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Definitions and acronyms 

Activation levels: The output from a neural network (Appendix C.2.2) 
Azimuth angle: The direction of the sun. 
Bi-directional effects: The effect seen over some surfaces where the amount of light being 

reflected depends on the direction of the light source and the viewing 
direction (Appendix C.1.3) 

CASI: Compact Airborne Spectrographic Imager (Appendix B.1) 
Classification: The process by which remotely sensed data are converted to a land cover 

map (Appendix C.2) 
DEM: Digital Elevation Model 
Edge matching: A method of radiometric normalisation 
Geocorrect: The process of transforming data so that it may be used in a GIS. Making a 

data layer ‘map ready’. 
Georeference:  The process of transforming data so that it may be used in a GIS. Making a 

data layer ‘map ready’. 
GIS: Geographic Information System 
GPS: Global Positioning System 
LIDAR:  Light detection and Ranging. A laser terrain mapper (Appendix B.1) 
Maximum likelihood classifier: A statistical classification method (Appendix C.2.1) 
ML: Maximum likelihood classifier 
MLP: Multi layer perceptron 
Mosaic:  The process of joining adjacent remotely sensed images 
Multi layer perceptron: A neural network classi fier (Appendix C.2.2) 
Multispectral:  A sensor that can record light at several separate wavelengths 
Neural network:  An artifi cial intelligence classi fier 
NN:  Neural network 
Overall accuracy: A measure of the proportion of pixels for a classi fication that are correctly 

classi fied (Appendix C.2.5) 
Photogrammetry: Use of aerial photography to derive physical measures of the environment. 

In the context of this report refers to creating a DEM from aerial 
photography. 

Producer's accuracy: A measure of the accuracy of a particular class from a classi fication 
(Appendix C.2.5). 

Radiometric normalisation:  The process of minimising the effect of different lighting conditions on 
remotely sensed data from the same site (Appendix C.1.3). 

Resolution:  The size of a pixel on the ground 
RMS/RMSE: Root Mean Square Error. A measure of error. 66% of data will fall within 

+/-1 RMSE. 
SAC:  Special Area of Conservation 
Supervised classification: A classification approach in which pixels are identified as belonging to a 

given class. An algorithm then estimates the spectral characteristics of the 
class and then uses those characteristics to determine which class each pixel 
in an image belongs to. 

Tau: An overall accuracy measurement (Appendix C.2) 
Uncertainty: The probability that a given parameter is correct. Eg the probability that a 

pixel has been correctly classified. 
Unsupervised classification: A classification approach that does not require ground data. A computer 

algorithm places pixels into classes according to spectral patterns within the 
data. 

User's accuracy:  A measure of the accuracy of a particular class from a classi fication 
(Appendix C.2.5) 
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1. Executive summary 

In March 2000 a three year project entitled Collaborative Agreement for developing remote 
sensing techniques for marine SAC monitoring was initiated between English Nature and the 
Environment Agency’s National Centre for Environmental Data and Surveillance (NCEDS).  
After discussion with English Nature, a range of proposed habitats were considered to be of 
interest to both parties.  These were saline lagoons, inter-tidal mudflats, vegetated coastal 
shingle, saltmarsh and sand dunes. Factors affecting the status and extent of these habitats 
and an explanation of how remote sensing techniques could be employed to measure such 
attributes over time were included within the initial proposal discussed with English Nature 
on 4 August 2000; Proposal to develop remote sensing techniques for the measurement of 
environmental change in coastal habitats.

Three main areas of study were identified that are critical for the use of remote sensing in 
habitat monitoring: 

�� Data preparation and accuracy 
�� Image classification and habitat mapping 
�� Morphological change 

One of the main factors in accurately converting remotely sensed data into habitat maps is 
ensuring that differences in the lighting conditions between images are minimised. Methods 
of normalising imagery were examined and two methods were identified that could be used 
in terrestrial and intertidal habitats. A traditional approach known as edge matching was most 
suitable for terrestrial habitats. In this method the relationship between the spectral 
characteristic radiance values in the overlapping areas between images are used to 
compensate for differences in lighting. For intertidal habitats a novel method known as band 
ratioing was successfully used to compensate for differences in illumination.

Innovative methods of improving the accuracy of habitat mapping were developed. Data 
merging was used to increase the accuracy of intertidal vegetation and sand dune mapping by 
adding contextual data such as slope and elevation into the classification process. The use of 
artificial intelligence based classification methods was examined and these techniques were 
also found to increase the accuracy of habitat mapping.  

Methods of monitoring morphological change in the coastal environment were studied and 
techniques were developed for quantifying the volume of erosion and accretion at regular 
intervals along the coast and for identifying the areas where those changes are taking place.  

Methods of visualising habitats were examined, particularly with reference to showing 
morphological changes in three dimensions.  

Using remotely sensed data for monitoring vegetation change was examined, but there were 
issues that remained unresolved. This area was identified as one that requires further study. 

The operational use of remote sensing for habitats monitoring is discussed and areas are 
identified, particularly monitoring coastal vegetation changes, where this work may be taken 
forward.
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2. Introduction 

In March 2000 a three year project entitled Collaborative Agreement for developing remote 
sensing techniques for marine SAC monitoring was initiated between English Nature and the 
Environment Agency’s National Centre for Environmental Data and Surveillance (NCEDS).   

The National Centre for Environmental Data and Surveillance had demonstrated the use of 
remotely sensed data for mapping several habitats in the coastal environment, particularly in 
the inter-tidal zone.  These techniques are capable of distinguishing saltmarsh, algae and bare 
mud, in addition to water and terrestrial vegetation.  Investigations of the requirements for 
monitoring of coastal habitats, particularly those within Special Areas of Conservation, have 
suggested a much wider use for the remote sensing methodologies.  NCEDS identified a 
number of habitats based primarily on their inclusion within the UK Biodiversity Action Pan 
(UK BAP) that would lend themselves to remote sensing techniques. 

Maritime habitats are important for conservation, agriculture, flood defence and recreation, 
and are often protected by European legislation. They are under intense pressure from a 
combination of sea level rise and anthropogenic factors, and through increased protection and 
regulation, regular monitoring is essential to inform more strict management of the 
environment. Through the implementation of the Habitats Directive, there is a need to 
monitor and report on the status of such habitats, and new assessment methodologies are 
required to develop more efficient ways of monitoring changes in these difficult and dynamic 
habitats.  

