A1

Test Valley Local Plan Review Sites 86 to 91 Land at Warren Farm, North Baddlesley Hampshire

Agricultural Land Classification ALC Map and Report

May 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 1512/173/96 MAFF Reference EL 15/00292 LURET Job Number 02467

AGRICULTURAL LAND CLASSIFICATION SUMMARY REPORT

TEST VALLEY LOCAL PLAN REVIEW SITES 86 TO 91 LAND AT WARREN FARM NORTH BADDESLEY HAMPSHIRE

SEMI DETAILED SURVEY

INTRODUCTION

1 This summary report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey on approximately 105 hectares of land at Warren Farm North Baddesley to the south east of Romsey south Hampshire The field survey work was carried out during February 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA, Reading) The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix 1

4 At the time of survey the majority of the site had been ploughed Two smaller areas of permanent grassland were found in the extreme north and south of the survey area The Other Land category includes agricultural buildings and their associated infrastructure industrial storage warehousing and woodland

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

7 The fieldwork was conducted at an average density of 1 boring for every 2 hectares A total of 59 borings and five soil inspection pits were described

8 Land on this site has been classified in the range Grade 2 (very good quality agricultural land) Subgrade 3a (good quality agricultural land) and Subgrade 3b (moderate quality agricultural land)

Grade/Other land	Area/Other land	/ Surveyed area	/ Total site area
2	63	67	59
3a	50 6	54 4	48 1
3b Agricultural land not surveyed	36 2	38 9	34 4
Other land	12 2		11 6
Total surveyed area Total site area	93 1 105 3	100	88 4 100

Table 1 Area of grades and other land

9 Grade 2 land comprises deep well to moderately drained clay loams which become heavier and less permeable with depth Land assigned to this grade has minor limitations of soil wetness

10 Subgrade 3a land has soils that are broadly similar to Grade 2 but the wetness limitation is more pronounced occurring at shallower depths In addition, some Subgrade 3a land has a very stony lower subsoil which reduces the available water to plants and creates a moderate droughtiness limitation

11 Subgrade 3b land has a mixture of limitations mostly wetness and droughtiness but with areas affected by topsoil stones and a very small area that has been disturbed Land affected by a significant wetness limitation is related to shallow clay layers that are poorly structured and which significantly restrict the number of days when the land is in a suitable condition for cultivation or grazing by livestock Land affected by a significant droughtiness limitation occur where the soil horizons are stony throughout over gravel deposits in the lower subsoil Some soils in the north of the main Subgrade 3b map unit show clear patches of very stony topsoils which cause a significant limitation acting as an impediment to cultivation harvesting and crop growth and cause a reduction in the available water capacity of the soil

FACTORS INFLUENCING ALC GRADE

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions 12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

Factor	Units	Va	lues
Grid reference	N/A	SU 383 219	SU 383 210
Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit Potatoes	m AOD day ^o C (Jan June) mm days mm mm	30 1519 817 175 108 102	45 1503 819 175 107 100
Overall climatic grade	N/A	Grade 1	Grade 1

Table 2 Climatic and altitude data

13 The combination of rainfall and temperature at this site show that there is no overall climatic limitation affecting the site The site is climatically Grade 1

Site

14 The site lies at an altitude of 30 45 metres AOD with the highest land situated around Warren Farm and the lowest found in the extreme south west of the site No other site limitations affect the survey area

Geology and soils

15 The most detailed published geological information for the area (BGS 1973) maps the site as the Earnley Sand (Bracklesham Group) with a small outcrop of the Wittering Formation in the north The Earnley Sand to the west is entirely covered by River Terrace and Head Gravel Deposits To the south there are less extensive drift deposits

16 The most detailed published soils information for the area (SSEW 1983) shows the site to be mapped predominantly as the Wickham 3 Association Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging Some deep coarse loamy soils affected by groundwater (SSEW 1984) To the west are mapped soils of the Hamble 2 Association Deep stoneless well drained silty soils affected by groundwater over gravel locally

AGRICULTURAL LAND CLASSIFICATION

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

19 Grade 2 (very good quality) agricultural land occurs centrally This land is affected by a slight soil wetness and soil droughtiness limitation as observed Pit 4

20 Typically Grade 2 profiles comprise deep very slightly to slightly stony medium loam topsoils (MCL MZCL or MSZL Appendix II) These pass into slightly stony similarly textured upper subsoils From approximately 50 cm lower subsoils are slightly to moderately stony heavy clay loams passing occasionally into clays or very stony layers at depth

These Grade 2 soils experience a slight soil wetness limitation related to the presence of gleying below 40cm and a slowly permeable layer in the lower subsoil. The structures in the lower subsoil were assessed as weakly developed coarse subangular blocky. This degree of wetness places these soils in Wetness Class II. This wetness class in combination with the topsoil textures and the prevailing field capacity level (175 FC days) restricts this land to Grade 2. This limitation will restrict the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock.

