A2 LIDSEY LANDFILL EXTENSION LIDSEY, WEST SUSSEX STATEMENT OF PHYSICAL CHARACTERISTICS ALC and Soil Resource Maps July, 1994

STATEMENT OF PHYSICAL CHARACTERISTICS

Lydsey Landfill Extension, Lydsey, West Sussex

Summary

- 1 1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality on land adjacent to the existing landfill site at Lydsey in West Sussex This work was in connection with an ad hoc planning application to extend the area of landfill given the high quality of land involved a statement of the site s physical characteristics has also been prepared
- 1 2 Approximately 22 hectares of land was surveyed in July 1994 The survey was undertaken at a detailed level of approximately one boring per hectare A total of 23 borings and 3 soil inspection pits were assessed in accordance with MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long term limitations on its use for agriculture
- 1 3 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 1 4 At the time of survey the agricultural land use was wheat on the two main fields with permanent grass on the lowerlying western field The Non agricultural area relates to a farm track
- 1 5 The distribution of the grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading. This map supersedes any previous survey information for this site.

Table 1 Distributi	ion of Grades and		
Grade	Area (ha)	% of Site	% of Agricultural Area
3a	189	86 3	89 2
3b	23	10 5	<u>10 8</u>
Non Agricultural	03	14	100% (21 2 ha)
Agricultural Bldgs	<u>04</u>	<u>18</u>	
Total	21 9 ha	100%	

- 16 A general description of the grades subgrades and land use categories is provided in Appendix I The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 1 7 The land quality on the site has been classified as Subgrade 3a (good quality land) on the two main fields and Subgrade 3b (moderate quality land) on the western field Soil

wetness is the main limitation across the site as a result of clay subsoils that restrict the drainage soils in the western field are significantly worse in terms of wetness than the majority of the site

2 Climate

- 21 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 22 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality The combination of rainfall and temperature at this site mean that there is no overall climatic limitation

Table 2 Climatic Interpolation

Grid Reference	SU929038
Altıtude (m AOD)	9
Accumulated Temperature	1539
(°days Jan-June)	
Average Annual Rainfall (mm)	767
Field Capacity Days	156
Moisture deficit wheat (mm)	118
Moisture deficit potatoes (mm)	114
Overall Climatic Grade	1

3 Relief

31 The majority of the site is flat and lowlying at an altitude of 59 metres The small western field lies below the level of the rest of the site with a strong break of slope marked by the existing field boundary The slope itself is not wide enough to map separately and the majority of the western field is flat

4 Geology and Soils

- 4 1 The published geology map for the site area (BGS 1972) shows the site to be underlain by drift Brickearth deposits over Upper Chalk
- 4 2 The published soils information for the area (SSEW 1983) shows the site to comprise mainly soils of the Park Gate series (moderately permeable soils affected by high winter water tables) with the Calcetta series in the west (loamy pebbly marine drift)

5 Agricultural Land Classification

5 1 The ALC classification of the site is shown on the attached ALC map

5 2 The location of the soil observation points is shown on the attached sample point map

Subgrade 3a

- 5 3 The majority of the site has been placed in this grade with soil wetness as the single most limiting factor Two soil pits have been dug in this map unit and these describe the range of soils that exist
- 5.4 Typically the soils exhibit medium silty clay loam topsoils overlying clay subsoils that extend to depth There is clear evidence of shallow gleying throughout these soils but there was difficulty in determing the presence of a slowly permeable layer by auger observation alone under the dry conditions that prevailed during the time of survey the subsoil clays often crumbled out of the auger The soils at Pit 2 for example show clear evidence of gleying at shallow depths but the clay subsoils are not slowly permeable subsoils are tending to angular but are described as moderately developed coarse subangular blocky These soils fall into Wetness Class II (see Appendix II) and may be graded as high as Grade 2 Pit 3 however shows soils that are similarly gleyed at shallow depths but also possess slowly permeable subsoils with moderately developed prismatic structures These soils fall into Wetness Class III and can be graded no higher than Subgrade 3a
- 55 There is clearly some variation within this mapping unit with some individual observations of a higher quality than Subgrade 3a but the variation is such that it has not proved viable to delineate an area of Grade 2 As a result the whole of the two large fields has been placed in Subgrade 3a with soil wetness as the key limitation. This limitation will inhibit root development but will mainly restrict the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock

Subgrade 3b

56 Poorer quality land is located in the west of the site on lowerlying land in a flood meadow location. Pit 1 is located in this map unit and illustrates soils with a significant soil wetness limitation related to slowly permeable clay horizons at shallow depths. The soils are placed in Wetness Class IV Anecdotal evidence suggests regular flooding but there is not enough information available to downgrade the land further this part of the site is at best Subgrade 3b

6 Soil Resources

61 The distribution of the soil resources across the site together with the types of materials and volumes involved are shown on the attached soil resource maps

Topsoil

- 6 2 Topsoil is defined as the organic rich darker surface horizons of medium silty clay loam and silt loam texture on the two eastern fields and heavy clay loam on the western field These two topsoil resource units reflect the ALC boundaries
- 63 In the east in Map Unit A the medium textured topsoils are approximately 25 cm deep brown in colour (10YR53) with a negligible stone content a moderately developed coarse subangular blocky structure and a firm or friable consistence There is slight evidence of mottling in the topsoils but not enough to call them gleyed
- 64 In the west in Map Unit B the heavy textured topsoils are approximately 27 cm deep dark greyish brown in colour (10YR42) with a negligible stone content a moderately developed coarse subangular blocky structure and a firm consistence Again there is slight evidence of mottling but the soils are not gleyed
- 6.5 There is a total topsoil resource available on the site of 55 1990 cubic metres

Subsoil

- 6 6 Subsoil is defined as the non organic rich lighter subsurface horizons of clay in the western fields and clay and silty clay in the eastern field These two subsoil resource units reflect the ALC and topsoil boundaries
- 67 In the east in Map Unit A the subsoils are approximately 95 cm thick and exhibit a range of colours (10YR62 63 and 53 and 2 5Y64) The soils are stone free and show clear evidence of gley colours and mottling The structures range from moderately developed coarse subangular blocky to moderately developed coarse prismatic depending on whether or not they are slowly permeable porosity is low for all subsoils
- 68 In the west in Map Unit B the subsoils are approximately 93 cm thick and light brownish grey in colour (2 5Y62) The soils are stone-free and show very clear evidence of gley colours and mottling The structures are initially prismatic becoming massive with depth The subsoils have low porosity and are slowly permeable
- 69 There is a total subsoil resource available on the site of 207 610 cubic metres

ADAS Reference 4202/165/94 MAFF Reference EL 42/603 Resource Planning Team Guildford Statutory Group ADAS Reading

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religious buildings cemeteries. Also hard-surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft-surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft' after uses may apply

Woodland

Includes commercial and non-commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Definition of Soil Wetness Classes

Wetness Class	Duration of Waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
V	The soil profile is wet within 40 cm depth for 211-335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

ļ

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions Database Printout - Boring Level Information Database Printout - Horizon Level Information

]

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Crop	os			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MRELMicrorehef limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТΧ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			

ļ

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR MSST SI	soft argillaceous or silty rocks soft medium grained sandstone soft weathered igneous/metamo	GS	gravel with non porous (hard) stones gravel with porous (soft) stones ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
<u>ped size</u>	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub-angular blocky PL platy	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- **MBP** moisture balance potatoes

J

SOIL PIT DESCRIPTION

Site Nam	e LIDS	SEY LANDFILL		Pit Number	1	Р				
Grid Refe	erence	SU92550370			153 156 Pen	7 mm 9 degree days manent Gr degrees				
HORIZON 0- 25 25- 41 41- 63 63-120	TEXTUR HZCL C ZC ZC		0000 0000	TOT STONE 1 0 0 0	LITH HR	MOTTLES F C M M	STRUCTURE MCSAB MMP MCP MASS	CONSIST FM VM FM FM	SUBSTRUCTURE P P M	CALC
Wetness (Grade	38	Wetness Cla Gleying SPL	ss IV 025 025						
Drought (Grade	2	APW 133mm APP 105mm		5 mm 9 mm					
FINAL AL		3B Wetness								

SOIL PIT DESCRIPTION

Site Name	∍ LIDSEY	LANDFILL		Pit Numbe	er 2	?P				
Grid Refe	erence SU	92800375	Accumulat	Annual Rainfa ed Temperatur pacity Level I Aspect	re 153 156 Whe	57 mm 39 degree 5 days eat degrees	days			
HORIZON 0- 25 25- 60 60-120	TEXTURE MZCL C C	COLOUR 10YR53 04 10YR63 04 10YR62 04	0 O	2 TOT STONE 1 0 0	E LITH HR	MOTTLES F C M	STRUCTURE MDCSAB MDCSAB MDCSAB	CONSIST FM FM FM	SUBSTRUCTURE M M	CALC
Wetness (Drought (Wetness C Gleying SPL APW 143 APP 119	02: No Baran MBW	5 cm 5 SPL 25 mm 5 mm					
FINAL ALC	GRADE	2								

MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Nan	ne LIE	SEY	LANDFILL			Pit /	Number	- 3	IP					
Grid Reference SU93020364				Accu Fiel Land	age Annu mulated d Capacu Use e and As	Temper ty Lev	rature	e 153 156 Whe	767 mm 1539 degree days 156 days Wheat degrees					
HORIZON	TEXTL		COLOUR		ones >2	тот з	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC	
0- 22	MZC	L.	10YR53 (0	1		HR	F	MCSAB	FR			
22- 44	С		25Y 64 (0	C]		С	MCSAB	FM	M		
44- 70	С		10YR53 €	53	0	C)		M	MCP	VM	м		
Wetness	Grade	ЗА		Wetn	ess Clas	s	III							
				Gley	ing		022	cm						
				SPL			044	cm						
Drought	Grade	3A		APW	102mm	MBW	-1	6 mm						
5				APP	1 18 mm	MBP		4 mm						

MAIN LIMITATION Wetness

LIST OF BORINGS HEADERS 15/07/94 LIDSEY LANDFILL

SAMF	LE	ASPECT			WETI	NESS -	-WH	IEAT-	-P0	TS-	м	REL	EROSN	FROST	c	нем	ALC	
NO	GRIÐ REF	USE	GRDNT	GLEY SPI	CLASS	GRADE	AP	MB	AP	MB	ÐRT	FL00D	Ð	(P DI	ST	LIMIT		COMMENTS
1	SU92700380	WHT		000	2	2	072	-46	072	-42	3B					DR	ЗA	IMPX2QDR
1F	SU92550370	PGR		025 025	4	3B	133	15	105	-9	2					₩E	3B	
2	SU92800380	WHT		000 090	2	2	142	24	119	5	2					₩E	2	DEEPSPL
2F	SU92800375	WHT		025	2	2	143	25	119	5	2					WE	2	NOSPL
3	SU92900380	WHT		028 028	4	3B	128	10	103	-11	ЗА					WE	3B	H2CRUMBL
3F	9 SU93020364	WHT		022 044	3	3A	102	-16		4						WE	3A	
4	SU93000380	WHT		025 070	3	3A	138	20	119	5	2					WE	3A	POSSSPL.
5	SU93100380	WHT		025 045	3	3A	135	17	112	2	2					WE	3A	POSSSPL
6	SU93200380	WHT		032	2	2	141	23	133	19	2					WÉ	2	IMPEN100
7	SU92550373	PGR		025 040	4	3B	130	12	105	-9	2					WE	3B	SPL
8	SU92700370	WHT		022	2	2	125	7	110	-4	2					DR	2	WE ALSO
9	SU92800370	WHT		000 078	2	2	139	21	11 9	5	2					WE	2	
10	SU92900370	WHT		032 060	3	3A	155	37	132	18	1					DR	3A	
11	SU93000370	WHT		000 070	3	ЗA	139	21	120	6	2					WE	3A	POSSSPL
13	SU93200370	WHT		029	2	2	155	37	131	17	1					WE	2	
14	SU93300370	ынт		000 025	4	38	123	5	108	-6	2					WE	3B	
15	SU92600360	PGR		028 050	3	ЗA	140	22	115	1	2					WE	3A	SPL
16	SU92700360	WHT		025 040	4	3B	104	-14	114	0	3A					WE	3B	170 H3CH
17	SU92800360	WHT		030 030	4	3B	108	-10	108	-6	3A					WE	3B	SPL IMP
18	SU92900360	WHT		029 055	3	ЗА	149	31	125	11	1					WE	3A	H23CRUMB
19	SU93000360	WHT		030	2	2	108	-10	120	6	3A					WE	2	NOSPLIMP
20	SU93100360	WHT		025 080	2	2	139	21	119	5	2					WE	2	
21	SU93200360	WHT		025	2	2	129	11	129	15	2					WE	2	
22	SU92600350	PGR		032 070	3	3B	160	42	141	27	1					WE	3B	
23	SU92700350	WHT		020 045	3	3A	097	-21	102	-12	3B					DR	3B	I60WE3A
24	SU92800350	WHT		028	2	2	119	1	119	5	3A					WE	2	NOSPLIMP

