A1 Maidstone Borough Local Plan Site 10 Boughton Mount, Maidstone Agricultural Land Classification ALC Map and Report August 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

MAIDSTONE BOROUGH LOCAL PLAN SITE 10 BOUGHTON MOUNT, MAIDSTONE

1 Summary

- 1 1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the borough of Maidstone in Kent The work forms part of MAFF's statutory input to the preparation of the Maidstone Borough Local Plan
- 12 Site 10 comprises approximately 68 hectares of land around Boughton Mount Farm Maidstone south of Maidstone An Agricultural Land Classification (ALC) survey was carried out during August 1994 The survey was undertaken at a detailed level of approximately one boring per hectare A total of 62 borings and four soil inspection pits were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture. In addition information from a previous detailed survey carried out in 1988 was used in the grading of this site
- 13 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 14 At the time of the survey the agricultural land on the site comprised apple and pear orchards with an area of rough grassland in the south Areas on the site mapped as non agricultural include scrub in the west and un metalled tracks Private dwellings tarmac roads and the Boughton Mount building have been mapped as urban The farm buildings comprise a packing plant at Boughton Mount Farm
- 1 5 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading.

Grade	Area (ha)	% of Site	% of Agricultural Land
2	10 4	15 1	177
3a	48 2	70 3	82 3
Non agricultural	23	34	<u>100%</u> (58 6 ha)
Urban	64	93	
Woodland	03	04	
Farm buildings	10	15	
Total area of site	<u>68 6</u>	<u>100%</u>	

Table 1 Distribution of Grades and Subgrades

- 16 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 17 The majority of the agricultural land on the site has been classified as Subgrade 3a good quality land with soil wetness and droughtiness as the main limitations. The majority of the borings within this mapping unit proved to be impenetrable below a medium silty clay loam or medium clay loam topsoil Two subsequent soil inspection pits showed the existence of a slowly permeable clay subsoil which slightly restricts drainage Such drainage characteristics equate to Wetness Class III with a resultant classification of Subgrade 3a Poorly drained soils can inhibit plant and root development and may be more susceptible to structural damage through trafficking by machinery or poaching by grazing livestock The remainder of the agricultural land on the site is classified as Grade 2 very good quality land with soil wetness and droughtiness as the main limitations Towards the south west of the site profiles show similar characteristics to the Subgrade 3a land yet the slowly permeable clay is deeper in the profile Therefore restrictions upon drainage are lessened such that a classification of Grade 2 is more appropriate Towards the north of the site the lower subsoil tends to be of a lighter medium silty clay loam texture and profiles are well drained However stone contents tend to be comparatively higher such that droughtiness is the principal limitation. This arises due to a slight restriction on profile available water caused by a combination of soil textures structures and stone contents interacting with the local climate which can affect crop vields

2 Climate

- 21 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature (degree days Jan-June) as a measure of the relative warmth of a locality
- 2 3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site. However climatic factors do interact with soil factors to influence soil wetness and droughtiness limitations. The field capacity days are relatively low in a regional context due to the cool dry climate which prevails. Therefore the likelihood of any soil wetness problems may be decreased.
- 2.4 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolations

Grid Reference	TQ 774520	TQ 771525
Altitude (m)	100	95
Accumulated Temperature	1394	1400
(degree days Jan June)		
Average Annual Rainfall (mm)	707	708
Field Capacity (days)	144	144
Moisture Deficit Wheat (mm)	111	111
Moisture Deficit Potatoes (mm)	105	105
Overall Climatic Grade	1	1

3 Relief

3 1 The site is generally flat lying at an altitude in the range of 90-100 m AOD. The land is gently sloping towards the southern edge of the site yet gradients are not sufficiently great to pose any limitation upon agricultural use.

4 Geology and Soil

- 4 1 The relevant geological sheet (BGS 1976) shows the entire site to be underlain by Hythe Beds
- 4 2 The published Soil Survey map (SSEW 1983) shows the soils on the site to comprise those of the Malling association These soils are described as well drained non calcareous fine loamy soils over limestone at variable depths. Some fine loamy soils with slowly permeable subsoils with slight seasonal waterlogging (SSEW 1983)
- 4 3 Detailed field examination found the soils over much of the site to be impenetrable (to the soil auger) at shallow depths with a slowly permeable clay subsoil interbedded with hard flaggy sandstone being evident from the description of the soil pits