22 This land also experiences a slight soil droughtiness limitation The combination of textures depths structures and stone contents means that there is insufficient water for crop growth at critical times of the season Structural conditions in the lower subsoil have been assessed as poor and there may be stony horizons at depth (containing up to 45% stone) As a result the consistency of crop yields will be affected and this land cannot be classified higher than Grade 2

Subgrade 3a

23 The majority of the survey area has been classified as Subgrade 3a (good quality agricultural land) and is found in the north east and west of the site and a small unit in the extreme south east This land is affected by a soil wetness or soil droughtiness limitation

Subgrade 3a soils with a minor soil wetness limitation exhibit gleying within and below 40 cm with a slowly permeable layer beginning in the upper or lower subsoil This degree of wetness places these soils in Wetness Class III or IV depending on the depth to the slowly permeable layer and restricts this land to Subgrade 3a This limitation will restrict the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock as well as adversely affecting crop growth and development

25 Some of the Subgrade 3a land in the east experiences a minor soil droughtiness limitation Pit 1 is typical of these soils and describes a deep fine loamy sand profile with little evidence of stones and with good structural conditions in the lower subsoil This combination of textures and structures has the effect of reducing the total amount of moisture available to the crop Consequently moisture balance calculations for the local climate restrict the land quality to no higher than Subgrade 3a

Subgrade 3b

26 The remainder of the survey area has been classified as Subgrade 3b (moderate quality agricultural land) and is mapped in the south and east The principal limitations are soil wetness soil droughtiness or topsoil stone content

27 Typical soil profiles for Subgrade 3b land with a soil wetness limitation comprise deep stoneless loam (MCL or MZCL) topsoils These pass into gleyed stoneless to slightly stony heavier textured loam (HCL) subsoils The lower subsoils contain stoneless clays or become impenetrable through the presence of stony layers

29 The presence of gleying within 40 cm and a slowly permeable layer in the upper or lower subsoil indicates a moderate wetness limitation. The structure of the heavy clay loam and clay in Pits 2 and 3 was assessed as weakly developed subangular blocky. This degree of wetness places the soils in Wetness Class IV and limits this land to Subgrade 3b. This limitation will restrict plant growth or imposes restrictions on cultivations or grazing by livestock. Excessive soil wetness adversely affects seed germination and survival partly by a reduction in soil temperature and partly because of anaerobism.

30 Soil profiles land with a moderate soil droughtiness limitation are represented by Pit 5 Here medium clay loam topsoils overlie stony fine sandy silt loam subsoils which pass into gravel from approximately 68cm This creates a significant limitation on the amount of water that is available for extraction during critical times of the growing season Consequently the level and consistency of yields is affected

31 Some of the Subgrade 3b has topsoil stone contents in the range 20 25% Such contents will significantly increase production costs by causing extra wear and tear to implements and tyres and will also significantly reduce crop establishment and quality

C Pritchard Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1973) Sheet No 315 Southampton BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) *Sheet 6 South East England* SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map Soil abbreviations explanatory note Soil pit descriptions Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness

8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Graduent	MR	Microrelief
FL	Flood Risk	ТΧ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than $66 \neq 0$ of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33/ of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40/6+

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column lf slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5 % biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations
 - **APW** available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

Site Nam	e TVALLE	EY LP ROMS	EY 86	9 1	Pit	Numbe	1	Р				
G id Ref	erence SU:	38302130	Ave a Accum F eld Land Slope	ige A nulated I Capac Use a nd A	l R Tempo ity Lo spect	fl eaturn avel	1 81 e 151 175 Plo 01	7 mm 9 degree 5 days Sughed degrees E	days E			
HORIZON	TEXTURE	COLOUR	STO	WES 2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 33 33-58	LES	107R42 0	10 16	0		2	HR		MDVCAB	FM	м	
58-120	LFS	25Y 74 0	0	0		0		С	MDVCAB	FR	G	
Wetness (Grade 1		Wetne	iss C1 :	55	I						
			Gleyi	ng		058	cm					
			SPL			No	SPL					
Drought (Gade 3A		APW	99 mm	MBI	4	9 mm					
			APP	103mm	MBI	5	1 mm					
FINAL AL	C GRADE	BA										

MAIN LIMITATION Droughtiness

Ē

S te Name	T VALLE	ey lp roms	EY 86 91	Pt N mbe	2P				
Gr d Refe	erence SU:	38102090	A er ge A	Ann al Raifl	1 817 mm				
			Acc mulat	ed Tempe atur	e 1519 degre	e days			
			Field Cap	a ty Level	175 day				
			Land Use		Ploughed				
			Slope and	l Aspect	degrees				
	TEYTURE		STONES	2 TOT STONE			CONSIST	SUBSTRUCTURE	CAL C
0 30	MCI	10VP42 0	STURES	2 101 31046		S STRUCTURE	0003131	SUBSTRUCTURE	GALC
30 40	MCI	10VP22 0	0 24	41		LIVCEAD	ED		
40 72	гюс С	107852 0		41		HINCOAD	ГК СМ	гі Р	
40 72		101K53 U		15	нк м	WKUSAB	FM	P	
72 100	LFS	257 62 0	0 0	0	м	MDCAB	FR	G	
100 120	С	05Y 71 0	0 0	5	HR M	MDVCAB	FM	Р	
Wet ess G	ade 3A		Wetness C	lass II	I				
			Glev na	040	cm				
			SPL	040	cm				
Drought G	ade 3A		APW 117	mm MBW	9 mm				
			APP 77	rnm MBP 3	25 mm				
FINAL ALC	GRADE 3	3B							
MAIN LIMI	TATION 1	op oil St	o ness						

