# Test Valley Local Plan Review <br> Site 101 Velmore Farm Chandlers Ford <br> Hampshire <br> Agricultural Land Classıfication <br> ALC Map and Report 

April 1997

# AGRICULTURAL LAND CLASSIFICATION REPORT 

## TEST VALLEY BOROUGH LOCAL PLAN REVIEW SITE 101 VELMORE FARM CHANDLERS FORD HAMPSHIRE

## INTRODUCTION

1 This report presents the findings of a detaled Agricultural Land Classification (ALC) survey of 623 hectares of land located to the south west of Chandlers Ford in Hampshire The field survey work was carried out during June 1991 as part of an earler incomplete survey The site has been included in the proposals for this review

2 The survey was commissioned by the Minstry of Agnculture Fishenes and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Borough Local Plan Review The results of this survey supersede any previous ALC information for this land

3 Pnor to 1 Apnl 1997 the work was conducted by members of the Resource Plannıng Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA, Reading) The land has been graded in accordance with the published MAFF ALC guidelines and critena (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the majority of the agricultural land at this site was in grass either permanent grazing or a ley for silage cutting In addition, some areas were being cropped for maize The areas mapped as Other land include the farm buildings at Velmore Farm and an electrical switching station to the north of the site

## SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 110000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summansed in Table 1 overleaf

7 The fieldwork was conducted at an average density of 1 bonng per hectare A total of 63 bonngs and four soil pits were descnbed

8 The agncultural land on this site has been classified as Subgrade 3a (good quality) Subgrade 3b (moderate quality) and Grade 4 (poor quality) Limitations to land quality include soil wetness soil droughtiness and gradient

9 Good quality land has been mapped to the east and west of the site The proncipal limitations are soil wetness and soll droughtıness Two soll types were observed The majority of this area is limited by soil wetness and the soils comprise stoneless light to medium loamy topsoils and upper subsoils overlying clay at moderate depths Soll wetness restricts
land utilisation by reducing the number of days when trafficking by machinery or grazing by anımals may occur without damaging the soll The remaining solls either comprise light or medium loams to depth or contain a significant stone content such that they are limited in the local clımate to Subgrade 3a on the basis of soil droughtiness Soll droughtiness affects plant growth and yield especially in drier years

10 Most of the remaining agncultural land is mapped as Subgrade 3b due principally to a soil wetness limitation Sols comprise medıum loams over clays at moderate depths At this site the clayey subsoils restrict dranage to the extent that in the prevaling local climate Subgrade 3b is approprate Subgrade 3b has also been mapped where gradients were measured between 7 and $11^{\circ}$ This causes a restriction in potential land utilisation as some farm machinery cannot be efficiently or safely operated on such gradients

11 Towards the centre of the site there are two small areas where gradients in excess of $11^{\circ}$ were measured Slopes of this nature seriously hamper the safe and efficient use of farm machunery such that Grade 4 is appropriate

Table 1 Area of grades and other land

| Grade/Other land | Area (hectares) | /site area | / surveyed area |
| :--- | :---: | :---: | :---: |
| 3a | 296 | 475 |  |
| 3b | 303 | 486 | 488 |
| 4 | 07 | 11 | 500 |
| Other Land | 17 | 28 | 12 |
| Total surveyed area | 606 | 973 | 1000 |
| Total site area | 623 | 1000 |  |

## FACTORS INFLUENCING ALC GRADE

## Climate

12 Climate affects the grading of land through the assessment of an overall climatic limutation and also through interactions with soll charactenstics

13 The key climatic vanables used for grading this site are given in Table 2 overleaf these were obtaned from the published 5 km grid datasets using standard interpolation procedures (Met Office 1989)

14 The clımatic criteria are considered first when classifying land as clımate can be overnding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2 Climatic and alutude data

| Factor | Unts | Values |  |
| :--- | :--- | :---: | :---: |
| Gnd reference | N/A | SU 421195 | SU 414 189 |
| Altutude | m, AOD | 35 | 60 |
| Accumulated Temperature | day $^{\circ} \mathrm{C}$ | 1514 | 1486 |
| Average Annual Rainfall | mm | 813 | 818 |
| Field Capacity Days | days | 172 | 172 |
| Moisture Deficit, Wheat | mm | 108 | 105 |
| Moisture Deficit, Potatoes | mm | 102 | 99 |

15 The main parameters used in the assessment of an overall climatic limitation are average annual ramfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

16 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost nsk, are not believed to significantly affect this area The site is climatically Grade 1

## Site

17 The site hes at altitudes in the range 3060 m AOD the highest land being towards the south and south west The area comprises a senies of small hills and valleys which fall overall from the south towards the north Within the site some of the valley sides are of sufficient gradient to adversely affect agnicultural land quality

## Geology and solls

18 The published geological information for the site (BGS 1987) shows the site to be underlain by the Wittering formation (laminated clays and sands) and Earnley Sand (fine graned slty and clayey sand) Both deposits form part of the Bracklesham Beds senes of deposits The Earnley Sand occurs on the higher parts of the site with the Wittering formation on the lowest lying land

19 The most detaled published solls information for the site (SSEW 1983 and 1984) shows the site to comprise soils of the Wickham 3 association These are described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging Some deep coarse loamy soils affected by groundwater Landslips with irregular terran locally (SSEW 1983) Solls of the types described above were found at this site

## Agricultural Land Classification

20 The detals of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

21 The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III

Subgrade 3a
22 Land of good quality has been mapped in three separate mapping units to the east west and south west of the site The principal limitation is soll wetness

23 Soils in this area are of a single type which can be quite varable overall They are charactensed by the pit observations 2P 3P and 4P The topsoils commonly comprise ether fine sandy silt loam fine or medum sandy loam, or occasionally loamy fine sand The majonty of the observations were stoneless in the topsoll but occasionally up to $12 \%$ total $\mathrm{v} / \mathrm{v}$ flints with up to $7 \%>2 \mathrm{~cm}$ were recorded The upper subsoll horizon(s) was either similar to the topsoil or comprised the shghtly heavier textures of medium clay loam, sandy clay loam, occasionally medium sandy loam contaning up to $5 \% \mathrm{v} / \mathrm{v}$ total flints The lower subsoll horizons were sandy clay loam, heavy clay loam clay or sandy clay textures and often banded They were commonly stoneless moderately or poorly structured The majonty were slowly permeable Occasionally as in the pit observation, 3P the slowly permeable honzon gave way to a fine sandy loam honzon to depth In these cases the clayey honzon was of sufficient thickness to be slowly permeable In the local chmate these soils are appropnately placed in Wetness Classes III and IV (see Appendix II) on the basis of the depth to gleying and slowly permeable honzon(s) The light nature and good workability of the topsoll means that these soils are placed in Subgrade 3a and Grade 2 on the basis of a soll wetness limitation The Grade 2 observations were scattered within the Subgrade 3a units and could not be mapped separately

24 Soil wetness restricts land utilisation by reducing the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock as well as adversely affecting crop growth and development

25 Occasional observations in this Subgrade at this site were limited by soil droughtiness Essentally the profiles were simular to those describe above (para 22) except that the upper subsoll comprises a loamy fine sand which hes over sandy clay or clay The poor water retention of this soil texture leads to this area being approprately placed in Subgrade 3a on the basis of soil droughtiness Soil droughtiness can affect plant growth, development and yreld especially in drer years

## Subgrade 3b

26 Land of moderate quality has been mapped in total of two units and is concentrated towards the centre of the site Soils are charactensed by the soil pit 1P The principal limitations are soil wetness and gradient

