A1

ARUN DISTRICT LOCAL PLAN REVIEW Objector Sites 5 & 12 Land East of Westergate, West Sussex Agricultural Land Classification ALC Map and Report

March / April 1997

Resource Planning Team Eastern Region FRCA Reading
 RPT Job Number
 4202/031/97

 FRCA Reference
 EL 42/00460

 LURET Job Number
 03050

AGRICULTURAL LAND CLASSIFICATION REPORT

ARUN DISTRICT LOCAL PLAN REVIEW SITES 5 AND 12 LAND EAST OF WESTERGATE, WEST SUSSEX

INTRODUCTION

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 19 8 hectares of land located to the east of the village of Westergate and south of Eastergate near Bognor Regis in West Sussex The survey was carried out during March 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Arun District Local Plan Review The results of this survey supersede any previous ALC information for this land

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA, Reading) The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land at this site was either permanent grazing unmanaged grassland or in arable use The areas mapped as Other Land are located towards the west of the site and comprise impenetrable scrub and public open space

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	80	45 2	40 4
3a	19	10 7	96
3b	78	44 1	39 4
Other land	2 1	N/A	10 6
Total surveyed area	177	100	89 4
Total site area	198		100

Table 1 Area of grades and other lar	Table 1	Area	of grades	and	other	land
--------------------------------------	---------	------	-----------	-----	-------	------

7 The fieldwork was conducted at an average density of slightly more than 1 boring per hectare of agricultural land A total of 23 borings and three soil pits were described

8 The agricultural land on this site has been classified in the range Grade 2 (very good quality) to Subgrade 3b (moderate quality) including some Subgrade 3a (good quality) The limitations to land quality include soil droughtiness and soil wetness

9 The areas of Grade 2 and Subgrade 3a within the site are principally limited by soil droughtiness. The soils comprise medium silty textures occasionally overlying light loams at depth or occasionally becoming moderately to very stony in the lower subsoil. Soil droughtiness may affect plant growth, as the supply of available water may be deficient especially in drier years. A few individual observations are also limited by soil wetness.

10 The area of Subgrade 3b land is located towards the centre and east of the site To the north of the drainage channel running east-west across the site soil droughtiness is the principal limitation. In this area the soils are of medium silty texture and are commonly very occasionally extremely stony. In the local climate, the droughtiness limitation that the high stone content causes will affect plant growth, development and yield potential especially in drier years. To the south of the drainage channel there is an abrupt change in soil type. Here the soils are predominantly clayey and they exhibit signs of a moderate soil wetness limitation which, in the local climate leads to Subgrade 3b being appropriate. Soil wetness restricts land utilisation by adversely affecting plant growth and restricting the timing of mechanised operations or stocking.

FACTORS INFLUENCING ALC GRADE

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 below these were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

Factor	Units	Va	lues
Grid reference	N/A	SU 942 044	SU 942 050
Altitude	m AOD	5	10
Accumulated Temperature	day C (Jan June)	1543	1537
Average Annual Rainfall	mm	769	775
Field Capacity Days	days	157	158
Moisture Deficit, Wheat	mm	118	117
Moisture Deficit Potatoes	mm	115	114
Overall climatic grade	N/A	Grade 1	Grade 1

Table 2 Climatic and altitude data

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are also believed not to affect the site. The site is climatically Grade 1

Site

16 The site lies at altitudes in the range 5-10m AOD The highest land is towards the north west and south west of the site From these points the land slopes gently towards the centre of the site where a drainage channel runs to the eastern boundary which is a stream None of the slopes are steep enough to adversely affect agricultural land quality

Geology and soils

17 The published geological information for the site (BGS 1975) shows the site to be underlain by three deposits To the north and north west valley gravels are shown. To the south west brickearth is indicated and in a narrow strip along the stream to the east of the site alluvium has been mapped.

