A1 Swale Borough Local Plan Objector Site Sitt 7, Land to the North West of Bredgar

Agricultural Land Classification October 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 2011/150/96 MAFF Reference EL 20/0245 LUPU Commission 02563

AGRICULTURAL LAND CLASSIFICATION REPORT

SWALE BOROUGH LOCAL PLAN OBJECTOR SITE SITT 7, LAND TO THE NORTH WEST OF BREDGAR

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 10 ha of land on the north western side of the village of Bredgar which is located south of the M2 motorway near Sittingbourne The survey was carried out in October 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Swale Borough Local Plan This survey supersedes any previous ALC surveys on this land

3 The work was conducted under sub-contracting arrangements by NA Duncan and Associates and was supervised by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 The site which was formerly an orchard and currently supports grass and docks following a crop of linseed

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
1 3a	96 07	93 2 6 8	93 2 6 8
Total surveyed area	10 3		100 0
Total site area	10 3	100 0	

Table 1	Area	of	grades	and	other	land
		-				

7 The fieldwork was conducted at an average density of 1 boring per hectare A total of 11 borings were described which were backed up by data from one soil inspection pit

8 The majority of the site has been mapped as Grade 1 excellent quality agricultural land and comprises deep silty and fine silty soils which are variably stony at depth. The soils are free draining and easily worked and moisture balance calculations indicate that in this area of moderately high moisture deficits even the more stony variants have sufficient moisture reserves to prevent any significant droughtiness limitation. The area therefore has no overriding limitation to agricultural use and has been classified as Grade 1. At the north east corner of the site the land rises significantly and chalk was encountered within 40 cm depth. The soils in this area will therefore be moderately droughty restricting the land to Subgrade 3a, good quality agricultural land

Factors Influencing ALC Grade

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values
Grid reference	N/A	TQ 879 607
Altıtude	m, AOD	80
Accumulated Temperature	day°C (Jan June)	1410
Average Annual Rainfall	mm	704
Field Capacity Days	days	142
Moisture Deficit, Wheat	mm	107
Moisture Deficit, Potatoes	mm	100

Table 2	Climatic	and	altitude data
---------	----------	-----	---------------

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

13 The combination of rainfall and temperature at this site mean that under this warm and relatively dry climate soils will require a moderately high available water capacity to avoid droughtiness limitations. There is however no overall climatic limitation in this area

Site

14 The site which lies at an altitude of approximately 80 m AOD falls very gently to the north Nowhere on the site does gradient or micro relief impose any limitation on the agricultural use of the area

Geology and soils

15 The published geological information for the area (BGS 1974) shows all of the site to be underlain by Upper Chalk Drift deposits of clay with flints a dark reddish brown clay containing many nodular flints which rests irregularly on chalk, is mapped on the eastern and western site boundaries

16 There is no detailed soil survey map for the area, but the reconnaissance soil map (SSEW 1983) shows the area to comprise soils of the Coombe 1 association These soils are described as Well drained calcareous fine silty soils deep in valley bottoms shallow to chalk on valley sides in places Slight risk of water erosion (SSEW 1983) Soils of this association are developed in chalky drift and comprise brown calcareous more or less flinty fine silty soils with a distinct brownish subsoil overlying chalk or chalk rubble

Agricultural Land Classification

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Grade I

19 The majority of the site has been mapped as Grade 1 excellent quality agricultural land The soils in this area are deep free draining silty and fine silty and are variably stony. A typical soil profile has a silt loam or medium silty clay loam topsoil which is very slightly stony (containing 2 6% total flints by volume) Upper subsoils comprise moderately structured medium silty clay loams which are slightly stony (containing 5 15% total flints by volume) Below 50-70 cm depth the soils comprise moderately structured silty clay loams which are moderately stony (containing 25-35% total flints by volume) In some profiles however the soils were almost stoneless Moisture balance calculations indicate that under the prevailing climatic conditions even the more stony variants have sufficient available water to meet the demands of a growing crop throughout the year There are therefore no limitations to the agricultural use of the area and consequently the land has been included in Grade 1