27 Soils in this area commonly comprise a stoneless to slightly stony medium clay loam, medum silty clay loam or sandy clay loam topsoils which were occasionally gleyed These typically overle a gleyed sandy clay loam or heavy clay loam which passes to clay or sandy clay The shallow depth to gleying and clayey slowly permeable honzons lead to Wetness Class IV (see Appendıx II) being appropriate which, with the medium textured topsoll leads to Subgrade 3 b being applied in this area due to moderate wetness limitations

28 Towards the centre of the site there are some areas where slope is the prancipal limitation to land quality In these areas gradients were measured to be in excess of $7^{\circ}$ This
causes a restriction in potential land utilisation as some farm machinery cannot be efficiently or safely operated on such gradients

## Grade 4

29 Towards the centre of the ste there are two small areas where gradients in excess of $11^{\circ}$ were measured Slopes of this nature senously hamper the safe and efficient use of farm machinery such that Grade 4 is appropriate

M Larkın
Resource Planning Team
Eastern Region
FRCA, Reading

## SOURCES OF REFERENCE

British Geological Survey (1987) Sheet 315 Southampton Solid and Drift Edition 150000 Scale BGS London

Minstry of Agriculture Fishenes and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land
MAFF London

Meteorological Office (1989) Climatological Data for Agrıcultural Land Classification Met Office Bracknell

Soll Survey of England and Wales (1983) Sotls of South East England. 1250000 Scale SSEW Harpenden

Soll Survey of England and Wales (1984) Sols of South East England. Bulletın No 15 SSEW Harpenden

## APPENDIX I <br> DESCRIPTIONS OF THE GRADES AND SUBGRADES

## Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agncultural use A very wide range of agncultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less vanable than on land of lower quality

## Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more vanable than Grade 1 land

## Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

## Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oulseed rape potatoes sugar beet and the less demanding horticultural crops

## Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

## Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e g cereals and forage crops) the yields of which are variable In moist clımates yields of grass may be moderate to hugh but there may be difficulties in utilisation The grade also includes very droughty arable land

## Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restnct use to permanent pasture or rough grazing except for occasional pioneer forage crops

## APPENDIX II

## SOIL WETNESS CLASSIFICATION

## Definitions of Soıl Wetness Classes

Soul wetness is classified according to the depth and duration of waterlogging in the soil profile Six soll wetness classes are identified and are defined in the table below

Wetness Class

Duration of waterlogging ${ }^{1}$

I The soll profile is not wet within 70 cm depth for more than 30 days in most years ${ }^{2}$

II The soll profile is wet within 70 cm depth for 3190 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years

III The soil profile is wet within 70 cm depth for 91180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet whthin 40 cm depth for between 3190 days in most years

IV The soll profile is wet withen 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly perneable layer present withun 80 cm depth, it is wet withun 40 cm depth for 91 210 days in most years

V The soil profile is wet within 40 cm depth for 211335 days in most years
VI The soll profile is wet withen 40 cm depth for more than 335 days in most years

## Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile charactenstics and climatic factors using the methodology described in Agricultural Land Classificatıon of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

[^0]
## APPENDIX III

## SOIL DATA

## Contents

Sample location map
Soll abbreviations Explanatory Note

## Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)
Database Printout Horizon Level Information

## SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soll pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

## Boring Header Information

1 GRID REF national 100 km grid square and 8 figure grid reference
2 USE Land use at the time of survey The following abbreviations are used

| ARA | Arable | WHT | Wheat | BAR | Barley |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CER. | Cereals | OAT | Oats | MZE | Maize |
| OSR | Oiseed rape | BEN | Field Beans | BRA | Brassicae |
| POT | Potatoes | SBT | Sugar Beet | FCD | Fodder Crops |
| LIN | Linseed | FRT | Soft and Top Fruit | FLW | Fallow |
| PGR | Permanent Pasture | LEY | Ley Grass | RGR | Rough Grazing |
| SCR | Scrub | CFW | Coniferous Woodland | DCW | Deciduous Wood |
| HTE | Heathland | BOG | Bog or Marsh | FLW | Fallow |
| PLO | Ploughed | SAS | Set aside | OTH | Other |
| HRT | Hortucultural Crops |  |  |  |  |

3 GRDNT Gradient as estımated or measured by a hand held optıcal clinometer
4 GLEY/SPL Depth in centumetres (cm) to gleying and/or slowly permeable layers
5 AP (WHEAT/POTS) Crop adjusted avallable water capacity
6 MB (WHEAT/POTS) Morsture Balance (Crop adjusted AP crop adjusted MD)
7 DRT Best grade according to soll droughtıness
8 If any of the following factors are considered signuficant, 'Y will be entered in the relevant column

| MREL | Microrelief lımitation | FLOOD | Flood nsk | EROSN | Soıl erosion risk |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EXP | Exposure limitation | FROST | Frost prone | DIST | Disturbed land |

CHEM Chemucal limitation
9 LIMIT The main limitation to land quality The following abbreviations are used

| OC | Overall Clımate | AE | Aspect | EX | Exposure |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FR | Frost Risk | GR | Gradıent | MR | Microrelief |
| FL | Flood Risk | TX | Topsoll Texture | DP | Soll Depth |
| CH | Chemical | WE | Wetness | WK | Workability |
| DR | Drought | ER | Erosion Rusk | WD | Soıl Wetness/Droughtıness |
| ST | Topsoll Stonuness |  |  |  |  |

## Soll Pits and Auger Bonngs

1 TEXTURE son texture classes are denoted by the following abbreviations

| S | Sand | LS | Loamy Sand | SL | Sandy Loam |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SZL | Sandy Silt Loam | CL | Clay Loam | ZCL | Silty Clay Loam |
| ZL | Silt Loam | SCL | Sandy Clay Loam | C | Clay |
| SC | Sandy Clay | ZC | Silty Clay | OL | Organc Loam |
| P | Peat | SP | Sandy Peat | LP | Loamy Peat |
| PL | Peaty Loam | PS | Peaty Sand | MZ | Marne Light Silts |

For the sand, loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes
F Fine (more than $66 /$ of the sand less than 02 mm )
M Medium (less than $66 /$ fine sand and less than $33 \%$ coarse sand)
C Coarse (more than 33 / of the sand larger than 06 mm )
The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium ( $<27$ / clay) H Heavy ( $2735 /$ clay)

MOTTLE COL Mottle colour using Munsell notation
3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described F few $<2 /$ C common $220 / \quad$ M many 20-40/ VM very many $40 \%+$

MOTTLE CONT Mottle contrast
F faint indistinct mottles evident only on close inspection
D distunct mottles are readily seen
P prominent mottling is conspicuous and one of the outstanding features of the horizon
5 PED COL Ped face colour using Munsell notation
6 GLEY If the soll horizon is gleyed a $Y$ will appear in this column If slightly gleyed, an $S$ will appear

7 STONE LITH Stone Lithology One of the following is used

| HR. | all hard rocks and stones | SLST | soft oolitic or dolımituc limestone |
| :--- | :--- | :--- | :--- |
| CE | chalk | FSST | sof, fine grained sandstone |
| ZR | soft, argllaceous or silty rocks | GH | gravel with non porous (hard) stones |
| MSST | soft, medium grained sandstone | GS | gravel with porous (soft) stones |
| SI | sof weathered igneous/metamorphic rock |  |  |
| Stone contents ( $>2 \mathrm{~cm}>6 \mathrm{~cm}$ and totai) are given in percentages (by volume) |  |  |  |