Site Nam	e T VALLE	ey lp roms	EY 86 91	Pit N mbe	r s	3P				
Grid Ref	erence SU:	38102090	Average A Accumulat Field Cap Land Use Slope and	nn al Rainfal Wed Temperature Pacity Level Aspect	1 81 9 151 175 P1c	7 mm 9 degree 5 d ys xughed degrees	days			
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
30 40	MCL	107842 0	0 24	34	nk up		LIVCCAD	ED	м	
AO 72	FRCL C	101832 0		40			MIKOSAD	FK	M 0	
4V 72				12	HK	M	WKUSAB	FM The	P -	
Wetness (Garade 34	051 /1 0	u u Wetness C	C Iass III	пк	m	MUVCAB	ΓM	٢	
			Gloving	040	~					
			SPL	040	CTT					
Drought (Gid 3A		APW 104	mm MBW	4 mm					
FINAL ALC	C GRADE 3	88	APP 81 (mm MBP 2	21 mm					

MAIN LIMITATION Topsoil Sto iness

I

S te Nan	ne TVALL	EY LP ROMSEN	(86 91	Pit N mber	4	P				
Gid Ri	ierence SU	37702130 <i>/</i>	A erage An Accumulate	n al Rainfall d Tempe ture	81 151	7 mm 9 degree	days			
		1	eld Capa	city Level	175	days				
		l	Land Use		P10	ughed				
		\$	Slope and a	Aspect		degree				
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 29	MZCL	10YR42 00	1	3	HR					
29 53	MCL	10YR54 56	0	2	HR		MDCSAB	FR	м	
53 64	HCL	10YR54 00	0	2	HR	С	MDCSAB	FR	м	
64 78	HCL	10YR42 52	0	5	HR	М	WKCSAB	FR	м	
78 88	HCL	10YR42 52	0	45	HR	С		FM	P	
letness	Grade 2	1	Vetness Cl	as II						
		(Si v na	064	cm					
		:	SPL	064	cm					
)ro ght	G de 2	,	APW 118m	m MBW 1	0 mm					
		,	APP 118m	m MBP 1	6 mm					
FINAL AL	C GRADE	2								
MAIN LIN	IITATION	Dro ghtines:	5							

S te Nam	e TVALLE	ey lp rom:	SEY 86 91		Pit Numbe	ţ	5P				
G 1d Ref	erence SU3	38052045	A e age Accumula Field Ca Land Use Slope an	An ated apac a nd As	al Rainfall Tempe ture ity Level spect	8 = 15 17! Fa	17 mm 19 degree 5 days 11ow degrees	days			
HORIZÓN	TEXTURE	COLOUR	STONES	52	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 25	MCL.	10YR41 (8 00		35	HR					
25- 48	FSZL	10YR54 9	56 0		39	HR				м	
48 68	FSZL	10YR54 (0 00		63	HR				M	
68 80	GH	00ZZ00 (0 00		0					м	
Wetness (Gade 1		Wetness Gleying SPL	CI	s I No	cm SPL					
Drought (Grade 3B		APW 74 APP 78	łmm 3mm	MBW 3 MBP 2	14 mm 24 mm					
FINAL AL	C GRADE 3	38									

MAIN LIMITATION Droughtines

ŞA	IPLE		A	SPECT				WETI	NESS	WH	EAT	PC	DTS	٣	1 REL	EROSN	FRO	ST	CHI	EM	ALC	
NO	GRID F	REF (JSE		GRDNT	GLEY	(SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD		EXP	DIST		LIMIT		COMMENTS
	1 SU37402	2140 F	GR	NE	03	025	025	4	3B	85	23	91	11	38						WE	3B	PLSTIC25
ĺ.	1P SU38302	2130 F	PLO	Е	01	058		1	1	99	9	103	1	3A						DR	3A	Q MSAND
	2 SU37502	2140 F	PGR	NW	05	055	072	2	1	127	19	101	1	2						DR	2	FIRM C72
	2P SU38102	2090 F	PLO			040	040	3	3A	117	9	77	25	3A						TS	3B	SEE3P
	3P SU38102	2090 F	PLO			040	040	3	AE	104	-4	81	21	3A						ΤS	3B	
	4 SU37702	2140 F	GR			055		1	1	90	18	95	7	3A						DR	3A	IMPFLINTS60
6	IP SU37702	21 30 F	2L0			064	064	2	2	118	10	118	16	2						DR	2	IMPPIT88
. !	5 SU37802	140 M	1ZE			030	043	4	3A	107	1	113	11	ЗA						WE	3A	IMPFLINTS80
;	5P SU38052	2045 F	AL					1	1	74	34	78	24	3B						DR	38	
	7 SU37402	130 F	GR	SE	05			1	1	139	31	112	10	1							1	JUST GR1
•	3 SU37502	130 F	GR					1	1	44	64	44	58	4						DR	3B	IMPFLINTS30
	9 SU37602	2130 F	2.0			030		2	1	74	34	74	28	3B						DR	3B	IMPFLINTS50
1	SU37702	2130 F	PL0			038	038	4	3A	110	2	109	7	3A						WE	3A	IMPFLINTS90
1	I SU37802	130 F	PGR	SE	02	028		2	2	62	46	62	40	3B						DR	3A	IMPFLINTS40
1; •	2 SU37302	120 F	20			030	075	3	3A	124	16	115	13	2						WE	3A	IMP 100QS50
1	1 SU37502	120 F	PL0			030	070	3	2	139	31	119	17	1						WE	2	
1	5 SU37702	120 F	20	E	02	050		1	1	74	34	55	47	3B						DR	3B	
1	7 SU37802	2120 F	GR					1	1	81	27	83	19	3B						DR	3A	IMPFLINTS55
1	9 SU37602	2110 F	PLO			050	050	3	3A	103	5	111	9	3A						WE	3A	IMPFLINT\$75
2	D SU37702	2110 F	210			070	070	2	2	119	13	120	18	2						WD	2	IMPFLINTS90
2	SU37802	110 F	PLO			050	050	3	3A	135	27	112	10	2						WE	3A	
2	3 SU37602	100 F	PLO			025	065	3	3A	120	12	113	11	2						WE	3A	
2	5 SU37802	100 P	PL0	SM	01	038	065	3	3A	114	6	113	11	2						WE	3A	IMPFLINTS90
2	7 SU37702	2090 P	GR			045		1	1	104	4	106	4	3A						DR	3A	IMPFLINTS80
2	9 SU37502	130 F	×GR			060	060	3	3A	102	6	109	7	3A						WE	3A	IMPFLINT\$75
3	I SU37702	130 F	PLO			025	075	2	2	110	2	115	13	3A						DR	3A	IMPFLINTS80
3	3 SU37902	130 F	יג0			025	085	2	2	143	35	116	14	1						WE	2	
3	5 SU38102	130 F	PLO			033	075	3	3A	126	18	117	15	2						WE	3A	
3	7 SU38302	130 F	20	E	01	060		1	1	109	1	79	23	3A						DR	3A	
3	9 SU37402	120 F	*GR			030	055	3	3A	127	19	104	2	2						WE	3A	
4	SU37602	120 P	PL0			050	070	2	2	120	12	113	11	2						WD	2	IMPFLINTS100
4:	3 SU37802	120 P	PLO			055		1	1	128	20	110	8	2						DR	2	IMPFLINTS105
4!	5 SU38002	120 P	PLO			028	065	3	2	140	32	117	15	1						WE	2	
4	7 SU38152	120 P	PL0	Ε	01	025	040	4	3A	129	21	109	7	2						WE	зa	
49	9 SU37502	110 P	GR					1	1	104	4	115	13	3A						DR	2	IMPFLINTS70
5	SU37702	110 P	GR			045	045	3	3A	102	6	112	10	AE						WE	3A	IMPFLINTS70
53	3 SU37902	110 P	PLO	W	01	028	028	4	3B	140	32	115	13	1						WE	3B	
5	5 SU38102	110 P	PL0	W	01	038	080	2	2	123	15	114	12	2						WD	2	BDR3A
5	7 SU38302	110 P	2L0	W	01	042	042	3	3A	141	33	120	18	1						WE	3A	
- 59	SU37602	100 P	GR					1	1	89	19	92	10	3A						DR	34	IMPFLINTS55
6.	SU37802	100 P	GR			055	055	3	3A	93	15	99	3	3A						WD	3A	IMPFLINTS65
6	3 SU38002	100 P	PLO			028	050	3	3A	128	20	111	9	2						WE	3A	