For this study, a range of maritime habitats were considered and sites were chosen to assess 
the use of remote sensing methods on saline lagoons, intertidal mudflats, vegetated coastal 
shingle, saltmarsh and sand dunes. A series of sites were chosen, which have been designated 
as candidate Special Areas of Conservation (SACs) for the relevant habitats for study.  
Location of these sites are given in Figure 2.1. 

The operational use of the methodologies developed is discussed and the advantages of such 
techniques over traditional methods is considered. Recommendations are developed for the 
optimum use of remote sensing for each of the habitats studied 

This report contains a description of the work carried out over the three years.  



16

Figure 2.1  Project test sites 

3. Data gathered 
The remotely sensed data collected are summarised in Table 3.1. The 2000 Ainsdale data 
were reflown, because the LIDAR data failed the Environment Agency quality assurance. 

Table 3.1  Remotely sensed data gathered 

Site Date Time 
(GMT) 

CASI LIDAR Notes 

Blakeney 
(WP 1) 

08/06/00 1630-
1700

Cloud shadow + gaps 
between lines 

Good CASI okay for visual 
interpretation, but gaps between 
lines 

Ainsdale 
(WP 5) 

10/06/00 1155-
1255

Poor, cloud shadow Failed quality 
control 

CASI okay for visual 
interpretation 

Rye 
(WP 3) 

16/06/00 1811-
1910

Good Good  

Blakeney 09/09/00 1430- No LIDAR attitude data No Manual geocorrection required 
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Site Date Time 
(GMT) 

CASI LIDAR Notes 

(WP 1) 1500 or GPS, geocorrection 
poor 

for CASI 

Rye 
(WP 3) 

11/09/00 1440-
1230

Good Good  

Blakeney 
(WP 1) 

23/09/00 0920-
0955

Cloud shadow No  

Tollesbury 
(WP 4) 

23/09/00 1055-
1140

Good  Good Hyperspectral data gathered for 
section of marsh 

Ainsdale 
(WP 5) 

17/10/00 1127-
1240

Okay, some cloud shadow
and low solar angle 

Failed quality 
control 

Tollesbury 
(WP 4) 

25/06/01 0900-
1040

Okay Good Good lighting but strong bi-
directional effects 

Ainsdale 
(WP 5) 

28/08/01 1330-
1400

Good Good  

Blakeney 
(WP 1) 

26/07/02 1020-
1110

Good Good  

Rye 
(WP 3) 

27/07/02 1320-
1355

Good Good  

Ainsdale 
(WP 5) 

11/09/02 0940-
1010

Good but solar angle low Good  

Budle 
(WP 2) 

11/09/02 1105-
1140

Good Good  

Tollesbury 
(WP 4) 

01/10/02 1050-
1220

Okay-poor 
Variable lighting 
conditions  

Good  

4. Data analysis 

The purpose of this study was to provide remote sensing methods of monitoring coastal 
Special Area of Conservation (SAC). Three major areas within remote sensing were 
identified that were relevant to achieving this objective: 

�� Data preparation and accuracy 
�� Image classification  
�� Morphological change 

Descriptions of the data analysis techniques used in this study are given in Appendix C. 

4.1 Habitat classification 

4.1.1 Saltmarsh 

A number of studies have shown that remote sensing techniques can make a valuable 
contribution to monitoring of saltmarshes. Remote sensing has been used to non-destructively 
estimate the biomass and productivity for a number of intertidal species. These studies 
include the following species; Zostera marina Linnaeus (Budd and Milton, 1982), Halimione 
portulacoides (Jensen, 1980) and a variety of Spartina species including S. alterniflora
(Gross et al., 1987), S. anglica (Gross et al., 1986) and S. foliosa (Zhang et al., 1997). 
Donoghue and Shennan (1987) and Thomson et al. (1998) used Landsat TM and CASI 
imagery respectively to discriminate between intertidal vegetation types. Donoghue et al.
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(1994) classified Landsat Thematic Mapper (TM) images to derive thematic maps of 
intertidal vegetation and determine temporal change. 

The studies above used multispectral imagery to classify saltmarsh vegetation. However, the 
ecology of saltmarsh vegetation provides an opportunity to use other data layers in addition to 
multispectral data, in order to increase classification accuracy. 

All saltmarsh species are tolerant of saline inundation but the level of tolerance varies 
between species (Adam, 1990; Zedler et al., 1999). The position within the tidal cycle and 
elevation will determine the length of time that inundation occurs and this will in turn 
influence intertidal species distribution (Adam, 1988, 1990; Gray  et al., 1990, Zedler et al.,
1999). Saltmarsh elevation data would therefore have the potential to increase class 
discrimination.

Though the mechanisms are not understood (Sanderson et al., 2001), species composition 
within and close to intertidal creeks tends to be different from other areas of saltmarsh 
(Adam, 1990; Zedler et al., 1999; Sanderson et al., 2000, 2001). This spatial pattern provides 
a mechanism by which remote sensing classification accuracy may be increased. Use of a 
fine resolution digital elevation model (DEM) and slope derived from it would enable creek 
areas to be identified. 

From this it may be seen that elevation and slope data have the potential to improve the 
discrimination of multispectral classification of the intertidal zone by enabling position 
within the tidal cycle and the presence of creeks to be taken into consideration.  

4.1.2 Sand dunes 

There are very few studies that have used remote sensing for sand dune community 
classification. These studies have generally classified to a general community type rather than 
specific species level (Hobma, 1995; Seeliger et al., 2000). The main reason is likely to be 
the diversity of species present in most dune systems. Classification requires reasonably large 
areas to be identified for each class used. If the classification is to be to genus or species level 
then the number of classes and therefore the amount of ground data required could be very 
high and may result in low classification accuracies. Dune systems have a variety of 
characteristics that could be used in order to improve classification accuracy using additional 
data. Mobile dune systems tend to occur at the seaward edge of frontal dunes, and so 
contextual information may be used to reduce misclassification errors, particularly as the 
main species of mobile dunes in the UK, Ammophila arenaria, occurs throughout dune 
systems. Dune slacks are characteristically flat areas containing different species from the 
surrounding fixed dunes. However, though species compositions of slack areas are different, 
there will be areas that contain species with similar structures to those in fixed dunes and so 
slope could be used in addition to spectral characteristics to increase accuracy of the final 
classification. 