Subgrade 3a

Subgrade 3a, good quality agricultural land, has been mapped in a small area on the slightly higher land at the north east corner of the site This land is limited by soil droughtiness In this area, the underlying chalk was encountered at relatively shallow depths Soils in this area typically have a medium silty clay loam topsoil overlying a moderately structured, brown, heavy silty clay loam subsoil Fissured chalk was encountered within 40cm and the rooting into this medium is anticipated to be somewhat restricted (see Objector Site SITT 6 ADAS Ref 2011/149/96) The interaction between these soil characteristics and the prevailing climate causes the profile available water to be slightly restricted as indicated by moisture balance calculations for the soils on the site Hence the soils will be moderately droughty, especially for deeper rooting crops and Subgrade 3a is appropriate

> N A Duncan for the Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1977) Sheet No 272 Chatham BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals, grass oilseed rape, potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e g cereals and forage crops) the yields of which are variable In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²
IJ	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91 210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR		Scrub	CFW	Comfe	rous Woodland
DCW	Deciduous Wood				
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Cro	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical chnometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			

Soil Pits and Auger Borings

1

S		Sand	LS	Loamy Sand	SL	Sandy Loam
SZ	ZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
Z	L	Silt Loam	SCL	Sandy Clay Loam	С	Clay
S	С	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P		Peat	SP	Sandy Peat	LP	Loamy Peat
P	L	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand, loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- **C** Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH grave	l with non-porous (hard) stones
MSST	soft medium grained sandston	GS grave	l with porous (soft) stones
SI	soft weathered igneous/metamory	phic rock	

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 **STRUCT** the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine	M medium
-	C coarse	VC very coarse
ped shape	S single grain	M massive
	GR granular	AB angular blocky
	SAB sub-angular blocky	PR prismatic
	PL platy	-

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous, a 'Y' will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- **MBW** moisture balance wheat
- **MBP** moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	e SWALE	LP SITT 7	BREDGAR	Pit Number		19				
Grid Ref	erence TQ	87906080	Average Annu	ual Rainfall	7(04 mm				
			Accumulated	Temperature	14	10 degree	days			
			Field Capac	ity Level	14	2 days				
			Land Use	-	Li	nseed				
			Slope and As	spect	01	degrees N	4			
HORTZON	TEXTURE	COLOUR	STONES >2	TOT STONE	іттн	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	71	10VR44 0		5	нр		OTHOUTONE	0010101	OUDOTROUTORE	
30- 65	MZCI	75YR56 00	0 0	10	HP		MDCSAR	FM	м	
65- 90	MZCI	75YP46 0		20			MDV/CSR	EM	M	
90-120	ZL	10YR54 64	4 0	35	HR		PID # COD		M	
Wetness (Grade 1		Wetness Clas	s Ī						
			Glaudan		~					
			SPL	No	SPL					
Drought (Grade 1		APW 158mm	MBW 5	1 mm					
			APP 127mm	MBP 2	7 mm					
FINAL AL	C GRADE	ı								