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

| degree of development | WK weakly developed <br>  <br> ped size | MD moderately developed |
| :--- | :--- | :--- |
|  | F strongly developed |  |
| ped shape | C coarse | M medium |
|  | S single grain | VC very coarse |
|  | GR granular | M massive |
|  | SAB sub angular blocky | AB angular blocky |
|  | PL platy | PR prismatic |

9 CONSIST Soil consistence is described using the following notation

| L loose VF very friable | FR friable FM firm | VM very firm |
| :--- | :--- | :--- |
| EM extremely firm | EH extremely hard |  |

10 SUBS STR Subsoil structural condition recorded for the purpose of calculatung profile droughtiness $\mathbf{G}$ good $\quad \mathbf{M}$ moderate $\quad \mathbf{P}$ poor

11 POR Soil porosity If a soll honzon has less than $05 /$ biopores $>05 \mathrm{~mm}$, a Y ' will appear in this column

IMP If the profile is impenetrable to rooting a ' Y will appear in this column at the appropriate horizon
SPL Slowly permeable layer If the soil honzon is slowly permeable a $Y^{\prime}$ will appear in thus column
CALC If the soil honzon is calcareous a $Y$ will appear in this column
Other notations
$\begin{array}{ll}\text { APW } & \text { avalable water capacity (in mm) adjusted for wheat } \\ \text { APP } & \text { avalable water capacity }(\mathrm{n} \mathrm{mm}) \text { adjusted for potatoes } \\ \text { MBW } & \text { moisture balance wheat } \\ \text { MBP } & \text { mosture balance potatoes }\end{array}$


## SOIL. PIT DESCRIPTION

Site Name VELMORE FARM HANTS Pit Numbe 2P

G id $R$ ference $S U 41601950$

| Ave age A nu I Rai f 11 | 815 mm |
| :--- | :--- |
| Accumulated Tempe ature | 1497 degree days |
| Field Capacity Level | 172 days |
| Land Use | Permane $t$ as |
| Slope and Aspect | 1 degrees $E$ |


| HORIZON | TEXTURE | COLOUR | STONES | 2 | TOT | STONE | LITH | MOTTLES | STRUCTURE | CONSIST | SUBSTRUCTURE | CALC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-26 | FSZL | 10YR32 00 | 0 |  |  | 0 |  |  |  |  |  |  |
| 2635 | MCL | 10YR42 54 | 0 |  |  | 0 |  | C | MDMSB | FM | M |  |
| 35-47 | HCL | 10YR63 00 | 0 |  |  | 0 |  | M | MDCAB | FM | M |  |
| 4760 | MCl | 10YR53 00 | 0 |  |  | 0 |  | M | M ${ }^{\text {PCAB }}$ | FM | M |  |
| 60-75 | SC | OSY 5400 | 0 |  |  | 0 |  | M | MDPAB | FM | P |  |
| 75-120 | C | 2SY 4400 | 0 |  |  | 0 |  | M | MDPMPR | FM | P |  |


| Wetness G ade | 3 A | Hetness Cls |  |  | IV |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Gleying |  |  | 26 cm |
|  |  | SPL |  |  | 35 cm |
| Drought G ade | 1 | APW | 149mm | MEN | 43 mm |
|  |  | APP | 125mm | MBP | 25 mm |

FINAL ALC GRADE 3A
MAIN LIMITATION Hetness

## SOIL PIT DESCRIPTION



## SOIL. PIT DESCRIPTION



| HORIZON | TEXTURE | COLOUR | STONES | 2 | TOT STONE | LITH | MOTTLES | STRUCTURE | CONSIST | SUBSTRUCTURE | CALC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 028 | FSZL | 10YR42 00 | 0 |  | 0 |  |  |  |  |  |  |
| 28-55 | MCL | 10YR52 00 | 0 |  | 0 |  | C | MDCSAB | FR | M |  |
| 55-120 | C | 10YR62 00 | 0 |  | 0 |  | M | MDCAB | FM | P |  |


| Hetness Grade | 2 | Hetness Class |  |  | III |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Gleying |  |  | 28 cm |
|  |  | SPL |  |  | 55 cm |
| Drought G ade | 1 | APW | 147 mm | MBW | 41 mm |
|  |  | APP | 124 mm | MBP | 24 man |