5 Agricultural Land Classification

- 51 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

Grade 2

- 5 3 Land of this quality has been mapped towards the south west and north east of the site The principal limitations upon agricultural use within this mapping unit are minor soil wetness and droughtiness A small number of soil observations within this mapping unit proved impenetrable below the topsoil yet the majority were impenetrable at depths of between 50 90cm
- 54 Where soil observations have proved impenetrable information gained from soil inspection pits and soil data from a previous survey (ADAS Ref 2007/44/88) has been used for grading purposes
- 55 Soil profiles in the north eastern mapping unit tend to comprise very slightly (2.5% total sandstone) or slightly stony (5-8% total sandstone) medium silty clay loam or medium clay loam topsoils Where soils did not prove impenetrable to the auger below the topsoil subsoils were found to become heavier and moderately stony (8 10% total sandstone) with depth A subsequent soil inspection pit (Pit no 3) was dug in this area of the site to assess the nature of the subsoils The soil profile was found to comprise a slightly stony (5% total sandstone) medium clay loam topsoil resting upon a moderately stony (30% total sandstone) clay upper subsoil which extends to a depth of 47cm Below this depth the profile becomes lighter in texture consisting of a moderately stony (20% total sandstone) slightly gleved medium silty clay loam which extends to depth The profile is well drained and is assigned to Wetness Class I The combination of soil textures moderate substructural conditions stone contents and the local climatic regime means that there is a slight restriction on the amount of profile available water for plant growth This will have an effect upon the level and consistency of crop yields such that a classification of Grade 2 is appropriate
- 56 In the south western Grade 2 mapping unit the majority of soil observations proved impenetrable to the auger at deeper depths than elsewhere on the site A soil inspection pit (Pit no 4) showed the soil profile to comprise a slightly stony (8% total sandstone) medium silty clay loam topsoil a similarly textured upper subsoil containing 10% total sandstone extends to a depth of 42cm The lower subsoil consists of clay and silty clay horizons A slightly stony (12% total sandstone) clay extends to 69cm the depth at which a very slightly stony (5% total sandstone) silty The lower subsoils are slightly gleyed being poorly clay horizon commences structured and slowly permeable from a depth of 56cm Such drainage characteristics equate these soils to Wetness Class II with a resultant classification of Grade 2 The slight drainage impedance means that these soils may suffer from slight wetness problems such as poaching by grazing livestock or structural damage caused by agricultural machinery Furthermore these soils are also affected by a slight droughtiness limitation similar to land in the other Grade 2 mapping unit

Subgrade 3a

- 57 Land of this quality comprises the largest proportion of land on the site As elsewhere on the site the principal limitations upon agricultural use are soil wetness and to a lesser extent droughtiness The majority of soil observations within this mapping unit proved impenetrable to the auger at depths of between 20 60cm impenetrable horizons directly below the topsoil are widespread
- 58 Where soil observations have proved impenetrable information gained from soil inspection pits and soil data from a previous survey (ADAS Ref 2007/44/88) has been used for grading purposes
- 59 Topsoil textures vary across the site the majority comprising medium silty clay loams and medium clay loams although heavy clay loams and silt loam topsoils do occur in isolated patches on the site. The impenetrable nature of these soils meant that it was necessary to dig two soil inspection pits to investigate the nature of the subsoils It is evident from both pits that a compact and slightly stony (containing 10% total sandstone of a hard nature) upper subsoil is responsible for the impenetrability of many of the profiles Pit no 1 showed the soil profile to comprise a very slightly stony (4% total sandstone) medium clay loam topsoil overlying a slightly stony (10% total sandstone) medium silty clay loam upper subsoil extending to 36cm This in turn rests upon a very slightly stony (3% total sandstone) clay lower Profiles show some signs of wetness in the form of slight gleving from subsoil below the topsoil The structures of the clay lower subsoil are poor and of a slowly permeable nature causing a drainage impedance. The soil profile in Pit no 2 shows similarities to Pit no 1 the main differences being topsoil and upper subsoil textures At this location on the site a very slightly stony (4% total sandstone) medium silty clay loam topsoil rests upon a slightly stony (10% total sandstone) silt loam upper subsoil with a stoneless and slightly gleyed clay lower subsoil commencing at 47cm Once again the clay lower subsoil proves to be poorly structured and slowly permeable The drainage characteristics exhibited by both of the soil inspection pits allows the profiles to be assigned to Wetness Class III When considered along with the topsoil textures and the field capacity days for the site this gives a resultant classification of Subgrade 3a The moderate drainage imperfection exhibited by these soil profiles means that plant and root development may be restricted and the soils may be more susceptible to structural damage through trafficking by agricultural machinery or poaching by grazing livestock. It has been assumed that a slowly permeable clay subsoil similar to that observed in the soil inspection pits exists elsewhere within this mapping unit where profiles proved impenetrable Therefore the majority of agricultural land on the site has been classified as Subgrade 3a with soil wetness as the main limitation

ADAS Ref 2007/170/94 MAFF Ref EL 20/328 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 Maidstone 1 50 000 Series (solid and drift edition)

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religious buildings cemeteries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

1 3

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft' after uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

l

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Definition of Soil Wetness Classes

Wetness Class	Duration of Waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
ц	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
v	The soil profile is wet within 40 cm depth for 211-335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PHI AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions Database Printout - Boring Level Information Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop	DS			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			Ū

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a 'Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and s	tones	SLST	soft oolitic oi	dolimitic limestone

CH chalk FSST soft fine grained sandstone

ZR soft argillaceous or silty rocks GH gravel with non porous (hard) stones

MSST soft, medium grained sandstone GS gravel with porous (soft) stones

SI soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub-angular blocky PL platy	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very frable FR frable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance, wheat
- **MBP** moisture balance potatoes

