TUNBRIDGE WELLS LOCAL PLAN

Site 5 Land at Greggs Wood Blackhurst Lane Tunbridge Wells

TUNBRIDGE WELLS LOCAL PLAN

SITE 5 - LAND AT GREGGS WOOD, BLACKHURST LANE, TUNBRIDGE WELLS

1 INTRODUCTION

- 1 In June 1992 an Agricultural Land Classification (ALC) survey was carried out on 78 ha of land to the north-east of Tunbridge Wells Kent ADAS was commissioned by MAFF to determine land quality affected by the proposal to include this site for development in the Tunbridge Wells Local Plan
- 1 2 The survey work was carried out by members of the Resource Planning Team within the Guildford Statutory Group at a detailed level of approximately 1 boring per hectare. A total of 25 auger borings and two soil inspection pits were described and the site graded using MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long term limitations on its agricultural use. At the time of survey the site was in neglected permanent pasture.
- 1 3 The distribution of grades is shown on the attached ALC map and the area and extent is given in the table below. The map has been drawn at a scale of 1 10 000 any enlargement of this would be misleading

Distribution of Grades and Sub-grades

<u>Grade</u>	<u>Area (ha)</u>	<pre>% total agricultural land</pre>
1	1 90	7
2	15 68	54
3a	5 64	19
3b	2 19	8
4	3 50	12
Total agrıcultural area	28 91	100
Non-Agricultural	4 07	
Woodland	<u>45 02</u>	
Total Area of site	<u>78 00</u>	

1 4 Grades 1 2 3a 3b and 4 have been mapped at this locality Land assigned to grades 2 and 3a are subject to slight wetness or droughtiness limitations depending upon depths to gleying and slowly permeable horizons and depths over soft sandstone deposits respectively. Areas of grades 3b and 4 have been mapped on the basis of gradient limitations. Slopes of 7-14 were measured using an optical reading clinometer.

2 PHYSICAL FACTORS AFFECTING LAND QUALITY

Relief

2 1 The site ranges in altitude from 70m AOD towards the far north-west to 140m AOD along the south-eastern boundary. Greggs Wood contains some areas of steeply sloping land but this has been mapped wholly as woodland. Of the agricultural land on the site most falls gently from south to north. However, along both the eastern, and to a greater extent, the western boundary gradients were found to be limiting in terms of the agricultural use of the land. Slope angles of 7-14 were measured using an optical reading clinometer and land has been graded. 3b or 4 accordingly.

Climate

2 2 Estimates of climatic variables relevant to the assessment of agricultural land quality were obtained for representative locations in the survey area by interpolation from a 5 km gridpoint dataset (Met Office 1989)

Climatic Interpolations

Grid Reference	TQ608421	TQ606415	TQ602403
Altitude (m MOD)	75	100	140
Accumulated Temperature			
(days Jan-June)	1431	1403	1358
Average Annual rainfall (mm)	751	770	799
Field Capacity Days	157	161	166
Moisture Deficit Wheat (mm)	107	102	96
Moisture Deficit Potatoes (mm) 99	94	85

2 3 The important parameters in assessing an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality. There is no overall climatic limitation affecting this site However climatic factors do affect the interactive limitations between soil and climate to influence soil wetness and droughtiness.

Geology and Soils

- 2 4 British Geological Survey (1971) Sheets 287 and 303 Sevenoaks and Tunbridge Wells respectively show the site to be predominantly underlain by deposits of Cretaceous Tunbridge Wells Sand with small outcrops of Wadhurst Clay and Recent Head deposits along the western fringe of the site
- 2 5 Soil Survey of England and Wales (1986) Sheet TQ64 Soils of Paddock Wood shows a number of soil series to be present within the survey area. Most of the agricultural land surveyed comprises soils of the Curtisden Series. These soils are described as moderately deep silty stagnogleyic argillic brown earths. developed over Tunbridge Wells Sand (SSEW 1984). Curtisden Soils extend southwards through the central part of Greggs Wood. Soils of the Pembury. Conway/Hamble/Wickham and Cranbrook Series have been mapped beneath Greggs Wood. with the Pembury Series. silty typical brown earths over loams with interbedded sandstones. (SSEW 1986) being most extensive.