FINAL ALC GRADE 2
MAIN LIMITATION Wetnes
page 1

| SAMPL |  | ASPECT |  |  |  |  | WETNESS |  | - WHEAT |  | POTS |  | M REL |  | EROSN F | FROST | CHEM |  | ALC | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO | GRID REF | USE |  | GRONT | GLEY | SPL | CLASS | GRADE | AP | MB | B AP | MB | DRT | FLOOD | Exp | DIST |  | LIMIT |  |  |
| 1 | SU41501960 | LEY | $N$ | 1 | 0 | 35 | 4 | 3 A | 111 | 5 | 5114 | 14 | 2 |  |  |  |  | WE | 3A |  |
| 1 P | SU42001960 | LEY | $N$ | 1 | 25 | 38 | 4 | 3 B | 147 | 41 | 1107 | 7 | 2 |  |  |  |  | WE | 3 B | PIT65 AUG120 |
| 2 | SU41601960 | LEY | N | 1 | 23 | 23 | 4 | 3A | 158 | 52 | 2126 | 26 | 1 |  |  |  |  | WE | 3A |  |
| $2 P$ | SU41601950 | PGR | E | 1 | 26 | 35 | 4 | 3A | 149 | 43 | 3125 | 25 | 1 |  |  |  |  | WE | 3 A | PIT 85 |
| 3 | SU41701960 | LEY | $N$ | 1 | 26 | 26 | 4 | 38 | 120 | 14 | 4110 | 10 | 2 |  |  |  |  | WE | 38 |  |
| 3P | SU41901940 | MZE | NH | 2 | 53 | 53 | 3 | 2 | 165 | 59 | 111 | 11 | 1 |  |  |  |  | WE | 2 | PIT70 AUG120 |
| 4 | SU41801960 | LEY | NE | 1 | 45 | 45 | 3 | 3 A | 132 | 26 | 108 | 8 | 2 |  |  |  |  | WE | 3A |  |
| 4 P | SU41701930 | LEY | W | 4 | 28 | 55 | 3 | 2 | 147 | 41 | 124 | 24 | 1 |  |  |  |  | WE | 2 | PIT 70 |
| 5 | SU41901960 | LEY | NE | 1 | 31 | 31 | 4 | 3B | 130 | 24 | 107 | 7 | 2 |  |  |  |  | WE | 38 |  |
| 6 | SU42001960 | LEY | N | 1 | 25 | 38 | 4 | 38 | 105 | 1 | 199 | 1 | 3 A |  |  |  |  | WE | 3B | SEE 1P |
| 7 | SU41501950 | LEY | N | 1 | 28 | 36 | 4 | 3A | 130 | 24 | 104 | 4 | 2 |  |  |  |  | WE | 3 A |  |
| 8 | SU41601950 | PGR | E | 1 | 26 | 35 | 4 | 3A | 149 | 43 | 124 | 24 | 1 |  |  |  |  | WE | 3 3 | SEE $2 P$ |
| 9 | SU41701950 | PGR | E | 1 | 20 | 45 | 4 | 3A | 150 | 44 | 120 | 20 | 1 |  |  |  |  | WE | 3 A |  |
| 10 | SU41801950 | PGR | E | 1 | 25 | 40 | 4 | 3A | 140 | 34 | 115 | 15 | 1 |  |  |  |  | WE | 3 A |  |
| 11 | SU41901950 | MZE | N | 1 | 30 | 45 | 4 | 3 A | 145 | 39 | 120 | 20 | 1 |  |  |  |  | WE | 3A |  |
| 12 | SU42001950 | MZE | $N$ | 1 | 30 | 50 | 3 | 2 | 159 | 53 | 128 | 28 | 1 |  |  |  |  | WE | 2 |  |
| 13 | SU42101950 | MZE | NE | 1 | 28 | 28 | 4 | 3B | 136 | 30 | 112 | 12 | 1 |  |  |  |  | WE | 38 | SMALL PIT |
| 14 | SU42201950 | PGR | $N$ | 1 | 70 | 70 | 2 | 1 | 143 | 37 | 113 | 13 | 1 |  |  |  |  |  | 1 |  |
| 15 | SU41601940 | LEY | E | 3 | 23 | 28 | 4 | 3A | 134 | 28 | 113 | 13 | 2 |  |  |  |  | WE | 3A |  |
| 16 | SU41701940 | LEY | E | 3 | 27 | 32 | 4 | 3 A | 137 | 31 | 114 | 14 | 1 |  |  |  |  | WE | 3 A | SL GLAUCONITIC |
| 17 | SU41801940 | LEY |  |  | 21 | 21 | 4 | 3B | 121 | 15 | 102 | 2 | 2 |  |  |  |  | WE | 38 | WET FROM 60cm |
| 18 | SU41901940 | MZE | NW | 2 | 53 | 53 | 3 | 2 | 172 | 66 | 118 | 18 | 1 |  | V |  |  | WE | 2 | SEE 3P |
| 19 | SU42001940 | MZE | $N$ | 3 | 21 | 21 | 4 | 3B | 130 | 24 | 100 | 0 | 2 |  |  |  |  | WE | 38 |  |
| 20 | SU42101940 | MZE | $N$ | 2 | 25 | 25 | 4 | 3A | 119 | 13 | 106 | 6 | 2 |  |  |  |  | WE | 3A |  |
| 21 | SU42201940 | PGR | $N$ | 1 | 38 | 38 | 4 | 3 A | 130 | 24 | 101 | 1 | 2 |  |  |  | $Y$ | WE | 3A | PODZOLIC |
| 22 | SU42301940 | LEY | W | 4 | 45 | 60 | 3 | 2 | 108 | 2 | 79 | 21 | 3 A |  |  |  |  | DR | 3 A |  |
| 23 | SU41601930 | LEY |  |  | 28 | 28 | 4 | 3B | 126 | 20 | 103 | 3 | 2 |  |  |  |  | WE | 3B |  |
| 24 | SU41701930 | LEY | $W$ | 4 | 28 | 55 | 3 | 2 | 147 | 41 | 124 | 24 | 1 |  |  |  |  | WE | 2 | SEE 4P |
| 25 | SU41801930 | MZE | $W$ | 6 | 0 | 28 | 4 | 38 | 128 | 22 | 105 | 5 | 2 |  |  |  |  | WE | 38 | $V$ WET TOPSOIL |
| 26 | SU41901930 | MZE | W | 6 | 30 | 30 | 4 | 3B | 133 | 27 | 106 | 6 | 2 |  |  |  |  | WE | 38 | SLOPE 65 DEGS |
| 27 | SU42001930 | MZE | EN | 6 | 28 | 28 | 4 | 3B | 124 | 18 | 101 | 1 | 2 |  |  |  |  | WE | 38 |  |
| 28 | SU42101930 | MZE | E | 6 | 30 | 30 | 4 | 38 | 130 | 24 | 106 | 6 | 2 |  |  |  |  | WE | 3B |  |
| 29 | SU42201930 | PGR | NW | 7 | 23 |  | 1 | 1 | 46 | 60 | 46 | 54 | 4 |  |  |  |  | DR | 4 | PROB 38 DR |
| 30 | SU42301930 | LEY | SE | 1 | 26 | 50 | 3 | 2 | 149 | 43 | 109 | 9 | 2 |  |  |  |  | WD | 2 | PODZOLIC |
| 31 | SU42401930 | LEY | SE | 2 | 25 | 25 | 4 | 3A | 145 | 39 | 110 | 10 | 1 |  |  |  |  | WE | 3 A |  |
| 32 | SU41601920 | PGR | SE | 2 | 18 | 18 | 4 | 3B | 123 | 17 | 100 | 0 | 2 |  |  |  |  | WE | 38 |  |
| 33 | SU41701920 | PGR | E | 1 | 29 | 85 | 2 | 1 | 144 | 38 | 119 | 19 | 1 |  |  |  |  |  | 1 |  |
| 34 | SU41801920 | PGR | W | 1 | 26 | 26 | 4 | 38 | 132 | 26 | 108 | 8 | 2 |  |  |  |  | WE | 38 |  |
| 35 | SU41901920 | PGR | W | 6 | 25 | 25 | 4 | 3A | 152 | 46 | 124 | 24 | 1 |  |  |  |  | WE | 3A |  |
| 36 | SU42001920 | PGR | E | 1 | 25 | 25 | 4 | 3 B | 124 | 18 | 101 | 1 | 2 |  |  |  |  | WE | 3 B |  |
| 37 | SU42101920 | PGR | NH | 11 | 33 | 33 | 4 | 38 | 125 | 19 | 102 | 2 | 2 |  |  |  |  | SL | 4 | SLOPE 115 DEG |
| 38 | SU42201920 | PGR | SE | 4 | 25 | 35 | 4 | 3A | 128 | 22 | 98 | 2 | 2 |  |  |  |  | WE | 3A |  |