Site Na	me MAII	DSTON	IE LP SI	ΤE	10	Pit Number	1	P				
Grid Re	ference	לקסד	465208		Average Annu Accumulated Tield Capaci Land Use Slope and As	al Rainfall Temperature ty Leve} pect	70 139 144	7 mm 4 degree days degrees	days			
HORIZON	ι τεχτυ	RE	COLOU	٤	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 28	3 MCL		10YR43	00	2	4	HR					
28 36	5 MZC	L	10YR44	00	0	10	HR	С	MDCSAB	FR	м	
36- 54	r c		05YR54	00	0	3	HR	С	MDMPR	FM	P	
54- 67	7 C		05YR54	00	0	3	HR	С	MDCAB	FM	Р	
67 120	о с		05YR54	00	0	3	HR	С	WKCSAB	FM	Ρ	
Wetness	s Grade	ЗA		ł	Wetness Clas	s III	ſ					
				1	Gleying	S28	Cin				4 -1	
					SPL	036	Ст					
Drought	t Grade	2			APW 126mm	MBW	15 mm					
					APP 104mm	MBP ·	-1 mm					
FINAL	ALC GRADE	3.	Α.									

MAIN LIMITATION Wethess

)

`•

Site Nar	me MAID	STONE LP SI	(TE 10		Pit Nu	mber	2	P			~	
Grıd Reference TQ77585198			Aver Accu Fiel Land Slop	Average Annual Rainfall Accumulated Temperature Field Capacity Level Land Use Slope and Aspect			707 mm 1394 degree days 144 days degrees					
HORIZON 0- 28 28- 47 47 70	TEXTUR MZCL ZL C	E COLOU 10YR43 10YR54 05YR54	R ST 00 00 00	ONES >2 2 0 0	TOT ST 4 10 0	TONE	LITH HR HR	MOTTLES C C	STRUCTURE MDCSAB STCAB	CONSIST FR FM	SUBSTRUCTURE M P	CALC
Wetness	Grade	ЗА	Wetn Gley SPL	ess Clas ing	s /	III S47 047	Cm Cm					
Drought	Grade	3A	apw app	107mm 119mm	mbw Mbp	- 1	4 mm 4 mm				-	
FINAL A	LC GRADE	3A										

MAIN LIMITATION Wetness

4

)

Site Nam	ne MAID	STON	IE LP SI	TE	10 1	Pit Nu	 umber	· 3	Р			*	
Grid Ref	ference	TQ77	7305280	ļ	Average Annua	1 Raıı	nfall	70	7 mm				
				ļ	Accumulated Te	empera	ature	139	4 degree	days			
				۶ ا	Field Capacity Land Use	y Levi	∋J	144	days				
					Slope and Asp	ect			degrees				
HORIZON	TEXTU	٩E	COLOUI	२	STONES >2	tot s	TONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 27	MCL		10YR43	00	2	5		HR					
27- 47	С		05YR54	00	٥	30		HR		MDCSAB	FM	м	
47 120	MZCI	_	75YR54	00	0	20		HR	С	MDCSAB	FR	м	
Wetness	Grade	1		1	Wetness Class	1	I						
					Glevina		S47	СЛ					
				1	SPL		No	SPL				_	
Drought	Grade	2			APW 130mm	MBW		19 mm					
					APP 101mm	MBP		4 mm					
FINAL A	LC GRADE	2											

MAIN LIMITATION Droughtiness

L

}

Site Nam	ne MAID	STONE LP	SITE	10	Pit Number	~ 4	Р			` •	
Grid Ref	ference	TQ7714519	8	Average Annu	al Rainfal	1 70	17 mm				
				Accumulated	Temperature	e 139	4 degree	davs			
				Field Capaci	ty Level	144	days	-			
				Land Use	-		•				
				Slope and As	pect		degrees				
HORIZON	TEXTUR	RE COLO	UR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 23	MZCL	. 10YR4	3 00	2	8	HR					
23 42	MZCL	10YR5	4 00	0	10	HR		MDCSAB	FR	м	
42- 56	С	75YR5	4 00	0	12	HR	С	MDCSAB	FM	м	
56- 69	С	75YR5	4 00	0	12	HR	С	WKCAB	FM	Р	
69 120	ZC	10YR5	4 00	0	15	HR	С	MDCAB	FM	Р	
	. .										
Wetness	Grade	2		Wetness Clas	s II					**	
				Gleying	S42	Cm					
				SPL	056	CM					
Drought	Grade	2		APW 127mm	MBW	16 mm					
				APP 106mm	MBP	1 mm					
FINAL A	LC GRADE	2									