2 6 Detailed field examination of the soils on the site indicates the presence of fine and medium silty or sandy soils whose drainage status is variable but generally well to moderately well drained Occasional profiles rest directly over impenetrable (to soil auger) medium soft sandstone deposits at moderate depths (ie below about 65 cm)

3 AGRICULTURAL LAND CLASSIFICATION

3 1 The quality of the agricultural land on this site ranges from excellent to poor Grade 1 has been mapped where the limitations to agricultural use are non-existent or only very minor whereas Grade 4 has been assigned where severe limitations are present. Land graded 2 and 3a is principally limited by the interaction between soil and climatic factors giving rise to soil wetness and/or droughtiness limitations. Grades 3b and 4 are mapped where the main limitation is that of gradient

Grade 1

3 2 Land with no or very minor limitations to agricultural use represents 7% of the total agricultural area surveyed. Profiles typically comprise non-calcareous fine sandy silt loam topsoils which may be very slightly stony (ie 2-3% by volume soft sandstone fragments). These overlie medium sandy silt loam subsoils which sometimes become more sandy with depth passing to medium sandy loam. Subsoils contain 2-3% sandstone fragments by volume and may occasionally become impenetrable (to soil auger) over sandstone below about 95 cm. Although profiles are gleyed from 28-45 cm. subsoils are not slowly permeable, and are thereby assigned to wetness class I

This land has good reserves of available water for plant growth and despite being slightly affected by groundwater gleying is generally freely draining and workable given the light soil textures and prevailing climatic conditions

Grade 2

3 3 Land of this quality accounts for the largest proportion of the agricultural land surveyed (ie 54%)

It occurs in two different situations

- Most of the land assigned to this grade is primarily affected by a soil wetness limitation but occasionally slight soil droughtiness may also be affecting the land to an equal degree

Non-calcareous fine sandy silt loam or silt loam topsoils which may be very slightly stony overlie similar textures in the upper subsoil and pass to heavier textures such as medium or heavy silty clay loam below about 45-55 cm depth. Subsoils contain variable quantities of stone typically in the range 2-15% sandstone fragments by volume and occasionally become impenetrable over sandstone below 62 cm

Profiles are gleyed from 27cm and within 45 cm and were typically found to be slowly permeable below 42 to 55 cm. Wetness Class II or III was assigned depending upon depth to gleyed and slowly permeable horizons and land graded 2 according to the interaction of drainage status with topsoil texture. Those profiles which were impenetrable over sandstone within 65-70 cm were also limited to grade 2 by a slight risk of soil droughtiness. Otherwise land is solely limited by slight soil wetness

- A number of profiles were found to be well drained Wetness Class I or II but were primarily limited by slight soil droughtiness. Profiles are similar to those described previously the difference being that they contain slightly more sandy horizons ie sandy loam loamy sand or very occasionally sand and/or are more stony in the subsoil (ie 5-15% sandstone by volume) and/or are shallow over sandstone from 67 cm. The risk of slight soil droughtiness is therefore the overriding limitation to agricultural use not soil wetness.

Grade 3a

3 4 Land assigned to this grade comprises soil profiles which are less well drained than those described in section 3 3 Non-calcareous silt loam topsoils overlie similar textures or medium silty clay loam subsoils. They are generally deep (only very occasionally do they become impenetrable over sandstone below 100 cm) and only very slightly stony (2-5% sandstone fragments by volume)

profiles are gleyed from below the topsoil and slowly permeable below about 45 cm and are thus assigned to Wetness Class III These drainage characteristics combine with silt loam topsoils to give rise to a slight soil wetness limitation such that grade 3a is appropriate

Grade 3b

3 5 A number of small units of sub-grade 3b have been mapped across the site the limitation to agricultural use being that of gradient. Slope angles were measured using an optical reading clinometer and where gradient exceeds 7 but is less than 11 subgrade 3b is assigned. On slopes of this degree difficulties will be experienced with the operation of mechanised farm machinery and equipment.