4.1.3 Saline lagoons 

Little or no work using remote sensing has been carried out on these habitats. However, there 
is the potential to use techniques developed in other areas for increasing understanding of 
lagoon habitats. As well as classifying the lagoon area to identify important species, possible 
methods include using multispectral data to determine water depth and lagoon area. 
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4.1.4 Mudflats 

Studies have been carried out that used remote sensing to provide data on mudflats (Meulstee 
et al., 1988; Bajjouk et al., 1998; Guichard et al., 2000). These studies have mainly been 
interested in estimating algal biomass using aerial photography (Meulstee et al., 1988; 
Guichard et al., 2000). Identification of algae and mudflat sediments has also been carried out 
using CASI data (Bajjouk et al., 1998). 

4.1.5 Vegetated shingle 

Little previous work has been carried out on these habitats using remote sensing.  

4.2 Morphological change 

Monitoring coastal morphological change using remote sensing involves the derivation of a 
DEM from some sensor such as a LIDAR and then the use of the DEM to monitor the change 
of a morphological variable such as elevation. 

Using remote sensing for morphological change detection has become more common, 
particularly with the advent of cheaper, quicker methods of collecting and processing data in 
recent years. Simplistic approaches, such as monitoring the position of shoreline position 
using LIDAR have been used (Stockdon el al., 2002). Deriving volume changes or indicating 
where change has taken place, provides more information about the whole system. This more 
complex form of morphological study has been carried out using LIDAR to monitor beach 
movement (Revell et al., 2002) and cliff erosion (Sallenger et al., 2002). LIDAR and 
photogrammetry have been used to monitor short term change of soft cliffs (Adams and 
Chandler, 2002). Monitoring and measurement of fluvial bank erosion has been carried out 
using photogrammetry (Barker et al., 1997). 

4.3 Ridge characteristics of percolation lagoons 

The characteristics of the ridge between open water and percolation lagoons are important 
factors in the determining whether the system is changing over time. In a percolation lagoon 
system, such as that present at Blakeney, the width of the ridge has an impact on the rate of 
saline replenishment. LIDAR data have been used to estimate the width of the shingle ridge 
at Blakeney at regular intervals. The ridge height can give indications of whether overtopping 
will occur, which also influences the dynamics of a saline lagoons. 

5. Methods and results 

5.1 Classification and radiometric correction 

5.1.1 Saltmarsh 

Of the habitats being classified in this project, the greatest amount of previous work has been 
carried out on saltmarsh. Remote sensing is an ideal approach for mapping this habitat, as the 
intertidal zone may be difficult to access due to tides, soft sediments and island areas of 
habitat. 
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However, the limitations due to tidal restrictions mean that flying high quality data is difficult 
due to the requirement to wait for the correct stage of the tide and good lighting conditions. 
The regular inundation of the habitat also makes it more likely to display bi-directional 
effects, further restricting the times when data may be flown. In this context it may be seen 
that expanding survey opportunities and minimising the effects of adverse lighting are crucial 
for this method to become operational for regular monitoring. 

Figure 5.1  CASI imagery of Tollesbury test site, Essex 

Maximising saltmarsh classification accuracy 

Possible techniques for maximising classification accuracy were tested using data from the 
Tollesbury marsh area of the test site for the 2000 data (Figure 5.1).  

A 1m resolution CASI image using 5 flightlines was mosaiced using edge matching. A ratio 
image was also generated using the same 5 flightlines. A slope layer was generated from the 
2m LIDAR DEM. Both the LIDAR data layers were resampled using nearest neighbour to a 
1m grid. The CASI image and ratio image were combined with the resampled LIDAR data. 
The ML statistical classifier and MLP neural network classifier were tested with CASI data 
and CASI, LIDAR elevation and slope data. The MLP classifier was also tested with the 
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12 band ratios that were suitable (Appendix D) and with the 12 band ratios and LIDAR 
elevation and slope data.  

The classifiers were tested using two sets of ground data based on slightly different class sets, 
Original and SAC (Table 5.1). In the SAC set of classes the Halimione portulacoides,
Puccinellia maritime and Limonium vulgare were merged to form the Atlantic 1 (Atlantic 
Salt Meadow) class.  

Table 5.1  Classes used in saltmarsh classification

Cover/ Species Original 
Class Set 

SAC Class Set 

Water Water Water 
Mud Mud Mud 
Green and Brown Algae Algae Algae 
Ann. Salicornia spp.
Suaeda maritime 
Aster tripolium 

Pioneer Pioneer 

Halimione portulacoides Halimione Atlantic 1 (Atlantic Salt Meadow) 
Puccinellia maritime Puccinellia Atlantic 1 (Atlantic Salt Meadow)
Limonium vulgare Limonium Atlantic 1 (Atlantic Salt Meadow)
Elymus pycnanthus Elymus Atlantic 2 (Driftline Atlantic Salt Meadow) 
Terrestrial Vegetation Terrestrial Terrestrial 

From the accuracy assessment results (Table 5.2) it may be seen that the ML classifier has 
much lower accuracy than the MLP neural network for all input combinations. The difference 
was statistically significant for all combinations of input apart from the CASI only 
classification for the SAC classes (Tables 5.3 and 5.4).  