MAIN LIMITATION Wetness

40 TQ77605210 ORC

41 TQ77705210 ORC

42 TQ77005200 ORC

43 TQ77105200 ORC

- --

1 1

1 1

1 1

1 1 43 68 43

46 -65 46

64 47

26 85

47

85

62 4

59 4

58 4

20 3B

SAMPI	E	ASPECT				WETN	NESS	WHE	AT	PO	τs	м	REL	EROS	I FR	OST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY SP	۳L C	CLASS	GRADE	AP	M8	AP	MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
1	T077105280	OPC		\$50.050	h	3	34	100	2	114	0	24					ыc	24	
10	T077465200			528 036	;	2	34	126	15	104	. 3	24						<u>э</u> м	0004100
2	1077205280	OPC		S22 041	2	2	34	105	6	1104	-1	20					WE LIE	24	P904120
20	1077505100			SA7 04	7	2	34	103	1	110		24						JA ZA	05 710
25	T077105270			347 04		1	1	85	-4 26	115 05	-20	30 20					ME DD	34	MIT AL SEE OD
5	107/103270	UKC					I	05	20	05	-20	30					DK	AC	145 SEE 2P
ЗP	TQ77305280	ORC		S47		1	1	130	19	101	-4	2					DR	2	
4	TQ77205270	ORC		S65 070)	2	2	128	17	120	15	2					WE	2	
4P	TQ77145198	ORC		S42 056	6	2	2	127	16	106	1	2					WD	2	
5	TQ77305270	ORC		0		2	2	81	30	81	24	3B					WE	ЗA	I45 SEE1P/2P
6	1077105260	ORC				1	1	92	19	94	11	ЗА					DR	2	155 SEE 3P
								l											
7	TQ77205260	ORC				1	1	80	31	80	-25	3B					DR	3A	I40 SEE 2P
8	TQ77305260	ORC		S35 03	5	3	3A	89	22	99	6	3B					WE	ЗA	I70 SEE1P/2P
9	TQ77105250	ORC				1	1	85	26	87	18	3B					- DR	ЗA	I55 SEE 2P
10	TQ77205250	ORC				1	1	53	58	53	-52	4					WE	ЗA	130 SEE1P/2P
11	TQ77305250	ORC				1	1	62	49	62	43	3B					DR	2	SEE 3P
12	T0774052 0	ØRC		S25		1	1	104	7	117	12	34					DR	2	170 SEE3P
13	T077005240	ORC				1	1	56	55	56	49	4					WE	- 3A	130 SEF1P/2P
14	TQ77105240	ORC				1	1	47	64	47	58	4					WE	3A	125 SEF1P/2P
15	TQ77205240	ORC		S35 05	5	2	2	110	1	109	4	3A					WE	2	190 SEF3P
16	TQ77305240	ORC	•			1	1	59	52	59	46	4					WE	- 3A	I35 SEE1P/2P
17	1077405040	000				4	1	6 0		60	0.5								
17	1077405240			0		1	1	63	42	69	35	38					WE	3A	140 SEE1P/2P
19	1077105232			U		2	3A 2	50	01	50	-55	4					WE	3A 24	130 SEE1P/2P
20	1077205220					1	2	44 53	07 E0	44 53	51	4					WE	AL ۵۰	128 SEETP/2P
21	1077203230					1	1 1	20	96 71	33	20	4					WE	3A Da	132 SEETP/2P
22	1011303230	OKC				•	I	40	/ 1	40	-65	4					WE.	3A	125 SEETP/2P
23	TQ77405230	ORC		S45 04	5	3	ЗА	138	27	116	11	2					WE	3A	
24	TQ77505230	ORC				1	1	44	67	44	61	4					WE	3A	I25 SEE1P/2P
27	TQ77105220	ORC				ı	1	81	30	81	24	3B					DR	2	I50 SEE4P
28	TQ77205222	ORC		S80		1	2	136	25	112	7	2					WD	2	SGLEY80
29	TQ77305220	ORC		0		1	2	62	49	62	43	ЗB					WE	ЗА	I40 SEE1P/2P
30	T077405220	ORC				1	1	66	45	66	-39	38					WF	٦A	140 SEE1P/20
31	T077505220	ORC				3	1	34	77	34	71	4					WE	34	120 SEE1P/2P
32	TQ77605220	ORC				1	1	57	54	57	48	4					WF	34	135 SEF1P
34	TQ77005208	ORC				1	1	63	48	63	-42	38					DR	2	135 SEF4P
35	TQ77105210	ORC				1	1	91	20	94	11	3A					DR	2	155 SEF4P
																		-	
36	TQ77205210	ORC		045 05	5	1	3A	101	10	105	٥	ЗA					WE	3A	
38	TQ77405210	ORC		S60 06	0	2	2	145	34	119	14	1					WE	2	
39	TQ77505210	ORC		S35 03	15	3	3A	102	9	104	-1	3A					WE	ЗA	185 SEE1P