Grade 4

3 6 Two units of grade 4 have been mapped where gradients exceed 11 (angles of 11-14 were recorded across these areas) On this land the safe and efficient operation of farm machinery will be severely restricted and the assessment of poor quality agricultural land reflects this

July 1992 2014/428/91 Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

- BRITISH GEOLOGICAL SURVEY (1971) Sheet 287 Sevenoaks
- BRITISH GEOLOGICAL SURVEY (1971) Sheet 303 Tunbridge Wells
- MAFF (1988) Agricultural Land Classification of England and Wales
 Revised guidelines and criteria for grading the quality of agricultural
 land
- METEOROLOGICAL OFFICE (1989) Climatological datasets for Agricultural Land Classification
- SOIL SURVEY OF ENGLAND AND WALES (1984) Bulletin 15 Soils and their use in South-East England
- SOIL SURVEY OF ENGLAND AND WALES (1986) Sheet TQ64 Soils of Paddock Wood and accompanying bulletin

SAMP	LE	Α	SPECT				WET	NESS	WHE	AT	PO	TS	м	REL	EROSN	FRO	ST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ε	XP	DIST	LIMIT		COMMENTS
3	TQ60604200	PAS	N	01	042	042	3	2	182	80	137	43	1					WE	2	
4	TQ60704200	PAS	N	01	045	045	3	2	139	37	138	44	1					WE	2	
8	TQ60504190	PAS	N	04	024		2	2	105	3	108	14	2					WD	2	
9	TQ60604190	PAS	N	05	038	055	3	2	132	30	147	53	1					WE	2	
10	TQ60704190	PAS	E	03	045		1	1	146	44	127	33	1						1	
12	TQ60404180		W	06	038		1	1	150		139	45							1	
12P			M	06	042		1	1	000	_	000	0	1						1	
13	TQ60504180		W	03	030		3	3A	000	0	000	0	2					WE	3 A	
13P	TQ60504180	PAS	W	03	029	045	3	ЗА	134	32	136	42	2					WE	ЗА	
14	TQ60604180	PAS	E	03	030	060	3	3A	165	63	151	57	1					WE	3A	
			_				_	_					_							
15	TQ60704180		E	04	032		1	1	122		132	38	2					DR	2	
16	TQ60804180		E	06	028		1	1	173		131	37	1						1	
18	TQ60404170		W	06	045		2	1	180		142	48	1						1	
19	TQ60504170		W	05	045		2	2	192		154	60	1					ME	2	
20	TQ60604170	PAS	Ε	03	032	055	3	2	167	65	133	39	1					WE	2	
21	T060704170	DAC	-	02	026	026	4	3B	131	20	124	30	2					LIC	20	
21	TQ60704170		Ε	02	028	020	4 2	36 1	118		128	34						WE	3B	
23	TQ60504160		M	04	028						92	2	2 2					DR	2	
24	TQ60604160		Ε	06 06		055	1	1	110			_	_					DR	2	03
25	TQ60404150		E	06	055	055	2	1	181		146	52	1					GR	4	Slope
26	TQ60504150	PA\$	W	05	045		1	1	132	30	143	49	1						1	
27	TQ60604150	PAS	ε	06	028	045	3	3A	170	68	135	41	1					WE	ЗА	
28	TQ60704150		Ε	06	037	060	3	2	132	30	145	51	1					WE	2	
31	TQ60604140		N	01	023		2	1	88		88	6	3A					DR	3A	
32	TQ60704140		Ε	05	020	045	3	3A	164		128	34	1					WE	3A	
35	TQ60604130		NE	05	065		1	1	118		105	11	2					DR	2	
		-	-																	
36	TQ60704130	PAS	NE	03	027	050	3	2	145	43	140	46	1					WE	2	
41	TQ60704120	PAS	NE	03	055		1	1	159	57	122	28	1						1	