| SAMP |  | ASPECT |  |  |  |  | WETNESS |  | WHEAT |  | POTS |  | M REL |  | EROSN F | FROST | CHEM | ALC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO | GRID REF | USE |  | GRDNT | GLEY | SPL | CLASS | GRADE | AP | MB | AP | MB | DRT | FLOOD | EXP | DIST | LIMIT |  | COMMENTS |
| 39 | SU42301920 | LEY | S | 1 | 20 | 34 | 4 | 3 A | 136 | 30 | 115 | 15 | 1 |  |  |  | WE | 3A |  |
| 40 | SU42401920 | LEY | SE | 1 | 24 | 83 | 2 | 1 | 149 | 43 | 110 | 10 | 1 |  |  |  |  | 1 |  |
| 41 | SU42501920 | LEY | E | 2 | 22 | 22 | 4 | 38 | 132 | 26 | 102 | 2 | 2 |  |  |  | WE | 38 |  |
| 42 | SU41501910 | PGR | E | 2 | 40 | 40 | 3 | 2 | 154 | 48 | 131 | 31 | 1 |  |  |  | WE | 2 |  |
| 43 | SU41601910 | PGR | E | 2 | 23 | 38 | 4 | 3 A | 139 | 33 | 125 | 25 | 1 |  |  |  | WE | 3A |  |
| 44 | SU41801900 | PGR | E | 1 | 22 | 38 | 4 | 3B | 117 | 11 | 102 | 2 | 2 |  |  |  | WE | 38 |  |
| 45 | SU41801910 | PGR | $W$ | 5 | 23 | 23 | 4 | 3B | 123 | 17 | 100 | 0 | 2 |  |  |  | WE | 38 |  |
| 46 | SU41901910 | PGR | W | 11 | 24 | 24 | 4 | 3B | 125 | 19 | 102 | 2 | 2 |  |  |  | SL | 4 | SLOPE 115 |
| 47 | SU42001910 | PGR | E | 3 | 27 | 27 | 4 | 3B | 122 | 16 | 97 | 3 | 2 |  |  |  | WE | 3 B |  |
| 48 | SU42101910 | PGR | S | 5 | 42 | 55 | 3 | 3 A | 135 | 29 | 110 | 10 | 2 |  |  |  | WE | 3A |  |
| 49 | SU42201910 | PGR | S | 1 | 28 | 37 | 4 | 3B | 139 | 33 | 115 | 15 | 1 |  |  |  | WE | 38 |  |
| 50 | SU42301910 | PGR | S | 1 | 37 | 37 | 4 | 3B | 137 | 31 | 107 | 7 | 2 |  |  |  | WE | 3 B |  |
| 51 | SU42401910 | PGR |  |  | 35 | 35 | 4 | 3 A | 147 | 41 | 117 | 17 | 1 |  |  |  | WE | 3A |  |
| 52 | SU42501910 | PGR | S | 1 | 45 | 55 | 3 | 3 A | 149 | 43 | 123 | 23 | 1 |  |  |  | WE | 3A |  |
| 53 | SU41501900 | PGR | E | 3 | 38 | 62 | 3 | 2 | 137 | 31 | 108 | 8 | 2 |  |  |  | WD | 2 |  |
| 54 | SU41601900 | PGR | E | 1 | 21 | 32 | 4 | 3B | 128 | 22 | 105 | 5 | 2 |  |  |  | WE | 3B |  |
| 55 | SU41701900 | PGR | N | 1 | 20 | 20 | 4 | 3A | 114 | 8 | 96 | -4 | 2 |  |  |  | WE | 3A |  |
| 56 | SU41701910 | PGR | E | 1 | 0 | 40 | 4 | 38 | 130 | 24 | 103 | 3 | 2 |  |  |  | WE | 3B |  |
| 57 | SU41901900 | PGR | W | 1 | 24 | 24 | 4 | 3B | 34 | 72 | 34 | 66 | 4 |  |  |  | DR | 4 | PROB DR 3B |
| 58 | SU42001900 | PGR | S | 6 | 24 | 24 | 4 | 38 | 124 | 18 | 101 | 1 | 2 |  |  |  | WE | 3B |  |
| 60 | SU42201900 | PGR |  |  | 12 |  | 4 | 38 | 104 | 2 | 88 | 12 | 3 A | Y |  |  | WE | 3B | WET/MICRO |
| 61 | SU42301900 | PGR | N | 1 | 28 | 28 | 4 | 3 A | 137 | 31 | 109 | 9 | 2 |  |  |  | WE | 3A |  |
| 62 | SU42401900 | PGR | N | 1 | 38 | 38 | 4 | 3A | 126 | 20 | 114 | 14 | 2 |  |  |  | WE | 3A | GLAUCONITIC |
| 63 | SU41501890 | PGR |  |  | 18 | 40 | 4 | 3 A | 129 | 23 | 99 | 1 | 2 |  |  |  | WE | 3 A |  |
| 64 | SU41401890 | PGR | SE | 3 | 24 | 24 | 4 | 38 | 134 | 28 | 104 | 4 | 2 |  |  |  | WE | 38 |  |






| 16 | 027 | fsz 1 | 10YR42 00 |  |  |  | $N$ | 0 | 0 HR | 5 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2732 | scl | 05Y 7300 | 25YR76 00 C | D | 10YR68 00 | Y | 0 | 0 HR | 5 |  | M |  | + Green mottles |
|  | 3236 | c | 10YR81 00 | 10 YR 7664 C | D | 75YR44 00 | $Y$ | 0 | 0 HR | 10 |  | M | $Y$ |  |
|  | 36-45 | sel | 10YR81 00 | 10YR76 64 C | D | 75YR64 00 | $r$ | 0 | 0 HR | 10 |  | M | $Y$ |  |
|  | 45-98 | c | $10 \mathrm{YR71} 00$ | 75YR68 00 C | D |  | $Y$ | 0 | 0 | 0 |  | P | $\boldsymbol{Y}$ |  |
|  | 98-105 | scl | 10YR71 00 | 75YR68 00 C | D |  | $Y$ | 0 | 0 HR | 5 |  | P | $\boldsymbol{Y}$ |  |
|  | 105-120 | c | 10YR71 00 | 75YR68 00 C | D |  | Y | 0 | 0 HR | 5 |  | P | V |  |
| 17 | 021 | mcl | 10YR41 00 | 75YR44 00 C | F |  | $N$ | 0 | 0 | 0 |  |  | N |  |
|  | 2190 | c | $10 \mathrm{YR61} 00$ | 75YR58 00 C | D |  | $Y$ | 0 | 0 | 0 |  | P | $Y$ | WATER TABLE AT 60 cm |
|  | 90120 | c | 10YR61 00 | 75YR58 00 C | D |  | $Y$ | 0 | 0 HR | 20 |  | P | $Y$ |  |
| 18 | 025 | 1fs | $10 \mathrm{YR4200}$ |  |  |  | N | 7 | 0 HR | 12 |  |  |  |  |
|  | 25-36 | scl | 25Y 4400 |  |  |  | $N$ | 0 | 0 HR | 5 | St MSB Fr | G |  |  |
|  | 3653 | lfs | 25Y 5600 | 25Y 6600 F | F |  | $N$ | 0 | 0 | 0 | St CAB Fr | G |  | SLIGHTLY GLEYED |
|  | 5370 | sc | 05Y 7300 | 25Y 5684 C | D |  | V | 0 | 0 | 0 | Md CAB Fr | G | Y |  |
|  | 70105 | f 1 | 05Y 7300 | 25Y 5684 C | D |  | $\gamma$ | 0 | 0 HR | 2 |  | M |  |  |
|  | 105-120 | fs 1 | 05Y 7300 | $25 Y 5684 \mathrm{C}$ | D |  | Y | 0 | 0 HR | 5 |  | M |  |  |
| 19 | 021 | mc 1 | 10 YR 3200 |  |  |  | $N$ | 0 | 0 HR | 3 |  |  |  |  |
|  | 2195 | sc | 05Y 4400 | $10 \mathrm{YR46} 00 \mathrm{C}$ | D | 05 Y 7200 | $Y$ | 0 | 0 | 0 |  | P | Y | GLAUCONITIC? |
|  | 95-120 | scl | 05Y 4400 | $10 \mathrm{YR46} 00 \mathrm{C}$ | 0 | 05Y 7200 | Y | 0 | 0 | 0 |  | P | $Y$ |  |
| 20 | 025 | $f 21$ | 10 YR33 00 |  |  |  | $N$ | 0 | 0 HR | 2 |  |  |  |  |
|  | 2550 | hel | 05Y 6300 | 10YR68 00 C | D |  | $Y$ | 0 | 0 | 0 |  | P | $Y$ |  |
|  | 5060 | c | 05Y 6300 | 10YR68 00 C | D |  | $Y$ | 0 | 0 | 0 |  | P | $Y$ | WATER TABLE AT 70 cm |
|  | 6080 | c | 05Y 6300 | 10YR68 00 C | D |  | $Y$ | 0 | 0 HR | 30 |  | P | $Y$ | IMP STONES 800m |
| 21 | 019 | fs 1 | 10YR31 00 |  |  |  | N | 0 | 0 | 0 |  |  |  | ORGANIC? |
|  | 1930 | lfs | 75YR62 00 | 10YR56 00 F | F |  | N | 0 | 0 | 0 |  | G |  |  |
|  | 3038 | if | 10YR31 00 | $10 \mathrm{YR46} 00 \mathrm{C}$ | D |  | $N$ | 0 | 0 | 0 |  | G |  | IRON PAN FORMING |
|  | 3880 | ncl | 10YR51 00 | 10YR68 00 C | D |  | Y | 0 | 0 | 0 |  | P | $Y$ |  |
|  | 80120 | scl | $10 \mathrm{YR51} 00$ | 10YR68 00 C | D |  | Y | 0 | 0 | 0 |  | $p$ | $Y$ |  |
| 22 | 025 | ms 1 | 10YR32 00 |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |
|  | 25-45 | 1 ms | 10YR53 42 |  |  |  | $N$ | 0 | 0 HR | 10 |  | M |  |  |
|  | 45-60 | 1 ms | 25YR64 00 | 10YR46 00 F | F |  | Y | 0 | 0 HR | 5 |  | M |  |  |
|  | 6080 | c | 05Y 5400 | 75YR56 00 C | D |  | $Y$ | 0 | 0 | 0 |  | P | $Y$ |  |
|  | 80120 | c | O5G 5100 | 75YR58 00 M | D |  | $Y$ | 0 | 0 | 0 |  | P | Y |  |
| 23 | 028 | mcl | $10 \mathrm{YR42} 00$ |  |  |  | N | 0 | 0 | 0 |  |  |  |  |
|  | 2845 | hel | $10 \mathrm{YR72} 00$ | 10 YR 5800 C | D |  | $y$ | 0 | 0 | 0 |  | P | $\boldsymbol{r}$ |  |
|  | 45120 | c | $10 \mathrm{YR72} 00$ | 10 YR 5800 M | D |  | Y | 0 | 0 | 0 |  | P | $Y$ |  |
| 24 | 028 | f 21 | $10 \mathrm{YR42} 00$ |  |  |  | $N$ | 0 | 0 | 0 |  |  |  | PSO- TEX NR FSZL |
|  | 2855 | $\mathrm{mc})$ | 10YR52 00 | 10YR56 00 C | D |  | Y | 0 | 0 | 0 | Md CSB $F$ | M |  |  |
|  | 55-120 |  | 10YR62 00 | 10YR56 00 M | 0 |  |  | 0 | 0 | 0 | Md CAB Fm |  | r |  |