page 1

.,

WE

₩E

WE

WD

3A 128 SEE1P

3A 125 SEE1P

2 I 50 SEE4P

3A SEE 1P

SAMP	LÉ		A	SPECT				- WETI	NESS	WH	EAT	PO	TS	М	REL	EROSN	FRO	DST	CH	ЕM	ALC		
NÖ	GRID	ref	USE		CRONT	GLEY	' SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	DIST		LIMIT		COM	MENTS
									•												_		
44	107720	15200	ORC			560	060	2	2	109	2	107	2	3A						WD	2	190	SEE4P
45	TQ7730	5200	ORC					1	1	44	67	44	61	4						WE	3A	125	SEE1P/2P
46	TQ7740	5200	ORC			S25	043	3	3A	130	19	107	2	2						WE	3A	SEE	2P
47	TQ7750	15200	ORC					١	1	35	76	35	70	4						WEJ	3A	120	SEE2P
48	тQ7760	5200	ORC					1	1	29	82	29	-76	4						WE	3A	120	SEE2P
49	TQ7770	5200	ORC					۱	۱	54	57	54	51	4						WE	3A	135	SEE2P
50	TQ7780	5200	ORC					1	2	60	51	60	45	4						WE	3A	137	SEE2P
51	TQ7700	5190	RGR	S	02			1	1	52	~59	52	53	4						WE	ЗA	130	SEE1P/2P
52	TQ7710	5190	RCR	s	02			1	1	54	57	54	51	4						WE	ЗA	130	SEE1P/2P
53	т07720	5190	RCR	S	02	S47	047	3	3A	, 136	25	99	-6	2						WE	ЗA	SL	GLEY 47
								_		,													
54	10//30	15190	ORC					1	1	52	59	52	53	4						WE	3A	130	SEE1P/2P
55	107740	15190	ORC			\$39	039	3	3A	79	32	79	26	38						WE	ЗA		
56	107750	15190	ORC					1	1	55	56	55	50	4					-	WE	ЗA	135	SEE1P/2P
57	TQ7760)5190	ORC					1	1	54	57	54	51	4						WE	ЗA	135	SEE2P
58	TQ7770	05190	ORC					1	1	33	78	33	-72	4						WE	ЗA	120	SEE2P
59	TQ7780	05190	ORC			S42	042	3	3A	119	8	97	8	2						WE	3A		
60	TQ7790	05190	ORC					1	1	102	9	108	3	3A						WE	3A	175	SEE2P
61	TQ7720	05180	RGR	S	02			1	1	62	49	62	43	3B						WE	3A	130	SEE2P
62	TQ7730	05180	RGR	S	02			1	1	62	-49	62	43	3B						WĘ	3A	130	SEE2P
63	TQ7740	05180	RGR			S25	025	3	ЗА	58	-53	58	47	4						WE	3A	130	SEE2P
64	TQ7750	05180	O ORC	s	03			1	1	31	80	31	74	4						WF	34	120	SEE2P
65	T0776	05180) ORC	S	03			1	2	85	26	92	13	3B						WE	34	160	SEE2P
66	T0777	05180	ORC	S	03			1	1	31	80	31	74	4						WE	34	120	SEE2P
67	TQ7780	05180) ORC					1	1	37	74	37	68	4						WE	3A	125	SEE2P

-

				-	MOTTLES		PED		-	STONE	- s	- STRUC	т/	SUB	s				
SAMPLE	DEPTH	TEXTURE	COLOUR	ÇOL	ABUN	CONT	COL	GLEY	2	6 LIT	гн тот	CONSI	ST	STR	POR	IMP S	PL (CALC	
۱	0 25	mc]	10YR43 00						0	0 HR	5								
	25 40	hc1	10YR42 43	00MN(0 00 F				0	0 HR	2			Μ					
	40 50	zl	10YR54 00	00MN()0 00 F				0	0 HR	2			Μ					
	50 80	с	75YR54 00	75YR!	56 72 C		00MN00	00 S	0	0	0			Ρ			Y		
1P	0 28	mc]	10YR43 00						2	0 HR	4			_					
	28-36	mzc]	10YR44 00	75YR	58 00 C		UOMNUO	00 S	0	0 HR	10	MDCSA	BF	RM	Ŷ				1
	36 54	c	05YR54 00	05YR	58 00 C			5	0	O HR	3	MDMPR	: Ft	M P	Y		Y	,	
	54 67	с	05YR54 00	0578				5	0	0 HR	3	MDCAE		1 P	Ŷ		Y		
	67 120	С	05YR54 00	U5YR	58 00 0			5	U	U HR	3	WKCSA	8 H	1 P	Ŷ		Ŷ		
2	0.22		100042.00				1		2	ο up									
2	22-0	mzci hanal	101643 00		50 00 C			2 00	2		4			м					
	42 43	nzei	757054 00	0 05VD	50 00 0		00MN00	00 5	0		2			m D			v		
	43 60	ç	751654 00	I UDIR	50 00 C		0000000	00 3	U	Unk	4			۲			۲ 		
2P	0.28		107843 00	ı					2	лнр	۵								
21	28 47	- 1 - 1	10VR54 00	, DOMNI	00 00 C				0	0 HR	10	MOCS	RE	РM	v				
	47 70	2, C	05YR54 00	05YR	58 00 C		05YR54	00 S	ñ	0	0	STCAF	10 F	мр	v		v		
	47 70	C	0011004 00	00.0				00 0	Ŭ	Ŭ	Ū	UT OAL	, ,,				'		
3	0-22	mzcl	10YR44 43	3					0	0 HR	2								
	22 40	zl	10YR54 00)					0	0 HR	5			м					
	40 45	mcl	104R56 00)					0	0 HR	20			м					IMP HARD SANDSTONE
3P	0 27	mcl	10YR43 00)					2	0 HR	: 5	i							
	27-47	с	05YR54 00)					0	0 HR	30	MDCS/	AB F	мм	Ŷ				
	47 120	mzcl	75YR54 00) 75YR	58 00 C		00MN00	00 S	0	0 HR	20	MDCS	AB F	RМ	Y				
4	0 25	mzcl	10YR44 42	2					0	0 HR	2								
	25 50	mzcl	10YR54 00)					0	0 HR	: z			М					
	50 65	hzcl	10YR54 00	כ					0	0 HR	: 8	l		М					
	65 70	hzcl	10YR54 00) 10YR	58 00 C		00MN00	00 S	0	0 HR	: 5	5		Μ					
	70 100	с	75YR46 00) 75YR	58 00 C		00MN00	00 S	0	0 HR	2	!		P			Υ		
4P	0 23	mzcl	10YR43 00	0					2	0 HR	2 8	}							
	23-42	mzcl	10YR54 00)					0	O HR	10	MDCS	VB F	RM					
	42 56	с	75YR54 00	0 75YR	58 00 C		OOMNOC) 00 S	0	0 HF	12	MDCS.	48 F	ММ					
	56 69	с	75YR54 00	0 75YR	158 00 C		QOMNOC	00 5	0	0 HF	2 12	2 WKCA	BF	ΜP	Y		γ		
	69 120	zĊ	10YR54 00	D 75YH	158 UU C		107868	3 00 5	0	OHF	2	5 MDCA	BF	ΜP	Ŷ		Y		
F	0.05	- 1	1000000	0.1000	50 00 C		000000		^	.									
5	0 25	mzc i	101842 00	0 101M					0	0 HF		<u>-</u>							
	25 45	nzci	101843 5.	3 1017	58 UU C		UUMINUU	JUU Y	U	U	, c	J		M					IMP HARD SANDSTUNE
6	0-20	macl	107043 44	4					2	0 ur	, ,	1							
0	29 40	- -	107845 4	γ Λ					4 0	0 H1	, · ·	,)		м					
	40-55	<u>م</u> را سردا	107256 5	v R					0 0	n o ni o	2 20	, 1		M M					THE HADE CANESTONE
				-					Ű	U 11	, 20	•		13					THE DAKE SANDSTONE
7	0-25	zl	10YR54 0	0					2	0 н	2	1							
	25 40	mzcl	10YR54 5	6					0	0 н	र !	5		м					IMP HARD SANDSTONE