	SAMP	LE		A	SPECT				WET	NESS	WHE	EAT	PC	DTS	м	REL	EROSN	FROS	Т	CHEM	ALC	
	NO	GRID	REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ð	(P I	DIST	LIMIT		COMMENTS
	64	SU3810	02110	PLO					4	ЗВ	127	19	104	2	2					WE	3B	
	65	SU3820	2100	PL0	W	01	028	028	4	3B	77	31	78	24	38					WE	38	
_	66	SU3830	02100	PL0	W	01	025	025	4	3B	105	3	101	1	3A					WE	3B	
	68	SU3770	02090	PGR			065		1	1	101	7	111	9	3A					DR	3A	IMPFLINTS65
	70	SU379(2090	PL0					1	1	41	67	41	61	4					WS	3B	
_	72	SU3810	2090	PL0	W	01	032		4	3B	47	61	47	55	4					WS	3B	
	74	SU3830	2090	PL0			035	035	4	3B	129	21	119	17	2					WE	3B	
	75	SU3765	52080	HOR					1	1	45	63	45	57	4					DS	3B	
	77	SU3800	02080	PLO	W	01	055	055	3	3A	99	9	109	7	3A					WD	ЗA	
	79	SU3820	02080	PL0	W	01	028	028	4	38	124	16	103	1	2					WE	38	
-	81	SU3760	2065	HOR					1	1	65	43	65	37	3B					DR	3B	
-	83	SU3830	02070	PLO			028	040	4	3B	136	28	127	25	2					WE	3B	
	85	SU3820	2060	PGR			035	035	4	38	81	27	87	15	3B					WE	38	
	86	SU3839	52065	PLO			028	028	4	38	86	22	96	6	3B					WE	3B	
	90	SU383(2050	RGR					1	1	69	39	69	33	3B					DR	38	IMPFLINTS50
	93	SU3800	2040	RGR					1	1	49	59	49	53	4					DR	3B	IMPFLINTS30
	95	SU3820	2040	SAS			020	020	4	3B	76	32	82	20	3B					WE	3B	
	98	SU3790)2030	RGR			012	012	4	38	69	39	69	33	3B					WE	3B	
	100	SU3810	2030	SAS					1	1	44	64	44	58	4					DR	38	IMPFLINTS30
-	102	SU383(2030	RGR	Ε	01			2	1	125	17	81	21	3A					DR	3A	
	103	SU3810	02020	SAS					٦	1	44	64	44	58	4					DR	3B	IMPFLINTS30
	1 04	SU3820	2020	RGR	Ε	02	077	100	1	1	122	14	85	17	3A					DR	3A	
	105	SU379	52065	RGR					1	1	71	37	71	31	3B					DR	38	IMPFLINTS48