					MOTTLES		PED			STONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GI FY	2			-		POR TM	P SPL CALC	
O-4 11 C.C	<i>DE</i>	LATIONE	0020011	302	7.00	Q 0	000		_			55115151	O.I.		OF E GREE	
3	0 27	fszl	10YR53 00						0	0	0					
	27 42	fszl	10YR64 00						0	0	0		М			
	42 65	mzc]	10YR64 00	10YR6	6 00 C	2	25Y 70	80 Y	0	0 MSST	5		М		Υ	
	65 95	fsl	25Y 72 00					Υ	0	0	0		М			
	95 120	hzcl	25Y 70 80	10YR6	8 00 M	2	25Y 70	80 Y	0	0	0		М			
4	0 27	fs 1	10YR52 53						0	0	0					
	27 45	fszl	10YR63 00	10YR7	4 00 F				0	0 MSST	5		М			
	45 77	h cl	10YR63 00	10YR6	6 00 M	7	25Y 70	80 Y	0	0	0		М		Υ	
	77 85	mzcl	10YR63 00	10YR6	6 00 M			γ	0	0 MSST	15		М		γ	Imp 85+ msst
8	0 24	z١	10YR42 52	10YR7	4 76 C				0	0	0					
	24 50	m 1	10YR63 73	25Y 8	2 00 C			Υ	0	0	0		М			
	50 60	lms	10YR63 73	10YR6	6 00 C			Υ	0	0	0		M			
	60 62	lms	10YR63 73	10YR6	6 00 C			Υ	0	0	0		М			Imp 62+ m t
9	0 32	fszl	10YR52 00						0	0	0					
	32 38	zl	10YR53 00						0	0	0		M			
	38 55	1	10YR62 00	10YR6	6 00 C		10YR72	82 Y	0	0	0		М			Few Mn concs
	55 70	mzcl	25 Y80 00	10YR6	6 00 C			Υ	0	0	0		М		Υ	Imp 70 msst
10	0 30	fszl	10YR52 42							0 MSST						
	30 45	ms 1	10YR53 00		F		10YR52			0 MSST			М			
	45 52	msl	10YR53 00			•	10YR72			0 MSST			M			
	52 95	ms 7	10YR72 73	10YRS	8 00 C			Υ	0	0 MSST	2		М			
10	0.00	5 1	100040 00						^	•	_					T 05
12	0 29	fsz1	10YR42 00						0	0	0					Imp 95+ msst
	29 38	fs l	10YR53 00				מלסעמו	nn v		0	0		М			
	38 50	fszl	10YR53 00		C		10YR72			0 MSST 0 MSST	2		M			
	50 58	mszl	10YR53 00		C		10YR72			0 11331	2		M			
	58 70 70 80	ms]	10YR54 00 10YR54 00		F F		10YR72 10YR72			0	0		M			
	80 120	lms mo	10YR54 00		г		IUIK/2	00		0 MSST			М			
	80 120	ms	1017/34 00						U	0 (53)	2		М			
12P	0 28	fszl	10YR52 00						1	0 MSST	1					
, _ ,	28 42	fsz1	10YR53 00									MDCOAB F	мм			Commo worm holes
	42 70	ms 1	10YR53 00		2 71 C			Υ		0 MSST		MDCOAB F				Becoming die
	70 85	lms	10YR54 00					•				WKCOAB V				becoming are
	85 120	ms	10YR54 00							0 MSST						Almost str ct reles
	00 120		1011107 00						-		_	OGRACIA V				A
13	0 30	zl	10YR42 52						0	0	0					
-	30 45	mzcl	10YR62 00		8 00 C	í	25Y 80	00 Y	0	0	0		М			Common Mn concs
	45 82	h cl	25Y 80 00	10YR6	6 00 M			Υ	2	0 MSST	2		М		Y	Imp 82 msst
13P	0 29	zl	10YR52 00						0	0	0					
	29 54	mzcl	25Y 80 00	10YR6	6 68 M			Υ	0	0	0	MDVCAB X	(FP	Υ	Y	Common Mn concs
	54 120	h cl	25Y 80 00	10YR6	6 68 M			Υ	0	0	0	STCPRM X	(FP	Υ	Υ	Fewer roots