MAIN LIMITATION

program ALCO12

LIST OF BORINGS HEADERS 19/12/96 SWALE LP SITT 7 BREDGAR

SAMP	ILE	1	ASPECT				WETI	NESS	-WH	EAT-	-P0	TS-	M	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
1	TQ87906090	LIN	N	01			1	1	95	-12	101	1	3A					1	Imp60 See Pit1
16	TQ87906080	LIN	N	01			1	1	158	51	127	27	1					1	Stony
2	TQ87806080	LIN	N	01		000	1	1	103	-4	116	16	3A					1	Imp70 See Pit1
3	TQ87906080	LIN	N	01			1	1	110	3	120	20	3A					1	Imp65 See Pit1
4	TQ88006080	LIN					1	1	173	66	138	38	1					1	
5	TQ88106080	LIN	W	02			۱	1	92	-15	98	-2	3A				DR	3A	Chalk 40
6	TQ87806070	LIN	N	01		060	2	2	118	11	127	27	2				WE	2	S1 gleyed 60
7	TQ87906070	LIN					1	1	102	-5	102	2	3A					1	Imp50 See Pit1
8	TQ88006070	LIN					1	1	170	63	156	56	1					1	Stone at 100
9	TQ87806060	LIN	N	01			1	1	181	74	145	45	1					1	
10	TQ87906060	LIN	N	01			1	1	87	20	87	-13	за				DR	2	Imp45 Prob G2
11	TQ88006060	LIN	Ν	01			1	1	156	49	136	36	1					1	S1 gleyed 80

page 1

program ALCO11

COMPLETE LIST OF PROFILES 19/12/96 SWALE LP SITT 7 BREDGAR

page 1

					-MOTTLES	S	PED			S'	TONES-		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR POR	IMP	SPL	CALC	
1	0.20		100044 00						•	^	un							
	0-30	mzc i	101K44 00						~	0		4		м				T
	30-60	mzc i	101820 00						U	U	rik.	10		M				Impendu Tinnty
1P	0-30	zl	10YR44 00						4	0	HR	5						
	30-65	mzcl	75YR56 00						0	0	HR	10	MDCSAB FI	MM				
	65-90	mzcl	75YR46 00						0	0	HR	20	MDVCSB FI	MM				
	90-120	zl	10YR54 64						0	0	HR	35		M				
2	0-27	mzcl	10YR44 00						2	0	HR	4				Y		
	27-70	mzcl	75YR46 00						0	0	HR	1 0		M		Y		Impen70 flinty
٦	0-30	zl	10YR44 00						4	0	HR	5						
5	30-65	mzcl	75YR56 00						0	0	HR	10		M				Impen65 flinty
	0.05		10/044 00						•	•	110							
4	0-25	zl	10YR44 00						2	0	HK	4						
	25-40	zi	10YR45 00						0	U	HK	-		M				
	40-65	mzci	10YR55 00						0	0	CH	5		M			Ŷ	
	65-120	mzc)	75YR55 00						0	0	HR	3		M				
5	0-25	mzcl	10YR34 00						2	0	HR	5					Y	
	25-40	hzc1	10YR46 00						0	0	HR	5		М			Y	
	40-70	ch	10YR81 00						0	0	HR	5		Ρ			Y	Re 2011/149/96
6	0-30	zl	10YR44 00						2	0	HR	4						
	30-60	mzcl	10YR46 00						0	0	HR	5		М				
	60-75	с	10YR45 00	75YR!	56 00 C			S	0	0	HR	5		Ρ		Y		
7	0-27	zl	10YR44 00						4	0	HR	6						
	27-50	zl	75YR55 00						0	0	HR	15		M				Impen50 flinty
8	0_30	~ 1	10VR44 00						٥	٥	HR	2						
	30-70	~ ' 7]	75YR45 00						0	0		0		м				
	70-100	mzcl	10YR55 00						0	0		0		M				Impen100 stone
9	0.20	_1	10VP44 00						0	0	UD	2						
	20 50	Z I - 1	101K44 00						0	۰ ۱		1		м				
	28-50 50-120	zı mzcl	10YR54 00						0	0	пк	0		M				
									•	•		Ŧ						
10	0-27	zl	10YR44 00						2	0	HR	3						
	27-45	mzc]	75YR45 00						0	0	HR	15		M				Impen45 flinty
11	0-30	zl	10YR44 00						0	0	HR	2						
	30-65	mzc]	10YR55 00						0	0		0		М				
	65-80	mzcl	10YR55 00	COMIN	00 00 F				0	0		0		м				
	80-120	hzc1	10YR55 64	75YR	56 00 C			S	0	0		0		Р				