18 The most detailed published soils information for the site (SSGB 1967) shows this site to be underlain by a total of four soil series Hook series soils are shown in the north of the site These are commonly silty moderately well drained and variably stony Soils fitting this general description were found in this area of the site Across the centre of the site soils of the Calcetto series and Gade and Titchfield complexes are mapped These generally comprise variably stony and loamy soils which are variably affected by both groundwater and surface water and exhibit this in the form of extensive gleying The soils encountered in this part of the site were variable north of the drainage channel running to the east of the site the soils were loamy rarely gleyed but very stony To the south of the drainage channel the soils were clayey gleyed and only occasionally stony in the lower subsoil Towards the south west of the site Park Gate series soils are mapped These are described as being typically silty and moderately well drained (SSGB 1967) Soils similar to this description were found in this area of the site

AGRICULTURAL LAND CLASSIFICATION

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix II

Grade 2

21 Land of very good quality has been mapped in two areas at this site to the north west and south west of the site

The land in this area is principally limited by soil droughtiness although soil wetness can be equally limiting at some locations. Soils commonly comprise a slightly stony medium silty clay loam topsoil passing to a similarly textured though commonly stone free and occasionally gleyed upper subsoil in some observations this extended to depth (120cm) However the lower subsoil in the majority of the profiles in this mapping unit was more variable. Occasionally it comprised a stone free permeable gleyed heavy silty clay loam which either occurred to depth (120cm) or was impenetrable to the soil auger due to stones between 80 and 85cm. In the remaining observed profiles the lower subsoil was gleyed and comprised either a heavy silty clay loam overlying medium silty clay loam and medium sandy loam or a medium silty clay loam overlying medium sandy loam and loamy medium sand horizons which were commonly stoneless. Such soils are permeable and allocated to Wetness Class I or II depending on the depth to gleying.

23 These soils are generally water retentive but in the locally relatively dry climate they have a tendency to be slightly restricted by soil droughtiness This leads to the possibility of plant growth and yield being adversely affected especially in drier years. In addition the majority of the observed profiles exhibited signs of soil wetness in the form of gleying due to fluctuating groundwater This will slightly restrict the versatility of the land by restricting the number of days when cultivations or stocking may occur without damaging the soil structure However this does not affect the classification in the majority of cases

Subgrade 3a

Land of good quality has been mapped in a single unit towards the south and west of the site The principal limitation is soil droughtiness. The soil pit 3P is representative of the soil type found in these areas

The soils in this area are essentially similar (Wetness Class I and II) in texture to those described above for Grade 2 except that overall the stone content is greater and as such in the local climate the water available to crops is slightly more restricted. Soils comprise a slightly stony (8% v/v total flints) medium silty clay loam topsoil overlying a moderately stony (up to 15% v/v total flints) medium silty clay loam upper subsoil. This passes to a moderately stony (25% v/v total flints) heavy silty clay loam horizon overlying a medium silty clay loam lower subsoil containing 35% v/v total flints this was impenetrable to the soil auger and spade at 85cm. Other observations in this map unit were impenetrable to the soil auger at slightly shallower depths (65cm). The stone content of the soil profile is such that the water available to plants is restricted to the extent that moisture balances given local climatic factors are in the Subgrade 3a range. Soil droughtiness will restrict plant growth and yield especially in dner years.

Subgrade 3b

Land of moderate quality has been mapped in a single mapping unit. It is located towards the centre and east of the site. Principal limitations to land quality include soil

droughtiness to the north of the drain (located towards the centre of the site) and soil wetness to the south of this feature

Within the Subgrade 3b mapping unit two separate soil types were observed. To the north of the drain, the principal limitation is soil droughtiness. In this area the soils are well drained (Wetness Class I) and are characterised by the soil pit 1P (see Appendix II). They comprise a slightly to moderately stony (up to 37% v/v total flints including up to 17% >2cm) medium silty clay loam topsoil overlying moderately to very stony (up to 65% v/v total flints including up to 50% > 2cm) medium and heavy silty clay loam subsoil horizons. These were commonly impenetrable to the soil auger between 25 and 45cm and to the spade at 55cm Rooting was observed to extend to at least 55cm and assumed to penetrate further. The stone content of these profiles leads the available water to plants to be restricted to the extent that in the local climate. Subgrade 3b is the appropriate classification. Plant growth and yield potential are likely to be significantly and adversely affected by this restriction.