Table 5.2  Accuracy assessment results from saltmarsh classification testing using tau accuracy 

Original SAC 
Inputs ML CASI 

MLP 
Ratio 
MLP 

ML CASI 
MLP 

Ratio 
MLP 

CASI 0.663 0.764 0.775 0.772 0.811 0.826 
CASI+DEM+Slope 0.705 0.810 0.789 0.804 0.896 0.865 

As described in Appendix C there are a number of reasons why the ML classifier may be less 
accurate than the MLP neural network. These include the relatively low number of training 
data used and the difficulty in identifying areas for the classification that are only made up of 
one class. The low classification accuracy was particularly noticeable when the LIDAR data 
were added to the classifier, especially for the SAC classification (Table 5.2). This relatively 
low increase in classification accuracy is likely to be due to the ML classifier’s limitations 
when data from different sources are used in a classification. The consistent lower 
classification accuracy shows that the ML classifier is less suitable for saltmarsh 
classifications than the MLP neural network. 
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Table 5.3  Changes in accuracy for saltmarsh original class set (bottom left) and levels of significance (top 
right) 

CASI ML CASI+ 
DEM+ Slope

ML 

CASI MLP CASI+ 
DEM+ Slope 

MLP 

Ratio MLP Ratio+ 
DEM+ Slope

MLP 
CASI ML NS p<0.05 p<0.01 p<0.001 p<0.005 
CASI+ DEM+ Slope 
ML 

0.038 NS p<0.01 NS P<0.05 

CASI MLP 0.090 0.052 NS NS NS 
CASI+ DEM+ Slope 
MLP 

0.130 0.093 0.041 NS NS 

Ratio MLP 0.100 0.062 0.010 -0.031 NS 
Ratio+ DEM+ Slope 
MLP 

0.112 0.075 0.023 -0.018 0.013 

Table 5.4  Changes in accuracy for saltmarsh SAC class set (bottom left) and levels of significance (top 
right) 

CASI ML CASI+ 
DEM+ Slope

ML 

CASI MLP CASI+ 
DEM+ Slope 

MLP 

Ratio MLP Ratio+ 
DEM+ Slope

MLP 
CASI ML NS NS p<0.001 NS p<0.005 
CASI+ DEM+ Slope 
ML 

0.032 NS p<0.05 NS P<0.05 

CASI MLP 0.065 0.033 p<0.05 NS P<0.05 
CASI+ DEM+ Slope 
MLP 

0.118 0.086 0.052 NS NS 

Ratio MLP 0.079 0.047 0.014 -0.039 NS 
Ratio+ DEM+ Slope 
MLP 

0.112 0.080 0.047 -0.006 0.033 

The input of LIDAR elevation and slope data increases classification accuracy for both 
classifiers. However, this increase is only statistically significant when the SAC classes were 
classified for the neural network (Tables 5.3 and 5.4).  

The per-class accuracy of the MLP classifications for the CASI only and the CASI, DEM and 
slope classifications were compared (Tables 5.5 and 5.6). The greatest increases in user’s 
accuracy are in the algae and pioneer classes. These classes have the potential to be mixed, as 
the pioneer class may contain a high proportion of mud or algae resulting in confusion in the 
classification. The LIDAR DEM and slope appear to reduce this confusion between classes. 
The increase in the accuracy of pioneer class is important for Habitats Directive monitoring, 
as this class was so inaccurately classified using CASI multispectral data alone (Table 5.5).

As may be seen in Table 5.5, though the overall accuracy of the saltmarsh classification using 
the original class set was high (tau = 0.76 (Table 5.2)), individual classes had accuracies in 
the low 60%. The main reason for this is likely to be that for each of the Halimione, 
Limonium and Puccinellia classes there is likely to be a significant amount of one of the other 
classes present, confusing the classifier. By combining these in the Atlantic 1 class, this 
reduces the errors overall and increases the minimum class accuracy of the vegetation classes 
(Tables 5.5 and 5.6) 
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Table 5.5  Saltmarsh class accuracy using original class set 

Class CASI CASI LIDAR Ratio Ratio LIDAR 

Water 96 100 100 100
Mud 100 100 100 100
Algae 64 81 65 64

Pioneer 69 83 85 89
Halimione 63 62 61 71
Puccinellia 66 67 85 67
Limonium 100 95 94 90

Elymus 89 88 73 89
Terrestrial 84 88 96 91

Table 5.6  Saltmarsh class accuracy using SAC class set  

Class CASI CASI LIDAR Ratio Ratio LIDAR 
Water 96 100 96 100
Mud 100 95 93 100
Algae 60 73 66 64

Pioneer Marsh 79 89 77 82
Atlantic 1 100 96 93 92
Atlantic 2 75 77 83 98
Terrestrial 85 97 93 96

The effect of using the band ratio, as opposed to the image matched data, may be seen in 
Tables 5.2 to 5.6. There is no significant decrease in classification accuracy when the band 
ratio data are used in the classification (Tables 5.3 and 5.4). The class accuracy values are 
consistent using the ratio and the CASI data (Tables 5.5 and 5.6).  

The activation values obtained from the MLP neural network classifier were tested to 
determine what relationship if any there was between the outputs and the proportion of 
correctly classified pixels. Trial results indicated that there was a linear relationship between 
the outputs and the proportion of correctly classified pixels (Figure 5.3). The hypothesis was 
tested that normalised activation was the equivalent to the probability of correct 
classification. This assumption was tested for all MLP classifications. The results showed that 
there was a significant relationship between the activation and probability of correct 
classification (p<0.001 for all classifications (Table 5.7)).  

This relationship allows an additional data set to be generated with the classification. The 
additional layer provides a per-pixel indication of whether the classification was correct 
(Figure 5.3) and can be used to determine the most likely alternative classes. 
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Figure 5.2  MLP neural network classification and uncertainty map of 2000 Tollesbury data 
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Table 5.7  Comparison of activation levels with proportion of correct pixels from MLP classifier 

Original Class Set SAC Class Set 
CASI CASI 

LIDAR 
Ratio Ratio 

LIDAR 
CASI CASI 

LIDAR 
Ratio Ratio 

LIDAR 
Significance p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 
RMSE 0.0526 0.0317 0.0425 0.0331 0.0536 0.0331 0.0349 0.0416 
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Figure 5.3  Proportion of correct pixels as a function of MLP normalised activation levels for original 
class set using Tollesbury ratioed CASI and LIDAR data 

Final Tollesbury classifications 

The final classifications of the Tollesbury data were carried out using a MLP neural network 
classifier with 20 nodes and trained for 2000 iterations. Input data consisted of 500 pixels 
per-class of image ratioed CASI data (Appendix D) and LIDAR derived elevation and slope. 
Classifications were carried out of the data gathered in September 2000 and June 2001. The 
remotely sensed data gathered in November 2002 was not classified, as the ground data 
collection was incomplete. The ground data collection was carried out for Old Hall and 
Abbot’s Hall, but access to the Tollesbury Marsh was not permitted. Two local wildfowling 
groups who own the land would not allow access for Health and Safety reasons, as the 
shooting season had started. The Tollesbury Marsh area made up the major part of the study 
site and contained large areas of each of the classes used in the classification. The other areas 
did not contain enough of the variation present for certain classes, particularly the Pioneer, 
Halimione and Limonium classes and so it was decided to omit this classification. 
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Table 5.8  Final Tollesbury classifications overall accuracy (Tau accuracy) 

Year Original classes SAC classes 
2000 0.788 0.892 
2001 N/A 0.752 

September 2000 Tollesbury classification 

The 2000 classification of the Tollesbury data was carried out using both the original and 
SAC class sets (Tables 5.8 - 5.10).   