page 1

•

program ALCO11

COMPLETE LIST OF PROFILES 02/28/95 MAIDSTONE LP SITE 10

page 2

					MOTTLES		PED			S	FONES		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR /	POR	IMP SPL CALC		
<u> </u>	0.00		100040.00						^	•								
8	0 20	mci	101843 00						2	0	HK	4						
	20-35	hc I	10YR44 00	3500			~~~~~	~~ ~	0	0	нк	2		Mi O			.	
	35 70	c	75YR54 00	75YR	58 UU C		QUMMUU	00 5	Q	Q	HR	10		P		Y	IMP HAR	D SANDSTONE
9	0 28	mcl	10YR43 44						0	0	HR	2						
	28 35	mc]	10YR44 00						0	0	HR	5		м				
	35 55	sc]	10YR56 00						۰ ٥	0	HR	5		M			IMP HAT	D SANDSTONE
									•	-	••	•					*	
10	0 30	mzcl	10YR43 00						5	0	HR	8					IMP HAP	ND SANDSTONE
									-	_								
11	0.25	mzcl	10YR43 00				I		2	U	нк	4						
	25 35	mzcl	10YR56 00	OOMN	00 00 F		•		Q	0	HR	3		M			IMP HAP	RD SANDSTONE
	• • •		100010 00						~								}	
12	0 25	rnci	10YR43 00						2	0	HR	4					,	
	25 55	mzcl	75YR53 00	75YR	56 UU C		OUMNUU	00 S	0	0	HR	2		м				
	55 70	hzc1	75YR54 00	75YR	58 00 C		OOMNOO	00 S	0	0	HR	8		M			IMP HAN	ND SANDSTONE
13	0-30	mzcl	10YR43 44						0	0	нR	2					TMP HAD	D SANDSTONE
									•			-					100	
14	0-25	mzcl	10YR43 00						D	C	HR	2					IMP HA	RD SANDSTONE
15	0-20	mzcl	10¥R43 42						5	C	HR	8						
	20 35	hzc1	10YR53 54	OOMN	00 00 F				0	C	HR	2		М				
	35 55	hzcl	75YR54 52	75YR	58 00 C		00MN00	00 S	0	C	HR	5		М				
	55 90	С	75YR56 00	75YR	58 00 C		00MN00	00 S	0	C	HR	5		P		Y	IMP HA	RD SANDSTONE
16	0.25	macl	10VR43 00						٨	ſ	нρ	Â						
.0	25 35	mzel	10VR44 00						- م	· ·		0		м				
	23 33	IIIZC I	101844 00						0		FIR.	0		1-1			IMP HA	RU SANDSTUNE
17	0 25	mzcl	10YR43 00						2	c	HR	4						
	25 40	mzcl	10YR43 44						0	C	HR	6		м			IMP HA	RD SANDSTONE
19	0 25	hc1	10YR31 00	75Y	46 00 C		00MN00	00 Y	1	C) HR	5						
	25 30	hc]	10YR44 32	10YF	56 00 C			S	0	C	RH (5		м			IMP HA	RD SANDSTONE
~~												_						
20	0 20	hCl	TUYR43 00						1	(JHR	5						
	20/28	hci	75YK68 43						0	i l) HR	8		M			ІМР НА	RD SANDSTONE
21	0 25	mc)	10YR43 00						1	() HR	5						
-	25 32	mcl	10YR44 00	•					0			10		м				PO SANDSTONE
									ĩ			10					110 116	
22	0 22	mzcl	10YR43 00	1					1	() HR	4					ІМР НА	RD SANDSTONE
23	0 25	mzcl	10YR43 00)					1	() hr	4						
	25 45	hc1	10YR46 00	00M	100 00 C				C) () hr	5		M				
	45 95	с	75YR56 00	1046	R63 58 M	l		S	C) ()	0		Р		Y		
	95-120	c	75YR56 00	75Y	₹63 58 M	l		S	C) () HR	10		Ρ		A		