To the south of the drain located towards the centre of the site the soils are distinctly different and principally limited by soil wetness The pit observation 2P (see Appendix II) is representative of the soils observed here They commonly comprise a stoneless medium or heavy silty clay loam or clay topsoil which may be gleyed This passes to a stone free poorly structured gleyed and slowly permeable clay subsoil The depth to the gleyed and slowly permeable horizons results in the soils being ascribed to Wetness Class IV Given the local climate and topsoil textures Subgrade 3b is the appropriate classification for these wet soils Soil wetness has the effect of restricting land utilisation by limiting the number of days when cultivation or grazing may occur without damaging the soil structure It can also restrict crop yield growth and rooting

> Matthew Larkin Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1975) Sheet 317 Bognor Drift Edition 1 63 360 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of Great Britain (1967) Soils of the West Sussex Coastal Plain 1 25 000 Scale SSGB Harpenden

Soil Survey of England and Wales (1983) Soils of South East England 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Asıde
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PĹ	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR friable	EM extremely firm	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- APP available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

I

I

Z

Site Name A	RUN DL											
Grid Referenc	xe SU9	4200470	Avera	ge Ann	ual Rain	nfall	769	m				
			Accum	lated	Tempera	ature	1543	degree	days			
			Field	Capac	ity Leve	a)	157 d	ays				
			Land L	Jse			Perma	nent G	rass			
			Stope	and As	spect		de	rees				
	TURE	COLOUR		NES >2	TOT ST		ітн ма	OTTLES	STRUCTUR	E CONSIST	SUBSTRUCTURI	E CAL
	ZCL	10YR33		8	13	1	HR					
	ZCL	10YR43		50	55	۱	-IR			FR	M	
	ZCL	10YR43		10	61	1	HR			FR	м	
45-55 H	ZCL	10YR42	00	0	65	J	HR			FR	м	
Wetness Grade	1		Hetnes	is Clas	55	I						
			Gleyin	NG .		Ċm						
			SPL	. 3		Cm						
Drought Grade	4			60 mm	мвы	-58 m	anti					
			APP	61 mm	MBP	-54 m	nn.					
	ONI D1	roughtin	ess									
	UN Di		PIT DES	CRIPT	ION							
Site Name AR			PIT DES	CRIPTI	ION Pit Nur	ıber	2Р					
	UN DLP	SOIL SITES 5	PIT DES & 12 Average	annua	Pit Num al Rainf	all	769 mm					
Site Name AR Grid Reference	UN DLP	SOIL SITES 5	PIT DES & 12 Average Accumul	e Annua lated 1	Pit Num al Rainf Temperat	all ure	769 m 1543 de	ignee o	ϳϥϧϛ			
	UN DLP	SOIL SITES 5	PIT DES & 12 Average Accumul Field C	a Annua lated 1 Capacit	Pit Num al Rainf	all une	769 mm 1543 de 157 day	ignee (rs				
	UN DLP	SOIL SITES 5	PIT DES & 12 Average Accumul	e Annua lated 1 Capacii se	Pit Num al Rainf Temperat ty Level	all une	769 m 1543 de	igree d rs ent Gra				
Grid Reference	un dlp Su94	SOIL SITES 5 200460	PIT DES & 12 Average Accumul Field C Land Us Slope a	e Annua lated] Capacii se and Asp	Pit Num al Rainf Temperat ty Level pect	all ure 1	769 mm 1543 de 157 day Permane degr	xgree (rs ent Gra rees	153	CONSIST	SURSTRI K"TI IDE	CAL
irid Reference IORIZON TEXTI	un dlp Su94; URE	SOIL SITES 5 200460 COLOUR	PIT DES & 12 Average Accumul Field O Land Us Slope a STONE	a Annua lated T capacii se and Asp S >2	Pit Num al Rainf Temperat ty Level bect TOT STC	all ure 1	769 mm 1543 de 157 day Permane degr	xgree (rs ent Gra rees	153	CONSIST	SUBSTRUCTURE	CALC