Table 5.9Confusion matrix for 2000 Tollesbury classification (Original class set) 

Ground Data 
Water Mud Algae Pioneer Halimione Puccinellia Limonium Elymus Terrestrial User’s 

Accuracy 
Water 25 0 0 0 0 0 0 0 0 1.00 
Mud 0 20 0 0 0 0 0 0 0 1.00 
Algae 0 6 24 2 0 0 0 0 0 0.75 
Pioneer 0 0 1 22 3 1 0 0 0 0.81 
Halimione 0 0 0 0 17 7 2 0 0 0.65 
Puccinellia 0 0 0 1 5 15 5 0 0 0.58 
Limonium 0 0 0 1 0 0 15 0 0 0.94 
Elymus 0 0 0 0 0 0 0 22 3 0.88 
Terrestrial 0 0 0 0 0 2 0 3 21 0.81 

Classified
Data

Producer’s 
accuracy 

1.00 0.77 0.96 0.85 0.68 0.60 0.68 0.88 0.88  

Table 5.10  Confusion matrix for 2000 Tollesbury classification (SAC class set) 

Ground Data 
Water Mud Algae Pioneer Atlantic 1 Atlantic 2 Terrestrial User’s 

Accuracy 
Water 50 0 0 0 0 0 0 1.00 
Mud 1 39 0 0 0 0 0 0.98 
Algae 0 11 49 3 0 0 0 0.78 
Pioneer 0 0 2 43 3 0 0 0.90 
Atlantic 1  0 0 0 2 50 0 0 0.96 
Atlantic 2 0 0 0 0 0 40 2 0.95 
Terrestrial 0 0 0 0 2 6 42 0.84 

Classified 
Data

Producer’s 
Accuracy 

0.98 0.78 0.96 0.90 0.91 0.87 0.95  

June 2001 Tollesbury classification 

Test classifications of the June 2001 data were carried out using the original class set. 
However, the accuracy of the Halimione, Puccinellia and Limonium classes was less than 
50%. The errors were mainly due to the classes being misclassified as one another and so it 
was decided to carry out the classification of this data set using the SAC class set. The 
inability of the classifier to discriminate between these classes is most likely to be due to the 
time of year that the data were collected, as previous classifications have been successful. 
The Limonium class is likely to be easier to discriminate when in flower. 
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The SAC classification for June 2001 was less accurate than that carried out on the 
September 2000 data (Table 5.8). The lowest class accuracy values were for the Pioneer, 
Atlantic 2 and Terrestrial classes (Table 5.11).  

Table 5.11  Confusion matrix for 2001 Tollesbury classification (SAC class set) 

Ground Data 
Water Mud Algae Pioneer Atlantic 1 Atlantic 2 Terrestrial User’s 

Accuracy 
Water 48 0 0 0 0 0 0 1.00 
Mud 0 45 7 1 0 0 0 0.85 
Algae 0 3 33 2 0 0 4 0.79 
Pioneer 0 5 14 35 5 0 0 0.59 
Atlantic 1  0 0 0 1 41 0 2 0.93 
Atlantic 2 0 0 0 0 2 50 30 0.61 
Terrestrial 0 0 0 0 0 1 20 0.95 

Classified 
Data

Producer’s 
Accuracy 

1.00 0.85 0.61 0.90 0.85 0.98 0.36  

It is likely that one of the reasons for the relatively poor classification of the Pioneer class in 
June 2001 is due to the data being gathered early in the intertidal vegetation growing season. 
Annual pioneer species such as Salicornia europea and Sueada maritima are still small 
compared to their final size generally achieved by August or September. This means that the 
areas where the Pioneer species would be considered dominant are mainly mud from a 
percentage cover point of view. In the case of the classifier tested, most of the errors resulted 
from mud, algae and the Atlantic 1 class being misclassified as Pioneer (Table 5.11). More 
than 60% of the Terrestrial class has been misclassified as Atlantic 2 (Table 5.11).  

The large class errors within the June 2001 classification suggest that classification of 
intertidal vegetation early in the growing season is not appropriate and that data gathered later 
in the year should be more accurate. By comparing the June 2001 and September 2000 
classifications it may be seen that data gathered later in the growing season appears to give 
more accurate classification results. 

Tollesbury habitat change 

Meaningful land cover change analysis for the Tollesbury site was not possible, as the quality 
of the 2001 classification was so poor. The large class errors, particularly Pioneer and 
Atlantic 2 (Table 5.11), are likely to result in large errors when the classifications were 
compared and this will be reflected in large percentage change values (Table 5.12B). It is 
highly unlikely that the Pioneer class will increase by 70% over one year and the Atlantic 2 
will increase by almost 300%. These values almost certainly reflect errors in one or both 
classifications. 
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Table 5.12  Class areas for Tollesbury classification 

A  2000 Original classes    B  2000 and 2001 SAC classes 

Class Area (Ha)   Area (Ha) 
Water 223.54   

Class 
2000 2001 

% difference 

Mud 235.19   Water 223.54 120.71 -46 
Algae 137.14   Mud 235.19 370.34 57 

Pioneer 68.70   Algae 137.14 86.00 -37 
Halimione 40.02   Pioneer 68.70 117.10 70 
Puccinellia 47.10   Atlantic 1 99.87 83.68 -16 
Limonium 12.74   Atlantic 2 2.63 10.50 299 

Elymus 2.63   Terrestrial 15.52 7.27 -53 
Terrestrial 15.52       

Saltmarsh habitat mapping

Remote sensing is able to generate high accuracy maps of intertidal vegetation, and 
techniques developed here have the potential to increase that accuracy. The image ratioing 
method of radiometric normalisation appears to solve many of the lighting problems 
associated with remote sensing in the intertidal zone, including internal lighting differences. 
However, further testing of image ratioing in other types of saltmarsh, particularly those 
dominated by Spartina should be carried out before this method is considered robust. 