						-,•	OTTLES) -	PED		-	STONE	s	STRUCT	1	SUBS	5				
SAMPLE	DEP	TH	TEXTURE	COLOUR	2	COL	ABUN	CONT	COL	GLEY	2	6 LIT	н тот	CONSIS	T	STR	POR	IMP	SPL	CALC	
e 1	0	25	mcl	10YR42	00						0	0	0								
	25-	60	c	25Y 61	71	10YR68	3 00 M			Y	0	0	0			Ρ			Y		
 1P	0-	33	lfs	10YR42	00						0	0 HR	2								
	33-	58	lfs	10YR54	56						0	0	0	MDVCAB	FM	M					
	58	120	lfs	25Y 74	00	10YR68	300 C			Y	0	0	0	MDVCAB	FR	G					
2	0	30	ms]	10YR42	00						2	0 HR	15								
	30	45	msl	10YR58	00						0	O HR	15			м					
_	45-	55	msໄ	10YR58	00						0	0	0			м					
-	55	72	scl	25Y 53	00	10YR68	3 00 M			Y	0	0	0			Μ					
	72	120	c	05Y 61	62	05YR58	3 68 M			Y	0	0	0		FM	Ρ			Y		
2P	0	30	mcl	10YR42	00						24	4 HR	41								
	30	40	mcl	10YR32	00						0	O HR	41	WKCSAB	FR	M					
	40	72	c	10YR53	00	75YR68	3 00 M			Y	0	0 HR	15	WKCSAB	FM	Ρ			Y		
	72	100	1fs	25Y 62	00	75YR68	3 00 M			Y	0	0	0	MDCAB	FR	G					
	100	120	c	05Y 71	00	75YR68	3 00 M			Y	0	0 HR	5	MDVCAB	FM	Ρ			Y		
— 3P	0	30	mcl	10YR42	00						24	4 HR	34								
-	30	40	mc1	10YR32	00						0	0 HR	40	WKCSAB	FR	Μ					
	40	72	с	10YR53	00	75YR68	3 00 M			Ŷ	0	0 HR	12	WKCSAB	F₩	Ρ			Y		
-	72	120	c	05Y 71	00	75YR68	3 00 M			Y	0	OHR	5	MDVCAB	FM	Ρ			Y		
4	0	28	mcl	10YR42	43						0	0 HR	5								
	28	45	ന്റി	10YR44	54						0	O HR	5			Μ					
	45	55	mcl	10YR54	53	10YR56	500F				0	O HR	5			Μ					
	55	60	hcl	10YR52	00	10YR56	500 C			Ŷ	0	OHR	30			M					IMPFLINTS60
4 P	0	29	mzcl	10YR42	00						1	0 HR	3								
-	29	53	ຫcl	10YR54	56						0	0 HR	2	MDCSAB	FR	Μ					
	53	64	hcl	10YR54	00	10YR56	5 58 C			S	0	OHR	2	MDCSAB	FR	M					
_	64	78	hc1	10YR42	52	75YR58	3 00 M			Ŷ	0	OHR	5	WKCSAB	FR	M	Y		Y		
	78	88	hcl	10YR42	52	75YR58	300 C			Ŷ	0	OHR	45		FM	Ρ			Ŷ		
5	0	30	fs 1	10YR42	00						5	OHR	12								
	30	43	wcj	10YR52	62	10YR56	5 00 C			Ŷ	0	O HR	5			M					
	43	65	c	25Y 53	00	10YR58	3 00 M			Ŷ	0	0	0			Ρ			Y		
	65	75	с	05Y 62	00	75YR56	5 00 M			Y	0	OHR	5			P			Y		
_	75	80	с	05Y 62	00	25YR56	6 00 C			Ŷ	0	OHR	25			Р			Ŷ		
5P	0	25	mc]	10YR41	00						8	OHR	35								
-	25-	48	fszl	10YR54	56						0	O HR	39			M					
-	48	68	fszl	10YR54	00						0	0 HR	63			M					
	68	80	gh	00ZZ00	00						0	U	0			M					
7	0	28	mszl	10YR43	00						2	0 HR	12								
8	28-	45	mcl	10YR58	00						0	0 HR	10			M					
	45-	70	hc1	10YR58	00						0	0	0			M					
-	70	120	с	10YR58	00						0	0 HR	3			Μ					