page 3

					MOTTLES	\$	PED			S1	TONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	Y >2	6	LITH	TOT	CONSIST	STR POR	IMP SPL CALC		
24	0 25	mzcl	10YR43 00						2	0	HR	8				IMP HARD	SANDSTONE
07	0.00	1	100042 00						-	•		0					
21	20 40	mc i h = 1	101842 00						2 0	0	HK	ອ ວ					
	30 40	nci hel	10VR53 00						0	0	нк	י ר		۲ M			CANDOTONE
	40 50	nc i		UUMINU	JU UU F				U	0	нк	د		M		IMP HARD	SANDSTONE
28	0-25	hc1	10YR43 00	i					۱	0	HR	3					
	25 50	hc1	10YR54 00	I					0	0	HR	8		М			
	50 80	c	75YR56 00)					0	0	HR	1		м			
	80 120	c	75YR56 00	10YR	56 58 C			S	0	0	HR	1		Μ			
29	0 18	hcl	10YR42 00	10YR	56 00 C		DOMNOO	00 Y	· 1	0	HR	5					
	18 25	с	75YR56 00	10YR	58 00 C				0	0	HR	10		м			
	25-40	hc]	10YR44 54						0	0	HR	15		M		IMP HARD	SANDSTONE
																100 1000	
30	0 25	mzcl	10YR54 00)					1	0	HR	3					
	25 40	hc]	10YR54 00)					0	0	HR	20		М		IMP HARD	SANDSTONE
31	0-20	mzcl	10YR43 00)					3	0	HR	8				IMP HARD	SANDSTONE
																}	
32	D 28	mzcl	10YR43 00)					3	0	HR	12				,	
	28 35	mzcl	10¥R54 68	3					0	0	HR	15		м		IMP HARD	SANDSTONE
34	0 25	mzcl	10YR43 00)					0	0	HR	2					
	25 35	mzcl	10YR43 54	;					0	0	HR	5		м		IMP HARD	SANDSTONE
25	0-20		104043 44	•					0		un	n					
20	20 20	haol	107845 44	+ ר					0			2		м			
	20 30	n201	101854 00	, ר					0	0		ک د		M			CANDETONE
	20 22	IIIZC I	1011(30-0)	,					U	, ,		5		171		IMP HARD	SANDSTONE
36	0-20	hc1	10YR42 00	כ					2	2 0	HR	4					
	20 45	hcl	10YR43 00	0 10YR	58 00 F				0	0 0	HR	2		м			
	45 55	hcl	10YR53 42	2 10YR	58 00 C		000000	00	(O	0	HR	10		м			
	55 80	с	75YR56 00	0 10YR	58 00 C			:	S C) () HR	10		Р	Y	IMP HARD	SANDSTONE
38	0-25	mzc]	10YR42 43	3					Q) 0	HR	3					
	25-60	hzcl	10YR46 42	2					C) 0	HR	5		м			
	60 75	hzcl	75YR56 00	D 10YR	56 00 C			:	s d) 0) HR	5		м	Y		
	75 120	с	75YR56 00	0 10YR	56 00 C			:	S 0	0) HR	5		Р	Y		
39	0.25	mzcl	10YR43 0	D					n	ור	} HR	4					
00	25 35	തവി	10YR44 54	4					ŗ	, c		5		м			
	35 85	с	75YR56 0	0 10YR	68 63 C	:		:	s c		HR	5		P	Y	IMP HARD	SANDSTONE
	,	_		_						_							
40	0 21	mc]	10YR42 00	0					3	3 C	HR	12					
	21-28	hc I	101854 0	U					C) () HR	15		м		IMP HARD	SANDSTONE
41	0 30	mcl	10YR43 5	3					7	7 0) HR	15				IMP HARD	SANDSTONE