The timing of remotely the data gathering is critical for the success of the final classification 
accuracy. It was shown here that data gathered too early in the season has the potential to 
result in a greatly reduced classification accuracy particularly of particular classes such as the 
annual Pioneer class. 

The use of remote sensing for monitoring change in intertidal vegetation needs further study 
using two accurate classifications, generated using data from a suitable time of year.  

5.1.2 Sand dunes 

The classification of the sand dune site was more complicated than the saltmarsh work. The 
main SAC habitats present at the Ainsdale test site contain vegetation types that are similar. 
For example the fixed dune areas will have some of the same species present as the dune 
slack areas, but in different proportions. For this reason the classification was carried out in 
three stages.  

The first part was a classification to determine the vegetation cover type. The classes chosen 
were determined by trial and error. The original classes for which data had been collected 
were merged to the class set in Table 5.13. This class set extracted some of the SAC areas, 
but some of the land cover types contained mixed SAC type.  

The second stage was the use of an expert system to remove errors within the initial 
classification. 

The third stage in the sand dune classification was to use the LIDAR data to extract dune 
slack areas using the topographic characteristics of these areas. 
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To provide an overall SAC habitat classification, the vegetation classification was merged 
with the LIDAR based dune slack classification areas. 

Vegetation classification testing 

Classifications of the 2002 Ainsdale sand dune site were carried out using a similar method to 
the Tollesbury site. A 1m resolution CASI image using 5 flightlines was generated by 
mosaicing the imagery using edge matching. A ratio image was also generated using the 
same 5 flightlines. A slope layer was generated from the 2m LIDAR DEM. The LIDAR slope 
data layer was resampled using nearest neighbour to a 1m grid. The CASI image and ratio 
image were combined with the resampled LIDAR data. The ML statistical classifier and MLP 
neural network classifier were tested with CASI data and CASI and LIDAR slope data. The 
MLP classifier was also tested with band ratioed data (Appendix D) and band ratioed and 
LIDAR slope data.  

Table 5.13  Classes used in sand dune classification 

Cover/ Species SAC Class 
Water Water 
Sand Sand 
Ammophila arenaria (Marram grass) Mobile dune 

Fixed Dune 
Grasses 
Moss 
Herbaceous vegetation

Fixed dune 
Dune slack 

Reeds 
Wet vegetation 

Dune slack 

Salix repens (Creeping willow) Fixed dune 
Dune slack 

Hippophae rhamnoides (Sea buckthorn) Dune woodland 
Woodland Dune woodland 

Table 5.14  Accuracy assessment results from sand dune classification testing (tau accuracy) 

Inputs ML CASI 
MLP 

Ratio 
MLP 

CASI 0.749 0.795 0.756 
CASI+ Slope 0.772 0.826 0.788 

Table 5.15  Changes in accuracy for sand dune classification (bottom left) and levels of significance (top 
right) 

CASI ML CASI+ 
Slope ML 

CASI MLP CASI+ Slope
MLP 

Ratio MLP Ratio+ Slope
MLP 

CASI ML NS P<0.05 p<0.001 NS p<0.05 
CASI+ Slope ML 0.023 NS p<0.005 NS NS 
CASI MLP 0.046 0.023 NS P<0.05 NS 
CASI+ Slope MLP 0.077 0.053 0.031 P<0.001 p<0.05 
Ratio MLP 0.007 -0.017 -0.039 -0.070 NS 
Ratio+ Slope MLP 0.039 0.015 -0.008 -0.038 0.032 
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Figure 5.4  False colour CASI Imagery of Ainsdale test site, Merseyside 

Figure 5.5  MLP Neural Network Classification of 2001 Ainsdale data 
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The classification accuracy of the ML statistical classifier was significantly less than the 
MLP neural classifier for both the CASI only classification and the CASI and LIDAR slope 
classification (Tables 5.14 and 5.15). The consistent lower classification accuracy shows that 
the ML classifier is less suitable for sand dune classifications than the MLP neural network. 

The ratioing method of radiometric normalisation was not as successful as the edge matching 
technique and was significantly less accurate with and without the LIDAR data (Tables 5.14 
and 5.15). 

Expert system classification 

An expert system is the use of expert observations combined with a classified data layer in a 
geographic information system (GIS). The purpose of the expert system was to remove errors 
in the first classification mainly caused by shadowing within the imagery. Shadowing within 
the CASI data resulted in two main types of error. Areas of the grass and herbaceous 
vegetation in shadow were misclassified as woodland. These were removed by simply 
reclassifying these areas as the Grass/Moss/Herb class. There were also problems with 
shadowing on the seaward side of the frontal dunes, resulting in misclassification. This was 
particularly a problem with the 2002 data, which were gathered when the sun angle was 
relatively low (Figure 5.6). As the shadowed area would be difficult to classify using spectral 
CASI data, an alternative LIDAR based approach was used. The seaward boundary of the 
mobile dune system was determined using the LIDAR slope. A slope value of greater than 15 
degrees was used as the boundary for both years. This value was determined by detailed 
study of the dune system, using CASI and LIDAR data.  

Figure 5.6  Shadowing of Ainsdale frontal dunes in 2002 CASI data 
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Dune slack extraction 

The classes used in the initial classification were unsuitable for extracting dune slack areas 
and so an alternative method had to be developed. The most promising method was to use the 
slope characteristics of slack areas as a method of identification. Using a slack map supplied 
by English Nature, the slope characteristics of the slack areas of the Ainsdale site were 
determined and these were used to optimise a method of extracting dune slack areas using 
LIDAR. The main physical characteristic of slacks is an area of consistently low slope. It 
must be noted that the variables used apply to the Ainsdale site and may not be applicable to 
other sites, though the general methods should be applicable.  