- -

prog am ALCOll

				-	MOTTLES	5	PED			STON	ES-	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LI	тн тот	CONSIST	STR PO	OR IMP	SPL CALC	
8	0 30	msl	10YR31 21						5	0 HR	15					IMPFLINTS30
9	0 30	mszl	10YR31 00						3	0 HR	10					
	30 45	mszl	25Y 52 00	10YR5	6 00 C			Y	0	0 HR	35		м			
	4550	ണടി	25Y 52 00	10YR5	6 00 C			Y	0	0 HR	40		м			IMPFLINTS50
10	0 38	mszl	10YR31 00						1	0 HR	5					
	38-60	с	25Y 53 00	25YR5	8 00 M			Y	0	O HR	5		Ρ		Y	
	60 85	c	25Y 72 00	10YR5	8 00 M			Y	0	O HR	3		Ρ		Y	
-	85-90	с	05Y 72 00	10YR6	8 00 M			Y	0	O HR	25		Ρ		۲	IMPFLINTS90
11	0 28	mcl	10YR42 00						2	0 HR	10					
-	28 40	mcl	25Y 52 00	10YR5	8 00 C			Y	0	OHR	15		м			IMPFLINTS40
12	0 30	mcl	10YR43 00						1	0 HR	5					
	30 50	hcl	10YR53 00	10YR5	6 00 C			Ŷ	0	0 HR	3		м			
_	50 75	hc1	25Y 53 00	10YR5	8 00 C			Ŷ	0	0	0		M			
	75-95	c	25Y 62 00	10YR5	8 00 M			Ŷ	0	OHR	0		Р		Y	
	95 100	с	25Y 62 00	10YR5	8 00 M			Ŷ	0	0 HR	20		Р		Y	IMPFLINTS100
14	0 30	ms l	10YR42 00						1	0 HR	3					
	30 55	mc]	10YR54 53	10YR5	6 00 C			Ŷ	0	0	0		M			
-	55 70	hcl	10YR62 00	10YR5	658M			Ŷ	0	0	0		M			
	70 120	c	25Y 71 00	10YR6	8 00 M			Ŷ	0	OHR	10		Р		Y	
16	0 30	lms	10YR31 41						0	0 HR	3					
	30 50	lms	25Y 41 00	10YR4	6 00 F				0	0 HR	3		M			
	50 95	ms	25Y 63 00	10YR6	6 00 C			Ŷ	0	0 HR	5		M			
	95 120	lms	25Y 63 00	10YR5	8 00 C			Ŷ	0	0	0		М			
17	0 20	mzcl	10YR43 00						1	0 HR	5					
	20 50	mzcl	10YR44 00						0	0 HR	20		M			
	50 55	hcl	10YR56 00						0	0 HR	35		M			IMPFLINTS55
19	0 30	mzcl	10YR44 00						1	0 HR	5					
	30 50	mzcl	10YR58 00						0	OHR	5		M			
	50 75	с	10YR53 00	75YR5	658M			Ŷ	0	0 HR	8		Р		Ŷ	IMPFLINTS55
20	0 25	mzcl	10YR44 43						1	0 HR	5					
	25-40	mzcl	10YR58 00						0	UHR	3		M			
	40 70	hzc]	10YR58 00						0	OHR	3		M _			
	70 90	с	10YR52 00	75YR5	658M			Ŷ	٥	OHR	5		P		Ŷ	IMPFLINTS90
21	0 20	mzcl	10YR44 00						1	0 HR	5					
	20 35	mzcl	10YR44 46						U C	U HR	5		M			
	35 50	hzc1	10YR44 46		· · · ·				0	0	0		M		.,	
	50 120	c	10YR52 00	75YR5	6 00 M			Y	Q	0	0		Р		Y	

prog am ALCO11

				-1	10 TTLES	5	PED			STO	NES	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 L)	ітн тот	CONSIST	STR POR	IMP	SPL CA	LC
23	0 25	mcl	10YR42 00						2	0 ні	R 5					
	25-35	mc]	10YR53 52	10YR5(5 00 C			v	0	0	0		м			
•	35-65	hc1	25Y 52 00	10YR5	5 66 M			Ŷ	Ō	0	Ō		M			V WET 60 65
	65-100	c	25Y 51 00	75YR6	B 00 M			Ŷ	0	0 HI	R 10		P		Y	FIRM
25	0 30	mcl	10YR42 00						1	0 ня	२ 5					
	30 38	mcl	10YR42 43	10YR56	5 00 F				0	0 HF	रे 5		м			
	38 65	hc]	25Y 53 00	10YR58	3 00 C			Y	0	0	0		M			
	65-90	с	05Y 62 00	25YR5	3 00 C			Ŷ	0	0 H	R 10		Ρ		Y	
27	0 33	mcl	10YR42 00						2	оня	R 10					
	33-45	mcl	10YR44 00						0	0 н	R 20		м			
	45-60	mcl	10YR54 53	10YR56	5 00 C			Y	0	0 н	x 10		м			
	60 80	mcl	10YR54 53	10YR56	558 C			Y	0	0 н	R 10		M			IMPFLINTS80
29	0 25	mzcl	10YR43 00						2	он	R 8					
	25 45	mzcl	10YR44 00						0	0 H	x 8		м			
	45 60	hc1	10YR56 00						0	0 H	R 8		м			
	60 75	с	10YR53 00	75YR50	5 00 M			Y	0	0 HF	R 10		Ρ			
31	0 25	നവി	10YR43 00						1	0 н	२ 5					
	25 65	hc1	10YR44 54	10YR56	5 00 C			S	0	0	0		м			
l	65 75	hc1	10YR54 53	10RY56	5 00 C			Y	0	0 н	२ 5		м			
	75-80	С	10YR53 52	10YR5	300 C			Y	0	0 HF	R 30		Р			
33	0 25	mcl	10YR44 54						0	0 н	र 2					
	25-85	hcl	10YR74 00	10YR58	368 M	C	omnoo o	0 Y	0	0	0		Μ			
	85 120	c	25Y 61 00	10YR5	3 00 M			Y	0	0 HF	R 5		Ρ		Y	
35	0 33	mcl	10YR43 53						0	0 н	х 3					
	33 55	mcl	10YR63 62	10YR56	5 00 C	C	DOMNOO O	0 Y	0	0	0		м			
	55 75	hc1	25Y 62 00	10YR58	8 00 M	C	omnoo o	0 Y	0	0	0		м			
	75 100	c	25Y 61 00	10YR6	B 00 M			Y	0	0 HF	R 10		Ρ		Y	FIRM
37	0 30	กรไ	10YR41 00						O	о ня	R 2					
	30 60	lms	10YR54 56						0	0	0		М			
	60 75	lms	25Y 53 63	10YR66	5 00 C			Y	0	0	0		M			
	75-100	lms	25Y 72 00	10YR68	3 00 C			Y	Û	0	0		м			
	100 120	nsl	25Y 74 00	75YR56	5 00 C			Y	0	0 HF	R 5		м			
39	0 30	mzcl	10YR42 00						2	ОНЯ	R 10					
	30 45	mcl	10YR44 54	10YR56	5 00 C			S	0	O HR	۲ 15		M			
	45 55	hc1	10YR52 00	10YR58	3 00 M			Y	0	0 HF	2 IO		M			
	55 85	c	25Y 52 00	10YR58	3 00 M			Y	0	O HF	₹ 15		Р		Y	
	85 120	с	25Y 62 00	75YR58	3 00 M			Y	0	0	0		Ρ		Y	
41	0 30	fom	10YR43 00						1	O HF	₹ 5					
	30 50	mcl	10YR44 54	10YR56	5 00 F				0	O HF	≀ 3		M			
	50 70	hcl	10YR54 00	10YR56	5 00 C			S	0	0 HF	₹ 5		м			
•	70 95	hcl	10YR52 53	10YR56	5 00 C			Y	0	O HE	۲ to		P		Y	
	95 100	hc1	10YR52 53	10YR56	5 00 C			Y	0	O HR	₹ 35		P		Y	IMPFLINTS100