| 36 | 0-25 | ncl | 10YR21 | 31 |  |  |  |  | $N$ | 2 | 0 HR | 7 |  |  | POSS ORGANIC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25-120 | c | O5G 42 | 00 | 75YR46 | 00 M | D |  | Y | 0 | 0 | 0 | P | Y |  |  |  |
| 37 | 033 | scl | 10YR31 | 32 |  |  |  |  | $N$ | 1 | 0 HR | 1 |  |  | POSS | ORGANIC |  |
|  | 33-45 | ncl | 05GY41 | 00 | 10YR68 | 00 C | D |  | Y | 0 | 0 | 0 | P | $\boldsymbol{r}$ |  |  |  |
|  | 45-120 | c | 05GY41 | 00 | 10YR68 | 00 C | D |  | $\checkmark$ | 0 | 0 | 0 | P | $\boldsymbol{r}$ |  |  |  |
| 38 | 025 | ms 1 | 10YR31 | 00 |  |  |  |  | $N$ | 0 | 0 HR | 5 |  |  |  |  |  |
|  | 25-35 | ncl | $25 Y 53$ | 74 | 10YR58 | 00 C | D |  | $Y$ | 0 | 0 | 0 | P |  | SANDY LENSES |  |  |
|  | 35110 | sc | 05GY51 | 61 | 25YR36 | 00 C | D |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |  |  |  |  |
|  | 110120 | scl | 05GY51 | 61 | $10 \mathrm{YR66}$ | 00 C | D |  | $\gamma$ | 0 | 0 | 0 | P | $Y$ |  |  |  |  |  |
| 39 | 020 | $f 21$ | 10YR42 | 00 |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |  |
|  | 2026 | fs 1 | $10 \mathrm{YR42}$ | $\infty$ | 75YR34 | 00 C | D | 10YR62 00 | $N$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 2634 | mc 1 | 10 YR42 | 53 | 75YR46 | 00 C | D | 10YR51 64 | Y | 0 | 0 | 0 | M |  |  |  |  |
|  | 3450 | scl | 10 YR53 | 00 | 75YR46 | 00 C | D | 10YR51 64 | $Y$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 5060 | hc 1 | $056 Y 61$ | 00 | 10YR58 | 00 C | D |  | $Y$ | 0 | 0 HR | 5 | P | $Y$ |  |  |  |
|  | 60110 | sc | 05GY61 | 00 | 10YR58 | 00 C | 0 |  | $Y$ | 0 | 0 HR | 5 | P | Y |  |  |  |
|  | 110120 | 1 ms | 10YR72 | 00 | 10YR58 | 00 C | 0 |  | $Y$ | 0 | 0 | 0 | P | Y |  |  |  |
| 40 | 024 | fs 1 | 10 YR 31 | 00 |  |  |  |  | $N$ | 0 | 0 | 0 |  |  | POSS | ORGANIC |  |
|  | 2442 | 1fs | 10 YR42 | 00 | 10YR58 | 00 C | D | 10YR62 00 | Y | 0 | 0 HR | 5 | M |  |  |  |  |
|  | 4245 | fs 1 | $10 \mathrm{YR42}$ | 00 | 10YR58 | 00 C | D | 10YR62 00 | Y | 0 | 0 HR | 5 | M |  |  |  |  |
|  | 4550 | 1 | 10YR42 | 00 | 10YR58 | 00 C | D | 10YR62 00 | $Y$ | 0 | 0 HR | 5 | M |  |  |  |  |
|  | 5060 | If | 10 YR 71 | 00 | 10YR58 | 00 M | $p$ |  | $Y$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 6075 | fs | 10YR71 | 00 | 10YR58 | 00 M | P |  | $Y$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 75-83 | $f 1$ | 10 YR 71 | 00 | 10YR58 | 00 C | $p$ |  | $Y$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 83120 | c | 10YR71 | 00 | 10YR58 | 00 C | P |  | $Y$ | 0 | 0 | 0 | P | Y |  |  |  |
| 41 | 022 | mcl | $10 \mathrm{YR41}$ | 42 |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |  |
|  | 2250 | c | 10YR63 | 00 | 10YR58 | 00 C | D | 10YR72 00 | V | 0 | 0 | 0 | $p$ | Y |  |  |  |
|  | 50120 | sc | 10YR63 | 00 | 10YR58 | 00 C | P | $10 \mathrm{YR72} 00 \mathrm{Y}$ |  | 0 | 0 | 0 | $\rho$ | Y | SANDY LENSES 302 |  |  |
| 42 | 023 | fs 1 | $10 \mathrm{YR43}$ | 00 |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |  |
|  | 2340 | fs 1 | 10YR43 | 54 |  |  |  |  | $N$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 4058 | hal | 10YR54 | 00 |  |  |  |  | N | 0 | 0 | 0 | M |  |  |  |  |
|  | 58120 | c | 10YR54 | 00 | 10YR56 | 00 C | F | 10YR63 00 | r | 0 | 0 | 0 | P | Y | DEF GLEYED FROM 65c |  |  |
| 43 | 023 | fsz 1 | $10 \mathrm{YR42}$ | 00 |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |  |
|  | 23-38 | fs 1 | 10YR42 | 00 | 10YR66 | 00 C | D | 10YR72 00 | $Y$ | 0 | 0 | 0 | M |  |  |  |  |
|  | 3850 | sc) | 10 YR 72 | 00 | 10YR66 | 00 C | D |  | $Y$ | 0 | 0 | 0 | M | $Y$ |  |  |  |
|  | 5065 | hcl | 10 YR 72 | 00 | 10YR66 | 00 C | D |  | $Y$ | 0 | 0 | 0 | P | $\boldsymbol{Y}$ |  |  |  |
|  | 65-100 | sc | $056 Y 71$ | 00 | 10YR58 | 00 M | 0 |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |  |  |
|  | 100120 | 1 ms | 10 YR72 | 00 | 10YR66 | 00 M | D |  | Y | 0 | 0 | 0 | P | $\boldsymbol{r}$ |  |  |  |
| 44 | 022 | mcl | 10 YR 32 | 00 | 10 YR46 | 00 F | F |  | $N$ | 0 | 0 | 0 |  |  |  |  |  |
|  | 2238 | mcl | 10YR62 | 71 | 10YR68 | 78 F | F |  | $\gamma$ | 0 | 0 HR | 3 | M |  |  |  |  |
|  | 3865 | scl | 10YR58 | 00 |  | C | D | 10YR52 00 | $\gamma$ | 0 | 0 HR | 7 | P | Y $Y$ IMP STONES 78 cm |  |  |  |
|  | 6578 | hel | 10YR58 | 00 |  | C | D | 10YR52 00 | $\gamma$ | 0 | 0 HR | 15 | P |  |  |  |  |  |  |  |