The LIDAR slope data was used to identify areas with slope of less than 3 degrees. As may 
be seen from Figure 5.8b this resulted in a data layer with a great deal of noise. In order to 
remove the noise and identify areas that were most likely to be dune slack areas, a two part 
merging algorithm was used. The first algorithm known as ‘clumping’ identifies contiguous 
groups of pixels in one thematic class. The clumped data are then passed through an 
‘elimination’ algorithm (Figure 5.8c). A clump smaller than a user-specified number is 
eliminated and replaced by values the same as nearby larger clumps. Large numbers of pixels 
will have a low slope value, but are not in slack areas. For example the tops of ridges will 
have a low slope, but the areas of low slope are unlikely to be large or contiguous. The clump 
and elimination process remove these scattered pixels. 

The resultant layer overestimated slack area and so further analysis had to be carried out in 
order to improve the discrimination of dune slack areas. It was found that it was possible to 
improve the classification of slack areas by carrying out additional analysis using areas with a 
slope of less than 2 degrees. Pixels with a slope of less than 2 degrees were identified. The 
clump and elimination algorithms were carried out using an elimination value of 40 pixels. 
The areas identified using the less than 3 degree slope were polygonised and polygons were 
rejected as areas of dune slack if they did not contain areas identified in the analysis with a 
slope value of less than 2 degrees (Figures 5.7 and 5.8). The accuracy of the final LIDAR 
only dune slack classification may be seen in Table 5.16. 

Figure 5.7  Dune slack extraction model 
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Table 5.16  Dune slack classification using LIDAR data 

 Fixed dune Slack User’s Accuracy
Fixed dune 248 23 0.92 
Slack 16 50 0.76 
Producer’s accuracy 0.94 0.68  

Figure 5.8  Dune slack extraction from 2001 LIDAR data 
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Uncertainty and probabilities of correct classification 

The probability measures derived using the saltmarsh classifier are also applicable to the sand 
dune classification. These were tested using the output of the MLP neural network classifier 
and a statistically significant relationship was found between the output and probability of 
correct classification (p<0.001, RMSE = 0.0352). 

However, as a variety of classification methods were used, it is not possible to derive 
probability measures for the final output. In order to derive probabilities from an expert 
system further work would need to be carried out 

Final Ainsdale classifications 

The final vegetation classifications of the Ainsdale data were carried out using a MLP neural 
network classifier with 20 nodes and trained for 800 iterations. Input data consisted of 1000 
pixels per-class of CASI data and LIDAR derived slope. Classifications were carried out of 
the data gathered in August 2001 and September 2002. The overall accuracy of these 
classifications was high (Table 5.17), but the 2001 classification was 6.1% more accurate 
than the 2002 classification.  

From the confusion matrices of the classification (Tables 5.18 and 5.19) it may be seen that 
there were considerable differences in the accuracy of the different classes between the 
classifications.  

The 2001 MLP classification had user’s accuracy values of greater than 80% for all classes 
except the Wet/Reeds class and the Hippophae (Sea Buckthorn) classes (Table 5.18). The 
Hippophae was exclusively misclassified as woodland and so these classes were merged in 
the final analysis.  

Table 5.17  Final Ainsdale classifications overall accuracy (tau accuracy) 

Year Original classes SAC classes 
2001 0.879 0.881 
2002 0.818 0.907 

Table 5.18  Confusion matrix for 2001 MLP Ainsdale classification 

Ground Data 
Water Sand/ 

shingle
Ammophila 
arenaria

Grass/ 
moss/ 
herb

Wet/ 
reeds 

Salix 
repens 

Hippophae 
rhamnoides 

Woodland/ 
scrub 

User’s 
Accuracy 

Water 4 0 0 0 0 0 0 0 1.00 
Sand/shingle 0 18 0 0 0 0 0 0 1.00 
Ammophila 
arenaria 

0 1 12 2 0 0 0 0 0.80 

Grass/moss/herb 0 0 1 48 0 0 0 0 0.98 
Wet/reeds 0 0 0 1 3 1 0 1 0.50 
Salix repens 0 0 0 4 0 17 0 0 0.81 
Hippophae 
rhamnoides 

0 0 0 0 0 0 2 3 0.40 

Woodland/scrub 0 0 0 2 0 1 0 39 0.93 

Classified
Data

Producer’s 
accuracy 

1.00 0.95 0.92 0.84 1.00 0.89 1.00 0.91  
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Table 5.19  Confusion matrix for 2002 MLP Ainsdale classification 

Ground Data 
Water Sand/ 

shingle
Ammophila 
arenaria

Grass/ 
moss/ 
herb 

Wet/ 
reeds 

Salix 
repens 

Hippophae 
rhamnoides 

Woodland/ 
scrub 

User’s 
Accuracy 

Water 57 7 0 2 0 0 0 1 0.85 
Sand/shingle 0 55 3 5 0 0 0 0 0.87 
Ammophila 
arenaria

0 0 26 15 0 1 0 0 0.62 

Grass/moss/herb 0 2 1 220 1 22 0 1 0.89 
Wet/reeds 0 0 0 4 11 4 0 1 0.55 
Salix repens 0 0 0 33 4 54 0 0 0.59 
Hippophae 
rhamnoides 

0 0 0 0 0 0 7 0 1.00 

Woodland/scrub 0 0 0 17 0 1 0 231 0.93 

Classified
Data

Producer’s 
accuracy 

1.00 0.86 0.87 0.74 0.69 0.66 1.00 0.99  

The 2002 MLP classification had a number of classes that were poorly classified, particularly 
the Ammophila, Wet/Reeds and Salix (Creeping willow) classes (Table 5.19). Visual 
inspection of the Ammophila class identified that the shadowed area to the seaward side of 
the frontal dunes (Figure 5.6) was the main area of error. As this was to be reclassified using 
the expert system this error was not considered important to the final classification. The 
errors in the Salix class were more problematic. These resulted from shadowing, particularly 
in areas of herbaceous vegetation on the fixed dune system. Experimentation was carried out 
to see if these errors could be removed from the classification using LIDAR derived slope 
and aspect. Initial results have suggested that this would be possible, but time constraints 
meant that a robust method could not be developed to remove these errors 

Figure 5.9  Ainsdale 2002 SAC classification 
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However, once the three stage classification had been carried out, the overall accuracy values 
were very similar (Table 5.17; SAC classes).  The effect of the expert classification was to 
remove many of the errors present in the 2002 MLP classification due to shadowing. 