					MOTTLES	,	PED			STO	NES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	Y 2	6 L	ITH T	OT CONSIST	STR POR	IMP SPL CALC	
14	0 30	z٦	10YR52 00						0	0	İ	0			
	30 60	z١	25 Y74 00	10YR6	6 00 C	25	5 Y80	00 Y	0	0 M	SST	2	М		
	60 100	mzcl	25 Y74 72		М	25	5 Y80	00 Y	′ 0	0 M	SST	2	M	Y	Imp 100+ msst
15	0 32	fszl	10YR52 00						3	0 M	SST :	3			
	32 45	mszl	10YR53 00	10YR5	8 00 C	10	DYR64	00 Y	0	0 M	SST :	3	M		Common Mn concs
	45 72	mszl	25 Y74 00	10YR5	8 00 C	10	DYR73	00 Y	0	0 M	SST :	3	М		Imp 72+ msst
16	0 28	fs 1	10YR52 00						0	0		0			
	28 120		10YR63 00	75YR5	8 00 C	10	OYR72	00 Y				=	М		Fe Mn co cs
18	0 26	fszl	10YR42 00						0	0	(0			
	26 45	fs 1	10YR53 00	10YR7	3 00 F				0	0	1	0	М		
	45 68	fs1	10YR53 00	75YR5	6 00 C	10	DYR82	00 Y	0	0	f	0	M		
	68 100	mzcl	25Y 70 80	10YR6	6 76 C			Υ	0	0	Í	0	М	Y	
	100 120	mzc1	25Y 70 80	10YR6	6 76 C			Y	0	0 M	SST	5	М	Y	
19	0 27	z۱	10YR52 00						0	0	ı	0			
	27 45	zl	10YR53 00		F	10	DYR62	00			SST	_	М		
	45 80	1	10YR64 00				DYR62		, 0	0 M	SST	- 5	М		Few Mn concs
	80 120	hzcl	25 Y80 70	10YR6	4 66 C			Υ	0	0	ı	0	М	Y	
20	0 32	fs 1	10YR42 00						0	0 M	SST	1			
	32 55	m 1	10YR53 63	10YR7	4 00 C			γ	0	0 M	SST	2	М		
	55 75	mz 1	10YR64 00	75YR6	8 00 C	25	5Y 70	00 Y	0	0 M	SST	5	М	Y	
	75-100	mzc1	10YR68 00	25Y 7	0 00 F			γ	0	0 M	SST 1	0	М	Υ	
	100 120	hzcl	25Y 70 80	10YR6	6 00 M			Y	0	0	1	0	М	Y	
21	0 26	mzcl	10YR53 00						0	0		0			
	26 75	hzc1	25Y 70 80	10YR6	6 00 M			Υ	0	0		0	M	Y	
	75 90	mzcl	10YR73 00	10YR6	6 00 M	25	5Y 70	80 Y	′ 0	0	!	0	М	Y	Imp 90
23	0 28	fs 1	25Y 52 00						0	0 M	SST	2			
	28 40	f z1	10YR63 00	10YR7	6 00 C	10	OYR82	00 Y	0	0 M	SST	2	М		
	40 60	mcl	10YR63 00	10YR7	6 00 C	10	DYR82	72 Y	0	0	ļ	0	М		
	60 67	mcl	10YR63 00	10YR7	6 00 C	10	OYR72	82 Y	0	0 M	SST 1	0	М		Imp 67 msst
24	0 32	msl	10YR42 00						0	0 M	SST	2			
	32 50	msl	10YR43 00	10YR6	6 00 F	10	OYR74	00	0	0 M	SST	5	M		
	50 85	lms	10YR43 00	10YR6	6 74 F				0	0 M	SST 1	5	M		
	85 120	1ms	10YR74 00	1 0 YR6	6 00 C	10	DYR72	00 Y	0	0 M	SST 1	0	M		
25	0 34	fs 1	10YR53 00						0	0	ļ	0			
	34 55	z١	10YR53 63						0	0 M	SST	2	М		
	55 85	mzcl	75YR53 00	10YR7	4 00 F			Υ	0	0	1	0	М	Y	Few Mn concs
	85 120	mzcl	10YR54 64	10YR5	6 66 F			Y	0	0	1	0	М	Y	Common Mn concs
26	0 26	fszl	10YR52 00						0	0		0			
	26 45	f 1	10YR53 00			10	DYR52	00	0	0 M	SST	5	М		
	45 70	fs 1	10YR62 00	10YR5	8 00 C		OYR72		0	0 M	SST 1	0	М		Imp 70+ msst