irid Reference IORIZON TEXT 0 25 MZ	UN DLP SU94 URE CL	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0	e Annua lated 1 Capacii se and Asp (S >2)	Pit Num al Rainf Temperat ty Level xect TOT STC 0	all ure 1	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
Grid Reference HORIZON TEXT	UN DLP SU94 URE CL	SOIL SITES 5 200460 COLOUR	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0	e Annua lated 1 Capacii se and Asp (S >2)	Pit Num al Rainf Temperat ty Level bect TOT STC	all ure 1	769 m 1543 de 157 day Permane degr TH MOT	xgree (rs ent Gra rees	153	CONSIST FM	SUBSTRUCTURE	CALC
irid Reference IORIZON TEXT 0 25 MZI 25- 55 C	UN DLP SU94 URE CL	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 Wetness	Annua lated 1 capacii se and Asp (S >2)) ; Class	Pit Num al Rainf Temperat ty Level pect TOT STC 0 0	all ure NE LII	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
irid Reference IORIZON TEXT 0 25 MZI 25- 55 C	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying	Annua lated 1 capacii se and Asp (S >2)) ; Class	Pit Num al Rainf Temperat ty Level pect TOT STC 0 0	iall ure WE LII IV 25 cm	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
irid Reference IORIZON TEXT 0 25 MZI 25- 55 C	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 Wetness	Annua lated 1 capacii se and Asp (S >2)) ; Class	Pit Num al Rainf Temperat ty Level pect TOT STC 0 0	all ure NE LII	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
irid Reference IORIZON TEXT 0 25 MZI 25- 55 C	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying	Annua lated 1 capacii se and Asp (S >2)) ; Class	Pit Num al Rainf Temperat ty Level pect TOT STC 0 0	iall ure WE LII IV 25 cm	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
Grid Reference HORIZON TEXT 0 25 MZ	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying	Annua lated 1 capacii se and Asp (S >2)) ; Class	Pit Num al Rainf Temperat ty Level pect TOT STC 0 0	iall ure WE LII IV 25 cm	769 mm 543 de 157 day Permane degr	xgree o rs ent Gra rees TLES	ass Structure			CALC
Arid Reference HORIZON TEXT 0 25 MZ 25- 55 C Hetness Grade	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying SPL	a Annua lated 1 Capacii se and Asp SS >2) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Pit Num al Rainf Temperat ty Level bect TOT STO 0 0	iall ure IV 25 cm 25 cm	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
irid Reference IORIZON TEXT 0 25 MZ 25- 55 C Hetness Grade	un dlp Su94 Ure Cl	SOIL SITES 5 200460 COLOUR 10YR42 4	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying SPL APW	Annua lated T Capacii se and Asp S >2) : Class) mm	Pit Num al Rainf Temperat ty Level bect TOT STO 0 0	iall ure IV 25 cm 25 cm 0 mm	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC
irid Reference IORIZON TEXT 0 25 MZ 25- 55 C Hetness Grade	UN DLP SU94 URE CL	SOIL SITES 5 200460 COLOUR 10YR42 4: 25 Y41 4:	PIT DES & 12 Average Accumul Field C Land Us Slope a STONE 3 0 2 0 Wetness Gleying SPL APW	Annua lated T Capacii se and Asp S >2) : Class) mm	Pit Num al Rainf Temperat ty Level bect TOT STO 0 0	iall ure IV 25 cm 25 cm 0 mm	769 m 1543 de 157 day Permane degr TH MOT	xgree o rs ent Gra rees TLES	ass Structure			CALC