1

COMPLETE LIST OF PROFILES 15/07/94 LIDSEY LANDFILL

•						ES	- PED				-S1	ONES-		STRUCT	/	SURS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL			INT COL							CONSIST				IMP (SPL	CALC
1	0-25	mzcl	10YR42 00	00000	00 0	с			Y	0	0	HR	2							
	25-40	mzcl	10YR44 00	00000	00 0	с			S	0	0		0			м				
-																				
1P	0-25	hzcl	10YR42 00									HR			FM		Y			
	25-41	c	10YR41 00						Y	0	0			MMP	٧M		Y		Y	
-	41-63	zc	25Y 51 00				25Y 52	00			0			MCP		P	Y		Y	
_	63-120	zc	25Y 62 00	10485	5 00	M			Y	0	0		0	MASS	FM	М	Y		Y	
2	0-28		10YR53 00	00000	0 00	c			Y	0	0	HR	2							
2	28-58	mzcl hcl	25Y 64 00				00MN00				0	CIX.	0			м				
_	58-90	c	10YR63 00				000000			+	õ		õ			м				
	90-120		10YR63 00				000000				0		0			P	Y		Y	
		-														-				
_ 2P	0-25	mzcl	10YR53 00	10YR5	6 00	F				0	0	HR	1	MDCSAB	FM		Y			
	25-60	с	10YR63 00	10YR6	872	с	00MN00	00	Y	0	0		0	MDCSAB	FM	Μ	Y			
	60-120	с	10YR62 00	10YR6	в ОО	M	00MN00	00	Y	0	0		0	MDCSAB	FM	Μ	Y			
3	0-28	mzcl	10YR53 00									HR	2							
	28-50	z¢	10YR62 00						Y	-	0		0			Ρ			Y	
	50-120	ZC	10YR52 00	10YR7	8 72	M	00MN00	00	Y	0	0		0			Ρ			Y	
1 20	0.00	1	10/052.00	10005	- 00	-				0	^	UD	1	MOCAD	C D					
34	0-22 22-44	mzcl c	10YR53 00 25Y 64 00						Y	0	0	HR		MCSAB MCSAB	FR FM	м				
-	44-70	c	10YR53 63				00MN00	00						MCP	VM		Y		Y	
	4 4 7 0	Ç					0011100		•	Ť	č		•	1101	••••	••	•		•	
4	0-25	mzcl	10YR53 00							0	0	HR	2							
-	25-70	с	25Y 62 00	000000	00 0	с			Y	0	0		0			м				
	70-120	с	10YR62 00	000000	00 0	м			Y	0	0		0			Ρ	Y		Y	
5	0-25	mzcl	10YR53 00							0		HR	1							
-	25-45	с	10YR64 00						Y	0	0		0			M				
	45-120	c	25Y 62 00	000000	0 00	M			Y	0	0		0			Р	Ŷ		Y	
-	0-32	-1	100052 00							•	•	цр	2							
•	0-32 32-65		10YR53 00 10YR63 00		2 72	r	00MN00	00	v	0		HR	0			м				
	65-100		10YR62 00				000000			õ	•		õ			M				
-						•		••		-	•		-			••				
— 7	0-25	hc1	10YR42 00							0	0		0							
	25-40	с	25Y 52 00		00 0	м			Y	0	0		0			м				
	40-120	zc	05Y 51 00	000000	00 0	м			Y	0	0		0			Ρ	Y		Y	
_																				
8	0-22	mzcl	10YR43 00	10YR58	3 00	F				0	0	HR	2							
•	22-45	mzc]	10YR62 00						Y				0			М				
_	45-60	ms1	10YR63 00						Y	0	-		0			М				
	60-90	lms	10YR53 00		3 71	C			Y	0			0			M				
	90-120	ms	10YR54 58						Y	0	U		0			М				
- 9	0-28	67 01	10YR53 00	000000	<u>, הה</u> ו	c			Y	0	n	HP	2							
	0-28 28-78	mzcl c	10YR53 00				00MN00			0		4 IIX	2			м				
	78-120	-	10YR62 00				00 100		Ý				0			P	Ŷ		Y	
		-				,			•	-	-		-			·	•		•	