prog am ALCO11

				-14	OTTLES		PED			STONES		STRUCT/	SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH	тот	CONSIST	STR F	YOR 1	IMP	SPL	CALC	
43	0 30	നറി	10YR42 00						2	0 HR	10							
	30 55	mcl	10YR44 54	10YR56	00 F	0	OMNOO	00	0	OHR	5		M					
	55-90	mcl	10YR52 62	10YR56	00 C	0	IOMIN00	00 Y	0	0 HR	5		M					
	90 105	hc1	25Y 62 00	10YR58	00 M	0	IOMN00	00 Y	0	0 HR	30		Μ					IMPFLINTS105
45	0 28	mszl	10YR43 00						0	0 HR	3							
	28-45	നറി	10YR62 00	10YR56	00 C			Y	0	0	0		Μ					
	45-65	ຫວ່	25Y 62 00	10YR68	00 C			Y	0	0	0		Μ					
	65-120	c	25Y 61 00	10YR58	68 M			Y	0	0	0		Ρ			Y		
47	0 25	mszl	10YR42 00						0	0 HR	3							
	25 40	mcl	10YR53 54	10YR56	6 00 C			Y	0	0	0		M					
-	40 70	с	25Y 52 00	10YR58	00 M			Y	0	0	0		Ρ			Y		
	70 120	с	05Y 53 63	75YR58	00 M			Y	0	0 HR	10		P			Y		
49	0 25	mzcl	10YR43 00						1	0 HR	5							
_	25 50	mzc1	10YR44 00						0	OHR	5		M					
	50 70	hc1	10YR56 00						0	0 HR	10		М					IMPFLINTS70
51	0 30	mzcl	10YR43 00						1	0 HR	5							
	30 45	hc]	10YR54 00	DOMNOC	00 F				0	OHR	5		M					
	45-65	hc1	10YR52 54	10YR56	00 C			Y	0	OHR	10		M			Y		
	65-70	hcl	10YR52 54	10YR56	6 00 C			Ŷ	0	OHR	30		м			Ŷ		IMPFLINTS70
53	0 28	mc1	10YR42 00						0	0 HR	2							
	28 80	hcl	25Y 63 00	TOYRSE				Ŷ	0		2		M			Ŷ		
	80 120	с	254 62 14	/54 50	00 M			Ŷ	U	UHK	5		۲			Y		
55	0 30	hc1	10YR32 00						1	0 HR	3							
-	30 38	mcl	10YR42 00						0	0 HR	1		М					
	38-80	mcl	25Y 72 00	25Y 66	00 C			Y	0	0 HR	5		М					
	80 100	с	25Y 72 00	75Y 66	6 00 M			Y	0	0 HR	20		Ρ			Y		
57	0 28	fs 1	10YR42 00						1	0 HR	1							
	28 42	mcl	10YR54 00		F				0	0 HR	2		М					
	42 52	hc1	10YR53 54	10YR56	00 C			Y	0	0 HR	2		М			Y		
	52 120	с	05GY71 00	05Y 46	00 M			Y	0	0 HR	10		Ρ			Y		
59	0 25	mzcl	10YR43 00						1	OHR	5							
	25 40	mzcl	10YR44 00						0	OHR	5		M					
	40 55	mc]	10YR44 00						0	OHR	8		M					IMPFLINTS55
61	0 33	mcl	10YR43 00						1	0 HR	5							
	33-55	mcl	10YR54 56						0	OHR	5		M					
	55 65	hcl	10YR53 54	10YR56	00 C			Ŷ	0	OHR	25		P					IMPFL1NTS65
63	0 28	mcl	10YR42 00						0	0 HR	2							
	28 50	mzcl	10YR52 72	10YR56	00 C			Y	0	O HR	2		Μ					
	50 60	hc1	10YR62 53	10YR56	00 C			Y	0	0	0		Ρ			Y		
-	60 110	с	05GY61 00	05YR46	00 M			Y	0	0	0		Ρ			Y		