SOIL PIT DESCRIPTION

Site Name	a Arun Di	P SITES 5	& 12	Pit Number	3	3P				
Grid Refe	arence SUS	94100460	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ty Level	154 157 Whe	i9 mm 13 degree 7 days eat degrees N				
HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0-28	MZCL	10YR43 5		8	HR	-				
28- 48	MZCL	10YR53 5	-	15	HR	F	MDCSAB	FR	м	
48- 63	HZCL	10YR53 0	0 0	25	HR	С	MDCSAB	FR	м	
63- 85	MZCL	10YR52 0	0 0	35	HR	M		FR	м	
Wetness G	Grade 1		Wetness Clas Gleying SPL	48	cm cm					
Drought G	irade 3A		APW 105mm APP 106mm	-	2 mm 9 mm					
FINAL ALC MAIN LIMI		3A)roughtine:	55							

program ALCO12

	SAMP	LE	A	SPECT				WETI	VESS	-WH	EAT-	-P0	TS-	мі	REL	EROSN	FROST	a	HEM	ALC	
	NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000		XP DI	ST	LIMIT		COMMENTS
	_			_				_	_												
		SU94200500	-	E	3			1	1	31	-87		-84								SEE 1P
		SU94200470						1	1	60	-58		-54						DR		IMP 55 38-120
	_	SU94000490				65	~~	1	1	106	-12	119	-	3A					DR		IMP 70 SEE 3P
		SU94200460		_	•	25		4	38		0		0						WE		PIT 55
	3	SU94200490	PGR	E	2	22	22	2	3A	53	-65	53	-62	4					TS	3B	IMP 45 SEE 1P
-	зр	SU94100460	ынт	N	2	48		1	1	106	-12	106	-9	34					DR	34	PIT IMP 85
•		SU94100480			-			1	1	56	-62		-59	-					DR		IMP 32 SEE 1P
		SU94200480						1	1	49	-69		-66						DR		IMP 30 SEE 1P
-		SU94100470						1	1	59	-59		-56	-					DR		IMP 35 SEE 1P
_		SU94200470						1	1	49	-69		-66						DR		IMP 30 SEE 1P
											•••			•					2		
	8	SU94100460	ынт	N	2	28		2	2	97	-21	105	-10	38					ÐR	3A	IMP 65 SEE 3P
	9	SU94200460	PGR			28	28	4	38		0		0						WE	3B	SEE 2P
	10	SU94100450	WHT			28		2	2	156	38	122	7	2					WD	2	
	11	SU94200450	WHT	NE	2			1	1	54	-64	54	-61	4					DR	3A	IMP30 SEE1P/3P
	12	SU94100440	WHT			65		1	1	157	39	121	6	2					DR	2	
	13	SU94200440	MHT	Ε	4	35		2	2	126	8	125	10	2					WD	2	
-	14	SU94300440	PGR	Ε	2	0	25	4	38		0		0						WE	3B	SEE 2P
	15	SU94140507	PGR					1	1	158	40	123	8	2					DR	2	
	16	SU94090490	PGR			22		2	2	48	-70	48	-67	4					DR	38	IMP 30 SEE 1P
	17	SU94020480	PGR			0		2	2	82	-36	82	-33	38					DR	3B	IMP 50 SEE 3P
_	••	~~~~~				•	~~														
		SU94010474		5	1	-	20	4	38		0		0								SEE 2P
	-	SU94000460				55		1	1	152		124	9	-						2	
	-	SU94000450				30		2	2	159		123	8	-						2	THO DO DEE 20
	21	SU94140499				45	10	1	1	118		123	-	3A						-	IMP 80 SEE 3P
	22	SU94260447	PGK			10	IU	4	38		0		0						WE	3B	IMP 55 SEE 2P
_	23	SU94130465	PGR			25	25	4	3B		0		0						WE	38	IMP 55 SEE 2P