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 LOTTLES 6 LITH TOT CONSIST STR POR IMP SPL CALC

| 45 | 023 | mcl | 10YR43 | 00 | $10 \mathrm{YR46}$ | 00 | F | F |  |  | $N$ | 0 | 0 | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23-45 | hel | 10YR56 | 00 | 10YR58 | 68 | F | F | 10YR53 | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 45-120 | c | 10YR53 | 00 | 10YR58 | 68 | M | $P$ | 10YR62 | 63 | Y | 0 | 0 | 0 | P | Y |  |
| 46 | 024 | hal | 10YR32 | 00 | 10YR56 | 00 | F | F |  |  | N | 0 | 0 | 0 |  |  |  |
|  | 2435 | hel | 25Y 72 | 00 | 75YR58 | 00 | M | D |  |  | $Y$ | 0 | 0 | 0 | $p$ | $Y$ |  |
|  | 35-45 | c | 25Y 72 | 00 | 75YR58 | 00 | M | D |  |  | $Y$ | 0 | 0 | 0 | $p$ | $Y$ |  |
|  | 45-120 | c | 25Y 62 | 00 | 25YR48 | 00 | M | D |  |  | Y | 0 | 0 | 0 | $p$ | Y |  |
| 47 | 016 | scl | 10 YR 43 | 00 |  |  |  |  |  |  | $N$ | 1 | 0 HR | 1 |  |  |  |
|  | 1627 | sel | 10YR54 | 00 | 10YR68 | 00 | C | 0 |  |  | $N$ | 0 | 0 | 0 | M |  |  |
|  | 27-45 | hel | 10YR58 | 00 | 10YR53 | 00 | F | F |  |  | Y | 0 | 0 | 0 | $P$ | Y |  |
|  | 45-69 | Scl | 10YR58 | 00 | 10YR53 | 00 | C | 0 |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ | WET |
|  | 6995 | hel | 10YR58 | 00 | 10YR53 | 00 | F | F |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ | BECOMING WET |
|  | 95-120 | $c$ | 10YR58 | 00 | 10YR53 | 00 | F | F |  |  | Y | 0 | 0 | 0 | P | Y |  |
| 48 | 0-42 | scl | 10YR43 | 00 | 10YR46 | 58 | F | F |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 4255 | mcl | 10YR54 | 00 | 10YR58 | 68 | C | D | 10YR53 | 63 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 55-88 | nc) | $10 Y \mathrm{R} 56$ | 66 | 10YR56 | 00 | M | P | 10YR53 | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 88120 | $c$ | $10 \mathrm{YR58}$ | 00 | JOYR58 | 00 | M | $P$ | 10YR62 | 63 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
| 49 | 020 | macl | 10YR32 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 2028 | fs 1 | 10YR41 | 00 | 75YR44 | 00 | C | D | 10YR63 | 00 | N | 0 | 0 | 0 | M |  |  |
|  | 2837 | fs 1 | $10 Y \mathrm{R} 42$ | 53 | 10YR66 | 00 | C | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 3750 | hel | 10YR62 | 00 | 10YR56 | 00 | C | D |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 5057 | sc | 10YR62 | 00 | 10YR56 | 00 | C | D |  |  | $Y$ | 0 | 0 HR | 5 | P | $Y$ |  |
|  | 57120 | c | $10 \mathrm{YR62}$ | 00 | 10 YR 56 | 00 | C | D |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
| 50 | 020 | mzel | 10YR32 | 42 |  |  |  |  |  |  | N | 0 | 0 | 0 |  |  |  |
|  | 2025 | mcl | 10 YR 42 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 | 0 | M |  |  |
|  | 25-30 | mcl | 10 YR 42 | 00 | 10YR56 | 00 | C | 0 |  |  | $N$ | 0 | 0 | 0 | M |  |  |
|  | 3037 | mc 1 | 10 YR 53 | 00 | 10YR58 | 00 | C | 0 | 10YR64 | 00 | $N$ | 0 | 0 | 0 | M |  |  |
|  | 3750 | hel | 10YR64 | 00 | 10YR58 | 00 | C | D | 10YR62 | 00 | $Y$ | 0 | 0 | 0 | $p$ | $Y$ |  |
|  | 50-80 | sc | 10YR64 | 00 | 10YR58 | 00 | M | $p$ | 10YR62 | 00 | $Y$ | 0 | 0 | 0 | $P$ | $Y$ |  |
|  | 80120 | sc | 10YR64 | 00 | 10YR58 | 00 | C | D | $10 \mathrm{YR62}$ | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ | SANDY LENSES |
| 51 | 025 | fszl | 10 YR 42 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 25-35 | hel | 10YR42 | 00 | 10YR66 | 00 | M | P | 10YR62 | 00 | $N$ | 0 | 0 | 0 | M |  |  |
|  | 35-50 | c | 10 YR 42 | 00 | 10YR66 | 00 | M | $P$ | $10 \mathrm{YR62}$ | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 50120 | sc | 10YR71 | 00 | 10YR58 | 00 | C | p | 05GY71 | 00 | $\gamma$ | 0 | 0 | 0 | P | $Y$ | 5GY COLS NR 120 |
| 52 | 025 | mzel | 10 YR 43 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 25-45 | $f 21$ | 10YR43 | 00 | 75YR44 | 00 | C | F |  |  | N | 0 | 0 | 0 | M |  |  |
|  | 45-50 | ms 1 | 10 YR 42 | 00 | 10YR56 | 00 | C | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 5055 | mcl | 10YR42 | 00 | $10 Y R 56$ | 00 | C | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 5590 | c | 10YR42 | 00 | 10YR56 | 00 | C | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | P | Y |  |
|  | 90120 | sc | 10 YR 42 | 00 | $10 Y 856$ | 00 | C | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  | SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 STONES- STRUCT/ SUBS $\quad$ LITH TOT CONSIST STR POR IMP SPL CALC