COMPLETE LIST OF PROFILES 15/07/94 LIDSEY LANDFILL

					MOTTLES		PED		_	\$	STONES		STRUCT/	SUBS	;		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT							CONSIST		POR	IMP :	SPL CALC
1 0	0-32	zì	10YR52 00							0 0) HR	2					
	32-60	hzcl	10YR73 00	10YR7/	8 00 C			Y			0	0		м			
	60-120		10YR62 00			0	OMNOO	-		0 0		ō		P			Y
_						-					•	•		•			·
11	0-30	mzcl	10YR53 00					٢	,	0 () HR	1					
	30-70	с	10YR53 63					Y		5 0		0		М			
	70–120	С	10YR63 00	00000	0 00 M			Y	' I	0 0	כ	0		Ρ	Ŷ		Y
13	0-29	zl	10YR53 00	10YR5	3 00 F				(0 0) HR	2					
-	29-50	с	10YR63 00	10YR78	3 72 C			Ŷ	' (0 0	0	0		м			
	50-120	с	10YR62 00	10YR78	B 72 M	0	omnoo	00 Y	' (0 (כ	0		М			
												-					
14	0-25	hzcl	10YR42 00			•		Y AA) HR	2		_			
	25-55 55-70	c mal	10YR51 52 10YR72 00			U	OMNOO			00		0		Р			Y
	55-70 70-120	msl Ims	107R72 00	IUTKO	5 00 0			Y Y		00 00		0 0		M M			Y Y
-	70-120	10.5	1018,50 54					'				Ŭ		61			T
15	0-28	mzcl	10YR42 00						(0 0	כ	0					
	28-40	mzcl	10YR53 00	00000	0 00 C			Y	' (0 0	2	0		м			
-	40-50	hzc1	10YR64 00	000000	M 00 C			Y	' (0 (0	0		Μ			
	50-120	zc	25Y 62 00	000000	00 M			Y	· (0 (0	0		Ρ	Y		Y
16	0-25	zl	10YR53 00							• •) HR	F					
10	25-40	hzcl	10YR52 00	10006	a 00 C			Y) HR	5 5		M			
	40-70	C	10YR52 00			0	0MN00) HR	10		P			Y
		-				•		••••						•			•
17	0-30	mzcl	10YR53 00						(0 0) hr	2					
	30-70	с	25Y 53 00	00000	00 M	0	omnoo	00 Y	· (0 0	כ	0		Ρ	Y		γ
	70-85	c	25Y 64 00	00000	M 00 C			Y	· (0 () hr	2		М			Y
18	0-29	zl	10YR53 00						(0 0) HR	2					
	29-40	hzc1	10YR52 00	10YR58	B 00 C			Ŷ		5 0		0		м			
F	40-55	zc	10YR62 00					Y		5 0		0		M			
	55-120	zc	10YR53 00	10YR78	3 72 C	0	OMNOO	00 Y	· (0 0	כ	0		Р			Y
19	0 30	mzcl	10YR53 00) HR	2					
-	30 75	с	25Y 62 00	000000	00 C			Ŷ	(0 0)	0		М			
20	0-25	mzcl	10YR53 00						(5 0) HR	2					
	25-80	с	10YR63 00	10YR78	3 72 C	00	DMNOO	00 Y	(0 0)	0		М			
-	80-120	с	10YR62 00	10YR68	372 M	00	OMNOO	00 Y	(0 0)	0		Ρ			Y
	0.05		10/052 00									•					
21	0-25	zl	10YR53 00	100000) HR	2					
-	2535 3560	mzc] c	10YR52 00 10YR63 00					Y Y			-	0 0		M M			
	35-60 60-90	c c	10YR62 00			OI	DMN00) () (0		m M			
-		-			a 76. (1	0		55 1				Ŭ		• •			
22	0-32	hcl	10YR42 00						(0 0)	0					
	32-70	zl	10YR64 00	000000	00 C			Y	(0 0)	0		м			
_	70-120	zc	25Y 52 00	000000	00 C			Y	() ()	0		Ρ	Y		Y

SAMPLE	DEPTH	TEXTURE	COLOUR		10TTLES ABUN	CONT				STRUCT/ TOT CONSIST	SUBS STR POR IMP	SPL CALC
23		zl hzcl zc	10YR53 00 10YR52 00 10YR62 58	10YR68			Y Y	0	O HR O HR O HR	4 5 5	M P	Y
24	28-70	mzcl c c	10YR53 00 25Y 63 64 25Y 63 64	000000			Y Y	0		2 0 1	M M	