page 1

program ALCO11

COMPLETE LIST OF PROFILES 16/06/97 ARUN DLP SITES 5 & 12

page 1

program		1						·					· ULP							page 1
						S								STRUCT/				.		
SAMPLE	DEPTH	TEXTURE	COLOUR	ωL	ABUN	CONT	ωL	G	LEY	>2	>0	LITH	TOT	CONSIST	r s	ir poi	{ IMD	SPL	CALC	
1	0-14	mzcl	10YR32 00	10YR56	00 F					13	5	HR	33							
	14-25	mzcl	10YR54 00							0	0	HR	33		ŀ	1				IMP FLINTS 25
1P	0-22	mzcl	10YR33 00								4		13							STONES SAMPLED
	22 36	mzcl	10YR43 00								0		55		FRI					STONES SAMPLED
	36-45 45-55	hzcl hzcl	10YR43 00 10YR42 00								0		61 65		FR					STONES SAMPLED
	43-33	nze i	101842 00							U	U	пк	65		FR	1				
2	0-30	mzcl	10YR43 53	10YR46	00 F					0	0	HR	3							
	30-65	mzcl	10YR44 54	10YR56	00 F					0	0	HR	5		+	1				
	65-70	mzcl	75YR54 00	75YR56	00 C				S	0	0	HR	25		ŀ	1				IMP FLINTS 70
•	0.05	. 1	100040 40							•	•		•							
217	0-25 25 55	mzcl c	10YR42 43 25 Y41 42		. oo . c		25 Y41	00	v		0 0		0	MDCAB	EM 6	. v		v		
É .	23 33	C	23 141 46	731830	00 0	4	20 141	00	'	0	U		Ŭ	MUCAD	rn r	• •		Ŷ		
3	0 22	hc]	10YR42 00							17	8	HR	37							
	22 45	c	25 Y53 00	10YR58	00 C	C	OMINOO	00	Y	0	0	HR	10		F	•		Y		IMP FLINTS 45
3 P		mzcl	10YR43 53								0 1		8							
•	28-48	mzcl	10YR53 54				00MN00				0 1			MDCSAB						
	48 63 62 95	hzc]	10YR53 00			C)0mn00				01			MDCSAB						STONES SAMPLED
	63 85	mzcl	10YR52 00	101836	00 M				Y	U	0 1	нк	35		FR M	ļ				STONE SAMPLE IMP 8
4	0-30	mzc1	10YR41 00							0	0 1	HR	5							
	30-32	mzc1	10YR52 00							0	0 1	HR	50		۲	I				IMP FLINTS 32
•																				
5	0-20	mzcl	10YR33 00							0	01	HR	2							
	20 30	mzcl	10YR34 00							0	01	HR	30		M	l				IMP FLINTS 30
6	0 23	mzcl	10YR33 00							n	01	чÐ	5							
	23 35	hzcl	10YR43 00								01		15		M					IMP FLINTS 35
l i										-	•				•					
7	0-23	mzcl	10YR33 00							4	21	HR	8							
	23-30	mzc1	10YR33 00							0	01	HR	30		M	ł				IMP FLINTS 30
		_																		
- 8	0 28	mzcl	10YR43 53								01		5							
•	28 50	mzcl	10YR53 54						Y		01		5		M					
	50-65	hzc]	25Y 53 00	IUYR58	00 C	U	IOMN00	00	Ŷ	U	01	HR	30		M					IMP FLINTS 65
9	0-28	mzcl	10YR33 00							0	0		0							
	28-55	с	10YR53 00	75YR56	00 C				Y	0			0		Ρ			Y		
1	55 120	с	10YR52 00	75YR56	00 M				Y	0	0		0		P			Y		
••	0.00		100043 00								. .		-							
10	0-28 28-60	mzcl mzcl	10YR43 00 10YR53 63		00.0	^	omnoo	00	v	1 0	0 }	1K	5 0							
i	28-80 60-80	hzc1	101R53 03				OMNOO			0	_		0		M M					
	80-110	mzcl	25Y 62 00				OMNOO				0 1	łR	10		M					
	110-120		10YR53 00				OMNOO			0			0		M					
l i						-				-	-		-							