				MOTTLE	S PED			STONES	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN		GLEY 2	2	6 LITH TO	T CONSIST	STR POR	IMP SPL CALC		
27	0 28	z]	10YR52 00			()	0 0					
	28 120	mzcl	10YR74 00	10YR66 00 F	10YR62 7	2 Y ()	0 MSST 2		М	Υ		
28	0 22	fszl	10YR52 00				3	0 0					
	22 37	fszl		10YR74 84 F)	0 0		м			
	37 60	fszl		25Y 70 80 C)	0 0		 М			
	60 70	mzcl		10YR66 00 M				0 0		., М		Imp 70+	
	00 70		1011170 00	701K00 00 11	231 10 3	• • •						Imp 701	
31	0 23	fszl	10YR42 00			()	0 MSST 5					
	23 40	zl	10YR74 00	10YR66 00 C	25Y 70 0	0 Y (0	0 MSST 5		М			
	40 42	zl	10YR74 00	10YR66 00 C	25Y 70 0	0 Y (0	0 MSST 15		M		Imp 42+ sto	one
32	0 20	zl	10YR42 00			()	0 0					
-	20 65	mzcl		10YR66 00 M	10YR72 0		•	0 MSST 5		М	Υ	SPL 45+	
	65 120			10YR66 00 C				0 MSST 1		М	Y	0.4 .0.	
35	0 23	msl	10YR42 52					0 0					
	23 35	msl	10YR52 54			(0	0 0		М			
	35-65	msl	75YR56 00			•	כ	0 0		М			
	65 100			10YR66 00 C)	0 0		М			
	100 120	ms	10YR81 82	75YR56 00 M		Υ ()	0 0		М			
36	0 27	fszl	10YR42 00			()	0 0					
	27 50	f 1	10YR53 00	10YR74 00 C		γ ()	0 MSST 2		М			
	50 60	h 1	10YR63 00	10YR66 00 C	10YR71 0	0 Y 0)	0 MSST 5		М	Y		
	60 80	h cl	10YR71 00	10YR66 00 M		Υ ()	0 0		М	Υ		
	80 90	mzcl	10YR63 00	10YR66 00 C	10YR71 0	0 Y (כ	0 MSST 15		М	Υ	Imp 90 to	У
41	0 35	ms 1	10YR42 52			ſ	כ	0 0					
• • •	35 45	msz)	10YR42 00				<u>כ</u>	0 0		М			
	45 55	mszl		10YR66 00 F				0 MSST 5		M			
	55 70	ms]		10YR56 00 C				0 0		M			
	70 105			10YR56 00 C				0 0		M			
	105 120			10YR56 00 C				0 MSST 5		M			

SOIL PIT DESCRIPTION

Site Name TWLP GREGGS WOOD Pit N mber 13P

G id Reference TQ60504180 A e age Ann al Ra nfall 770 mm

Acc m lated Temperat e 1403 deg days

F eld Capacity Le el 161 days

Land Use

Slope and Aspect 03 degrees W

HORIZON TEXTURE COLOUR STONES 2 TOT STONE MOTTLES STRUCTURE 0 29 ZL 10YR52 00 0 0 29 54 MZCL MDVCAB 25Y 80 00 0 0 М 54 120 HZCL 25Y 80 00 0 0 М STCPRM

Wetness Grade 3A Wetness Class III
Gleying 029 cm

Gleying 029 cm SPL 045 cm

5/ E

Drought Grade 2 APW 134mm MBW 32 mm

APP 136mm MBP 42 mm

FINAL ALC GRADE 3A
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Name TWLP GREGGS WOOD Pt N mber 12P

Grid Reference TQ60404180 A erage Ann al Rainfall 770 mm

Acc m lated Temperature 1403 deg ee days

Field Capacity Le el 161 days

Land Use

Slope and Aspect 06 degrees W

HOR:	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	MOTTLES	STRUCTURE
0	28	FSZL	10YR52 00	1		1		
28	42	FSZL	10YR53 00	2		2		MDCOAB
42	70	MSZL	10YR53 00	2		2	С	MDCOAB
70	85	LMS	10YR54 00	2		2	F	WKCOAB
85	120	MS	10YR54 00	2		2		SGRAIN

Wetness Grade 1 Wetness Class I G1 y g 000 cm SPL No SPL

Dro ght G ade 1 APW 000mm MBW 0 mm

APP 000mm MBP 0 mm

FINAL ALC GRADE 1