	ncl	101854 00	10YR58 00 C	00MN00 00 S	Ų	0 HR	20	M		Imp Flints

page 1

				_	MOTTLES	-	PED			STONES		TRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLEY	2					IMP SPL CA	LC	
-																
9	0 30	mcl	10YR43 00						4	O HR	10					
-	30 50	mc1	10YR44 00						0	O HR	10		M		_	
-	50 55	mcl	10YR44 00						0	OHR	20		м		Im	p Flits
10	028	ຫ c ໄ	10YR42 00						ı	OHR	4					
-	28 50	mcl	10YR44 54						0	0 HR	5		м			
-	50 95	hcl	10YR51 00	10YR4	6 00 C			Y	0	0 HR	5		M			
	95–120	msl	25Y 61 00					Y	0	0 HR	20		м			
11	0 30	mcl	10YR42 00						5	0 HR	15					
	30-45	mcl	10YR42 00					Y	0	0 HR	30		M		SI	Sandy
	45-47	mcl	10YR62 00	10YR6	6 00 C			Y	0	0 HR	50		м		We	t/Imp Flints
a 12	0 25	mcl	10YR42 00						12	0 HR	25					
	25-35	สตรไ	10YR44 54						0	OHR	40		м		Īm	p Flints
	20 00		1011111 01						·	V Fill					7.00	p 1 1 11 00
13	0 33	mc1	10YR42 00						6	0 HR	12					
	33-50	scl	10YR64 00	10YR5	8 00 C			Y	0	OHR	20		M			
	50 100	с	25Y 72 00	75YR6	8 00 M			Y	0	0 HR	5		P	Y		
-		_							_	_	_					
14	0 20	hc1	10YR42 00						0	OHR	5		_			
	20 35	c	10YR52 00	10YR4	6 00 C	0	IOMNOO (0	0 CH	10		P			
	35-55	hzcl	10YR81 64					Y	0	0 CH	50		M	Y		
	55-65	ns l	10YR62 00					Y	0	OHR	65		P		Im	p Fli ts
15	0 28	mcl	10YR42 00						0	0 HR	2				SI	Sandy
	28 35	hc1	10YR43 00						0	0	0		м			-
	35-55	hc1	10YR54 52	10YR5	6 00 C			Y	0	0	0		м		Fe	w MN Concs
	55120	с	25Y 52 00	10YR5	6 00 M			Y	0	0	0		Р	Y		
16	0 25	mcl	10YR42 00						12	0 HR	20					
	25 120	с	25Y 61 00	10YR6	B 00 M			Ŷ	0	0 HR	5		Р	Y		
- 17	0 30	mcl	10YR42 00						8	0 HR	15				SI	Sadny
	30 45	scl	10YR62 00	10YR6	6 00 C			Ŷ	0	0 HR	20		м			0000
	45 80	hc1	25Y 62 00					Ŷ	0	OHR	10		M		S1	Sandy
	80 85	scl	25Y 62 00					Y	0	0 HR	30		M			p Flints
18	028	mcl	10YR41 51					Y	11	0 HR	25					
	28-45	mcl	25Y 61 00					Y	0	0 HR	35		м			
	45-75	с	25Y 51 00	75YR5	8 00 M			Y	0	0 HR	20		Ρ	Y		
	0.20		10YR42 00						•	A 110	-					
19	030	mc)	10YR42 00	10VDA	5 00 C			¢	1 0	0 HR 0 HR	3		м		Ť	a Eliato
	30 35	wc j	101843-00	10184				S	J	UTIK	40		M		10	p Flints
20	0 30	mcl	10YR42 00						5	0 HR	12					
	30 45	ന പ	10YR43 53						ō	0 HR	40		м		Im	p Fl nts
-									•						2.00	

page 2

				-MOTTLES	PED			S	TONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		COL	GLEY	2						IMP SPL CALC	
21	0 25	m c l		10YR46 00 C		Y	10			25				
	25-35	hcī		10YR68 00 C		Y			HR	30		M		
	35-70	c	25Y 62 00	10YR58 68 M		Ŷ	0	0	HR	10		Ρ	Y	
	0.25		10,042.00				-	~		••				
22	025 25-50	mcl mol	10YR43 00				6 0		HR HR	12		M		
	20-50 50 65	mcl scl	10YR43 00	10YR58 00 C		s			HR	15 15		M M		
	65-88	c		75YR58 00 M		Y			HR	10		P	Y	
		C				•	Ŭ	č	1 IK			r	•	
23	0 25	mcl	10YR43 00				6	0	HR	12				
	25-40	mcl	10YR53 00				0	0	HR	8		м		
	40 75	msl	10YR63 00				0	0	HR	5		м		
	75-90	scl	10yR64 00	10YR56 00 M		Y	0	0	HR	10		м		
	90 120	с	05Y 63 00	05YR58 00 M		Y	0	0	HR	5		Р	Y	
24	0 25	mcl	10YR43 00						HR	2				
	25-35	mcl	10YR43 00				0	0	HR	5		M		Imp flints
25	0 30	mcl	10YR42 00				8	0	HR	12				
23	30 40	ແລງ	107R42 00						HR	20		м		S1 Sandy
	40 45	mcl		10YR56 00 C		s			HR	40		M		Wet/Imp Flint
						-	-	-						
26	0 28	ms l	10YR42 41				12	0	HR	20				
	28-45	mcl	10YR43 00				0	0	HR	40		M		Imp Fli ts
27	0 25	mcl	10YR43 00				9	0	HR	18				
	25-35	wcl	10YR53 52				0	0	HR	40		м		Imp Flints
20	0.55		100042 00				~	~	115	2				
28	0 25 25-70	mcl mcl	10YR43 00 10YR54 00						HR HR	2 10		м		Imp Fl1 ts
	23-70	Inic I	101834 00				Ŭ	č	T HK	10		F 1		Turb I I CS
29	0 28	mszl	10YR41 51	10YR46 00 C		Y	17	0	HR	25				
	28 35	с		10YR58 68 M		Y	0			40		₽	Y	Imp Flints
30	0 28	msz1	10YR42 00				12	0	HR	20				
	28 35	hc1	10YR63 00	10YR68 00 C		Y	D	0	HR	35		M		
	35-90	c	25Y 61 62	10YR58 68 M		Y	0	0		0		Ρ	Y	
31	0 32	mcl	10YR43 00						HR	15				
	32-46	กตไ		10YR58 00 C		Y			HR	10		M		
	46-85	с	10YR53 62	25YR48 00 M		Y	0	0	HR	8		P	Y	Imp Flints
32	0 20	mcl	10YR42 00				0	0	HD	4				Imp Flints
	÷ .v						~	Ť		7				ange i cilica
33	0 30	с	10YR42 00	000C00 00 M		Y	0	0	HR	5				Imp Fl1 ts
														-
34	0 25	msz)	10yR42 00				4	0	HR	15				
	25–40	mcl	10YR43 00				0	0	HR	40		м		Imp Flints

page 3

1

-

MPLE	DEPTH	TEXTURE	COLOUR		MOTTLES ABUN	CONT	PED COL	GLEY	2	STONES 6 LITH	STRUCT/ TOT CONSIST			MP SPL CALC	
35	0-30 30-45 45-60 60 120	mcl mcl c hcl	10YR43 00 10YR62 00 10YR62 00 10YR62 00	00000	0 00 M			Y Y Y	0 0 0 0	0	2 0 0 0	M P M	Y	Y Y	
36	0 20	mcl	10YR43 00						0	0 HR	2				Imp Distu bed
37	0 22	ന്റി	10YR42 00						0	0 HR	5				Imp Distu bed

page 4