program ALCO11

COMPLETE LIST OF PROFILES 16/06/97 ARUN DLP SITES 5 & 12

page 2

					OTTLES		PED				-S1	ONES.		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN											IMP SPL CALC	
11	0-25	mzcl	10YR43 00							0			5				
	25–30	mzcl	10YR54 00							0	0	HR	2		м		IMP FLINTS 30
12	0-30	mzcl	10YR43 53							1	0	UD	5				
12	0-30 30-65	mzcl	107R43 55	107856	00 F					, 0			2		м		
	65-120	mzcl	10YR52 53			c	DOMNOO	00	Y	õ			0		M		
13	0-35	mzc]	10YR43 00							0	0	HR	2				
	35-55	mzcl	10YR43 00	75YR56	00 C	(DOMNOO	00	Y	0	0		0		M		
	55-85	hzc1	10YR52 00	10YR58	00 M				Y	0	0		0		M		IMP FLINTS 85
	0.05			75.0844						•	~		~				
14	0-25	mzcl	10YR42 00						Y	0			2		•	v	
	25-45 45-85	zc	10YR53 51 05 Y51 00						Y Y	0 0			2 5		Р Р	Y Y	
	45-65	c	05 151 00	701800	9 UU M				T	Ŭ	U	n k	3		F	r	
15	0-30	mzcl	10YR43 53	10YR46	00 F					0	0	HR	2				
	30-50	mzcl	10YR53 00							0	0	HR	2		м		
	50-120	hzc1	75YR54 00	10YR56	00 F					0	0	HR	2		м		
16	0-22	mzcl	10YR42 52							0			10				
	22-30	mzcl	10YR52 00	10YR56	5 00 C				Y	0	0	HR	30		M		IMP FLINTS 30
17	0-25	mzc1	10YR42 52	100046	. 00 C				Y	0	^	uD	5				
.,	0-25 25-45	mzc1 mzc1	25Y 52 62						Y	0			10		м		
	45-50	mzcl	25Y 63 00						, Y	õ			30		M		IMP FLINTS 50
	10 00		20. 00 00						•	•	•		•-				
18	0-20	с	25Y 42 00	10YR58	68 C				Y	0	0	HR	5				
	20-70	с	25Y 53 00	10YR68	00 M	(DOMINOO	00	Y	0	0	HR	10		Ρ	Y	
19	0-30	mzcl	10YR42 00							0		HR	2				
	30-55	mzcl	10YR54 00					~~			0		0		M		
	55-75 75-100	mzcl	10YR53 62 25Y 62 00			L L	DOMINOO		Y Y	0 0			0 0		M M		
	100-120	ms) lec	257 62 00 257 62 00							0			0		л М		
	100-120	111.5		TO TRUE	00 11				,	Ŭ	Ŭ		v				
20	0-30	mzc]	10YR42 00							0	0	HR	3				
	30-55	mzc1	10YR54 64	10YR56	00 C				Y	0	0		0		м		
	55-120	mzc)	25Y 62 00	75YR58	00 M	0	Domnoo	00	Y	0	0		0		м		
_		_															
21	0-30	mzcl	10YR42 00							0		HR	2		••		
	30-45		10YR44 54					•••		0			0		M		
	45-75 75-80		10YR54 00 10YR54 00				Domnoo						3 30		M M		
	73-60	mzcl	1018.34 00	TOTROC		,	UUMINUU	00	J	0	Ű	114	50		14		
22	0-10	hzcl	10YR31 41							0	0		0				
	10-55	c	25Y 42 00	75YR58	00 M	C	DOMINOO	00	Y	0	0		0		Ρ	Y	IMP FLINTS 55
23	0-25		10YR42 00							0		HR	2		_		
	25-55	c	25Y 41 51	75YR58	00 C				Y	0	0		0		Р	Y	IMP FLINTS 55