| 53 | 0-22 | ms 1 | $10 \mathrm{YR43}$ |  |  |  |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2238 | ms 1 | 10YR54 | 66 |  |  |  |  |  |  | N | 0 | 0 | 0 | M |  |  |
|  | 38-62 | msl | 10 YR 63 | 00 | 10YR58 | 00 | C | 0 | 10YR72 | 00 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 6295 | sc | 10YR63 | 00 | 10YR58 | 00 | C | D | 10YR72 | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 95-120 | c | 10YR63 | 00 | 10YR58 | 00 | C | D | 10YR72 | 00 | $Y$ | 0 | 0 | 0 | P | $\boldsymbol{Y}$ |  |
| 54 | 021 | mcl | 10YR42 | 00 | 75YR34 | 00 | F | D | 10YR51 | 00 | N | 0 | 0 | 0 |  |  |  |
|  | 2125 | fs 1 | $10 \mathrm{YR42}$ | 00 | 10YR66 | 34 | C | D | 10YR72 | 00 | V | 0 | 0 | 0 | $M$ |  |  |
|  | 25-32 | ms 1 | 10YR42 | 00 | 10YR58 | 66 | C | D | 10YR72 | 00 | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 32120 | c | 10 YR 72 | 58 | 10YR58 | 66 | C | D | 10 YR 42 | 00 | $\boldsymbol{Y}$ | 0 | 0 | 0 | P | $Y$ |  |
| 55 | 020 | fsz 1 | 10 YR42 | 00 | 10YR58 | 00 | C | F | 10YR51 | 00 | N | 0 | 0 HR | 5 |  |  |  |
|  | 20-42 | hel | 10 YR 53 | 00 | 10YR63 | 00 | C | 0 | 10YR71 | 00 | $Y$ | 0 | 0 HR | 5 | P | $Y$ |  |
|  | 4250 | c | 10YR58 | 71 | 10 YR58 | 00 | M | D | 10YR71 | 00 | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 50-70 | sc | $10 Y \mathrm{R} 58$ | 71 | 10YR58 | 00 M | M | D | 10YR71 | 00 | $Y$ | 0 | 0 HR | 30 | P | $Y$ | IMP STONES 70cm |
| 56 | 027 | $m \mathrm{ml}$ | 10YR32 | 62 | 10YR68 | 00 | C | D |  |  | Y | 0 | 0 | 0 |  |  |  |
|  | 27-40 | mcl | 10 YR62 | 00 | 75YR68 | 00 | M | D |  |  | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 40-85 | scl | 10YR61 | 62 | 75YR68 | 00 | M | D |  |  | $Y$ | 0 | 0 | 0 | P | $\mathbf{Y}$ |  |
|  | 85-120 | hel | 10YR61 | 00 | 75YR68 | 00 | M | D |  |  | $\boldsymbol{Y}$ | 0 | 0 | 0 | P | $Y$ |  |
| 57 | 010 | mc 1 | $10 \mathrm{YR42}$ | 00 |  |  |  |  |  |  | N | 6 | 3 HR | 11 |  |  |  |
|  | 1024 | ac 1 | 10YR54 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 HR | 30 | M |  |  |
|  | 2430 | scl | 10YR54 | 00 | 10YR68 | 00 | C | 0 | 10YR62 | 00 | $Y$ | 0 | 0 HR | 30 | $P$ | Y | IMP STONES 30cm |
| 58 | 024 | mcl | 10YR32 | 00 |  |  |  |  |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 24-40 | hcl | 10YR63 | 73 | 10YR68 | 00 | C | D |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 40120 | $c$ | 10YR61 | 00 | 10YR68 | 78 | M | $P$ |  |  | Y | 0 | 0 | 0 | P | $Y$ | Mn \& Fe CONCS |
| 60 | 012 | macl | 10YR41 | 00 | 75YR34 | 00 | C | D |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 1220 | $m \geq c 1$ | 10YR51 | 00 | 75YR46 | 00 | C | 0 |  |  | $Y$ | 0 | 0 | 0 | M |  |  |
|  | 2040 | mcl | 10YR52 | 00 | $10 Y R 66$ | 00 | C | 0 | 10YR71 | 00 | $Y$ | 0 | 0 HR | 10 | M |  | IMP STONES 40cm |
| 61 | 028 | fszl | 10YR32 | 00 | 75YR32 | 00 | C | D |  |  | $N$ | 0 | 0 | 0 |  |  |  |
|  | 2848 | nel | 10YR42 | 00 | 10YR58 | 00 | C | D | 10YR61 | 00 | $\gamma$ | 0 | 0 HR | 25 | P | $Y$ | HEAVIER BELON 40cm |
|  | 48-70 | c | 05GY71 | 00 | 75YR58 | 00 | C | D |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 70100 | sc | 056 Y 71 | 00 | 75YR58 | 00 | C | D |  |  | $Y$ | 0 | 0 | 0 | P | $Y$ |  |
|  | 100120 | scl | $056 Y 71$ | 00 | 75YR58 | 00 | C | D |  |  | $\boldsymbol{Y}$ | 0 | 0 | 0 | P | $\mathbf{Y}$ |  |
| 62 | 020 | fs2 1 | 10YR32 | 00 |  |  |  |  |  |  | N | 0 | 0 HR | 5 |  |  |  |
|  | 2038 | $f 1$ | 10YR42 | 00 | 10 YR66 | 00 | F | F | 25Y 74 | 00 | N | 0 | 0 HR | 5 | M |  |  |
|  | 38-47 | scl | 10YR42 | 00 | 10YR66 | 00 | C | 0 | 10YR62 | 00 | $Y$ | 0 | 0 HR | 5 | M | $Y$ |  |
|  | 4775 | sc | $25 Y 64$ | 54 | 75YR58 | 00 | M | 0 | 10YR71 | 00 | $Y$ | 0 | 0 HR | 5 | P | $Y$ |  |
|  | 75-100 | sc | 05GY61 | 00 | 75YR68 | 00 | C | D |  |  | $\boldsymbol{Y}$ | 0 | 0 HR | 15 | P | $\mathbf{Y}$ | IMP STONES 100 cm |
| 63 | 018 | $m s 1$ | 10YR43 | 00 |  |  |  |  |  |  | N | 0 | 0 HR | 5 |  |  |  |
|  | 1829 | ms 1 | 10YR64 | 00 | 75YR34 | 00 | C | D | 10 YR 72 | 00 | Y | 0 | 0 HR | 5 | M |  |  |
|  | 2940 | ms 1 | 10YR53 | 63 | 10YR58 | 00 | C | 0 | 10YR73 | 00 | $Y$ | 0 | 0 HR | 10 | M |  |  |
|  | 4060 | sc | 10 YR 58 | 00 | 10YR58 | 68 | C | 0 | 10YR72 | 00 | Y | 0 | 0 | 0 | P | $\boldsymbol{Y}$ |  |
|  | 60120 | scl | 10YR72 | 00 | 10YR58 | 68 C | C | D | 10YR72 | 00 |  | 0 | 0 | 0 | P | $\boldsymbol{Y}$ |  |


|  |  |  |  | -MOTTLES |  |  |  | PED |  |  |  | STONES |  | STRUCT/ | SUBS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAMPLE | DEPTH | TEXTURE | COLOUR | COL | ABUN |  | CONT | COL |  | EY | 2 | 6 | TOT | CONSIST | STR POR | IMP | SPL CALC |
| 64 | 024 | mel | 10YR54 00 | 10YR58 | 00 F | F | F |  |  | $N$ | 0 | 0 | 0 |  |  |  |  |
|  | 2430 | scl | 10YR64 00 | 10YR68 | 00 C | C | D | 05Y 63 | 00 | $Y$ | 0 | 0 | 0 |  | M |  | $Y$ |
|  | 30120 | sc1 | 10YR66 00 | 10YR68 | 00 C | C | D | 10 YR 72 | 00 | $Y$ | 0 | 0 | 0 |  | P |  | Y |


[^0]:    ${ }^{1}$ The number of days is not necessanly a contunuous penod
    2 In most years is defined as more than 10 out of 20 years