page	4

					MOTTLES	- -	PED			S	TONES-		STRUCT/	SUBS							
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR POR	IMP	SPL	CALC				
42	0 25	mzcl	10YR42 00						0	0	HR	2						тмр н	ARD	SANDST	TONE
16-			,						•			L						1,		0.11001	, çıı E
43	0 30	mzcl	10YR43 00						2	0	HR	4									
	30-50	hc1	10YR54 00						0	0	HR	5		М				IMP H	iard	SANDST	TONE
44	0 22	mcl	10YR42 00						4	0	HR	8									
	22 60	hc1	10YR54 00						0	0	HR	5		м							
	60 90	с	75YR54 00	75YR	58 00 C			S	0	0	HR	5		P		Y		IMP H	IARD	SANDS	TONE
45	0 25	mzcl	10YR43 00						4	0	HR	8						IMP H	IARD	SANDS	TONE
46	0_25	a ze1	100043 00				1		,	0		,									
40	25 43	hcl	107843 00	1078	56 00 C			2 00	, م	0	i up	4 5		м							
	23 43 43 60	nc i	757856 00	1078	56 00 C		0011000	00 3	0	0		5		D		v					
	60 88	с с	757056 00	1070	56 63 C			s S	n N	ິ ດ	110	2		r D		, -					
	88 120	c	75YR56 00	10YR	58 00 C			S	0	0)	0		P		Ŷ					
47	0.20		107842-00						2	~		0						140.4		CANDE	TOUE
47	0 20	mzc i	101843 00						2	ų	нк	8						IMP F	IARD	SANDS	TONE
48	0 20	mzc)	10YR43 00						8	C) HR	25						IMP F	IARD	SANDS	TONÉ
49	0 25	mcl	10¥R43 00						6	C) HR	12									
	25 35	hc]	10YR54 00						0	C) HR	8		Μ				IMP H	IARD	SANDS	TONE
50	0 25	hc1	10YR42 00						0	() HR	5									
	25 37	hc1	10YR56 00						0	C) HR	10		М				JIMP 1	HARD	SANDS	TONE
51	0 30	mzc1	10YR43 00						0	C) HR	6						IMP H	HARD	SANDS	TONE
52	0-30	mzcl	10YR43 00						0	0	D HR	5						IMP I	HARD	SANDS	TONE
53	0-25	mcl	10YR43 00						0) HR	10									
	25-35	c	75YR56 00						0	() HR	10		м							
	35 47	с	75YR56 00						0	() HR	20		м							
	47-70	c	05YR56 58	75YR	68 00 C			S	0	1 (о ня	5		Ρ		Y					
	70 120	hcl	05YR56 00	75YR	58 00 C			S	0) (D HR	5		м							
54	0 22	mzcl	10YR42 43	l					4	. () HR	8									
	22-30	mzcl	10YR44 00)					0) (OHR	5		М				IMP	HARD	SANDS	TONE
55	0 25	mcl	10YR43 00)					1	ť	DHR	4									
	25 39	hcl	10YR54 00	1					0) (0 HR	10		м							
	39 70	с	75YR56 54	75YR	58 00 C				0) (0 HR	12		Ρ		Y					
56	0 18	mCl	10YR43 00)					1	(0 HR	4									
	18 35	hcl	10YR54 00)					C) (0 HR	8		м				IMP	HARD	SANDS	STONE
57	0 22	mc]	10YR43 00)					2	2 (0 HR	10									
	22 35	шĊl	10YR54 00	00MN	100 00 F				0) (0 HR	10		м				IMP	HARD	SANDS	STONE
																			-	-	-

page 5

				-	MOTTLES		PED			-STO	IES	STRUCT/	SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	Y >2	>6 L	стн то	OT CONSIST	STR	POR IN	1P SPL CA	_C		
58	0 20	mcl	10YR43 00						6	0 н	R 10)				IM	P HARD	SANDSTONE
59	0 27	mc1	10YR43 00						7	0 H	R 15	5						
	27-42	с	10YR54 56		С		00MN00	00	0	0 Н	R 15	5	М					
	42 120	с	05YR56 00	10YR	56 00 C	I	05YR58	00 S	0	0 Н	२ १	5	Ρ		Y			
60	0~25	mcl	10YR41 00						0	он	R!	5						
	25 75	hc1	10YR54 56		С		00MN00	00	0	0 Н	R !	5	Μ			١٢	IP HARD	SANDSTONE
61	0 30	z١	10YR42 00						0	οн	R 8	3				١٢	1P HARC	SANDSTONE
62	0 30	zl	10YR42 00				1		0	0 н	R	3				11	1P HARE	SANDSTONE
63	0 25	mcl	10YR43 00						0	0 н	R 1	D						
	25 40	с	75YR56 00	05YR	56 00 C		10YR66	00 S	0	0 Н	R 1	D	Ρ		Υ -	II	1P HARC	SANDSTONE
64	0 20	mzcl	10YR43 00						3	0 н	R 2	0				II	1P HARC	SANDSTONE
65	0 30	hcl	10YR43 00						2	0 н	R 1	0						
	30 60	с	10YR56 44	10YR	63 00 F				0	0 H	R 1	0	М			11	1P HAR() SANDSTONE
66	0 20	mzcl	10¥R43 00)					6	0 F	IR 1	5				I	MP HAR	SANDSTONE
67	0 25	നവി	10YR43 00)					8	0 F	IR 1	5				I	MP HARI	D SANDSTONE

ļ