prog am ALCO11

page	5
------	---

				4	IOTTLES	5	PED			STONES	S	STRUCT/	SUB	s			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LIT	н тот	CONSIST	STR	POR	IMP	SPL CALC	
64	0 32	mcl	10YR31 00						7	0 HR	12				N	N	
	32 45	hc]	10YR52 00	10YR56	5 00 C			Y	0	0	0		м		N	N	
	45-120	c	05GY61 00	05YR46	6 00 M			Y	0	0	0		P		N	Ŷ	
65	0 28	mzc]	10YR42 00						0	0 HR	2						
	28 50	hc]	10YR63 00	10YR56	00 C			Y	0	0 HR	10		Р			Y	
_	50 52	hcl	10YR63 00	10YR56	00 C			Y	0	0 HR	35		Ρ			Ŷ	IMPFLINTS52
66	0 25	mzcl	10VR42 00						n	О НР	1						
	25-75	hcl	057 63 00	107856	. on c			v	ň	ОНР	1		Þ			v	
•	75 90	c	05GY71 00	05Y 46	5 DO M			Ŷ	Õ	0 HR	;		P			Ŷ	
69	0.20		100042 00							0.00	F						
00	0.30	msz i	101843 00	0000000	00 F				1		5		м				
	30 45 AF 6F	mci hol	101K44 54	OOMNOC					0		5		M				
	45 65 65-68	hc1	107R54 50	10YR56	6 00 C			Y	0	ÛHR	30		M				IMPFLINTS68
•		_								_							
70	0 30	mc]	10YR32 00						20	6 HR	36						TS STONES
	30 35	wcj	10YR62 00						0	0 HR	40		M				IMPFLINTS35
72	0 32	mcl	10YR32 00						20	4 HR	34						TS STONES
	32 40	mcl	10YR62 00	10YR66	6 00 C			Y	0	0 HR	40		М				IMPFLINTS40
74	0 25	mz 1	10YR42 00						0	0 HR	1						
	25 35	mcl	10YR54 00						0	0	0		Μ				
	35 75	hc1	10YR53 61	10YR56	00 C			Ŷ	0	0	0		Μ			Y	
_	75 100	с	05Y 62 00	10YR58	00 C			Y	0	0 HR	1		Ρ			Y	
75	0 25	mcl	10YR42 00						20	0 HR	35						
-	25 40	mcl	10YR44 00						0	0 HR	40		Μ				
77	0 32	mzcl	10VR43 00						n	Û HR	4						
	32 55	mcl	10VR54 00						Ō	0 HR	2		м				
_	55 70	c	25Y 63 00	10YR56	00 C			Y	0	0 HR	30		Р			Y	IMPFLINTS70
70	0.29		100042 00						^	0.00	,						
/9	20 20	h c]	101842 00		00 M			v	0	0 UR 0 UR	1					v	
	70 120	c	05GY71 00	05Y 46	00 M			Ŷ	õ	0 HR	5		P			Ŷ	
81	0 30	msz1	10YR42 00						12	OHR	25						
	30 50	mc1	10YR63 53						0	0 HR	35		M				IMPFLINTS50
83	0 28	ı	10YR42 00						0	0 HR	1		м				
_	28 40	mzc1	10YR53 00	10YR56	00 C			Y	0	0 HR	1		м				
	40 60	h cl	10YR53 00	10YR56	00 C			Y	0	0 HR	1		м			Y	
	60 100	hc1	05Y 62 00	10YR58	00 M			Ŷ	0	0 HR	1		Ρ			Ŷ	IMPFLINTS100
85	0 35	mcl	10YR32 00						5	0 HR	10						
	35 60	с	10YR53 00	000000	00 C			Y	0	0 HR	10		Ρ	Y		Y	

prog am ALCOll

				-	MOTTLES	S	PED			STONES	;	STRUCT/	SUBS	5			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH	і тот	CONSIST	STR	POR	IMP SP	L CALC	
86	0 28	mcl	10YR32 00						4	0 HR	10						
	28 45	с	10YR62 00	10YR6	8 00 C			Y	0	0 HR	4		Ρ		Y		
•	45-70	с	05Y 53 00	25YR4	8 00 M			Y	0	0 HR	10		Ρ		Y		IMPFLINTS70
90	0 25	տշի	10YR32 00						5	0 HR	20						
ļ	25 50	mcl	10YR42 00						0	0 HR	20		M				
93	0 30	mcl	10YR43 00						2	0 HR	10						
95	0 20	mcl	10YR43 00						2	0 HR	10						
	20 60	с	75YR53 00	00000	M 00 0			Y	0	0 HR	5		Ρ	Y	Y		
98	0 12	mcl	10YR42 00						5	0 HR	10						
	12 50	с	10YR53 00	00000	0 00 C			Y	0	0 HR	1		Ρ	Y	Y		
100	0 30	mcl	10YR42 00						5	0 HR	20						
102	0 33	msl	10YR41 42	75YR4	6 00 C			Y	0	0 HR	10						
	33 65	lms	25Y 62 00	10YR5	6 00 C			Y	0	0 HR	1		Μ				
	65-120	scl	05Y 52 53	10YR6	8 00 M			Y	0	0	0		M				
103	0 30	mcl	10YR42 00						5	0 HR	20						
104	0 28	msl	10YR43 00						0	0 HR	10						
	28 43	msl	10YR44 00						0	0 HR	1		М				
l	43 77	lms	25Y 54 00						0	0	0		М				
	77 100	scl	05Y 63 00	75YR5	6 00 C			Y	0	0	0		Μ				
	100 120	sc	05Y 63 00	75YR5	6 00 M			Y	0	0	0		Ρ		Y		
l 105	0 30	mcl	10YR43 00						2	0 HR	10						
	30 48	hc1	10YR53 00						0	0 HR	25		M				