The final classifications resulted in very similar class accuracy values (Tables 5.20 and 5.21). 
Most of the classes for both years have User’s accuracy values of greater than 80% (with the 
exception of the Dune slack class) indicating a good final classification (Tables 5.20 and 
5.21).

Table 5.20  Confusion matrix for 2001 Ainsdale SAC classification 

Ground Data
Water Sand Mobile 

dune 
Fixed 
dune 

Dune 
slack 

Woodland/ 
scrub 

User’s 
Accuracy 

Water 18 1 0 0 0 0 0.95 
Sand 0 36 1 0 0 0 0.97 
Mobile dune 0 0 7 1 0 0 0.88 
Fixed dune 0 0 1 51 6 1 0.86 
Dune slack 0 0 0 7 20 0 0.74 
Woodland/ 
scrub 

0 0 0 1 0 40 0.98 

Classified 
Data

Producer’s 
accuracy 

1.00 0.97 0.78 0.85 0.77 0.98  

Table 5.21  Confusion matrix for 2002 Ainsdale SAC classification 

Ground Data
Water Sand Mobile 

dune 
Fixed 
dune 

Dune 
slack 

Woodland/ 
scrub 

User’s 
Accuracy 

Water 36 0 0 0 0 0 1.00 
Sand 4 40 0 2 0 0 0.87 
Mobile dune 0 1 12 0 0 0 0.92 
Fixed dune 0 2 3 221 16 0 0.91 
Dune slack 0 0 0 18 52 0 0.74 
Woodland/ 
scrub 

0 0 1 3 0 237 0.98 

Classified 
Data

Producer’s 
accuracy 

0.90 0.93 0.75 0.91 0.76 1.00  

Ainsdale habitat change 

When the area values for the Ainsdale SAC classes are compared, it may be seen that for the 
vegetation classes there is less than 5% difference between years (Table 5.22A). Parts of 
some of these differences are likely to be due to errors within the remotely sensed data. 
However, for long term monitoring it would be possible to carry out a trend analysis to 
determine whether change was actually taking place.  

When the Salix repens class was combined with the SAC classes, considerably greater 
differences occurred (Table 5.22B). These are likely to be due to the large errors within this 
class seen in the 2002 classification (Table 5.19). These errors were thought to be the result 
of shadowing and could possibly be removed with further study. 

The changes in the water and sand classes are mainly due to the different tidal states between 
the 2001 and 2002 data collection (Table 5.22).  
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Table 5.22  Areas for Ainsdale NNR classifications 

A  SAC classes 
Area (Ha) Class 

2001 2002 
% difference 

Water 21.6 32.4 50.2 
Sand 36.4 22.8 -37.5 
Mobile dune 10.7 10.2 -4.2 
Fixed dune 127.1 124.5 -2.0 
Dune slack 26.5 27.6 4.4 
Woodland/scrub 169.3 173.0 2.2 

B SAC classes using Salix repens
Area (Ha) Class 

2001 2002 
% difference 

Water 21.6 32.4 50.2 
Sand 36.4 22.8 -37.5 
Mobile dune 10.7 10.2 -4.2 
Fixed dune 105.8 101.7 -3.9 
Dune slack 12.7 16.2 27.3 
Dune slack (Salix repens) 13.7 11.4 -16.8 
Fixed dune (Salix  repens) 21.3 22.9 7.4 
Woodland/scrub 169.3 173.0 2.2 

Sand dune habitat mapping 

High accuracy maps of sand dune habitat have been generated using a combination of remote 
sensing techniques. Problems were encountered due to shadowing on dunes, resulting in 
misclassification errors. This was a problem that was partially resolved using an expert 
classification, but further techniques need to be examined in order to derive methodologies 
that are more robust. 

A simple change analysis using class areas appears to be possible, but care needs to be taken 
to ensure that differences seen are the result of genuine change rather than artefacts of errors 
within the data layers used. 

5.1.3 Saline lagoons 

A classification of general habitat types was carried out for the 2000 Blakeney data using 
NVC ground data. The ground data supplied appeared to be poor quality, as areas on the 
NVC map did not match the Ordnance Survey 1:10 000 data or the CASI imagery. As the 
ground data appeared unreliable it was decided to carry out an unsupervised classification. 
Generally unsupervised classifications are less accurate than a supervised approach and the 
resulting classification was not suitable for this study. Classifications were also attempted on 
the 2002 Blakeney data but again accuracies were low. The site is spatially complex 
containing vegetated shingle, saltmarsh, terrestrial and freshwater habitats. The ground data 
gathered did not encompass all this variation and so classification accuracies were low. It was 
therefore decided to concentrate on information that could be extracted using image 
interpretation.  
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Figure 5.10  2002 CASI imagery of Blakeney study site 

Lagoon area is one of the indicators of saline lagoon health and is required for Habitats 
Directive reporting. Manual digitising of CASI imagery has been used to generate this 
variable.  

Table 5.23  Flight dates of aerial photography and CASI imagery 

Sensor Date Ground resolution (m) 
CASI 23rd September 2000 1 

Digital camera 09th September 2000 0.25 
CASI 26th July 2002 1 

Digital camera 26th July 2002 0.15 

The areas of the lagoons were estimated using CASI and digital photography in 2000 and 
2002 (Table 5.23). The 2000 digital photography data were not complete as the camera used 
was a test model and did not supply complete coverage. It should also be noted that in 2000 
the photography was flown on a different date from the CASI data. 

Table 5.24  Area of Blakeney saline lagoons as determined from airborne remote sensing 

2000 Areas (ha) 2002 Areas (ha) 
Lagoon CASI Digital 

photography 
CASI Digital 

photography 
Half Moon Pond 0.11 / 0.07 0.07 
New Moon Pond 0.10 / 0.14 0.15 
Seahorse Pond 1.24 1.13 1.32 1.20 
Arnold's Marsh Lagoon 5.17 / 4.72 4.65 
Salthouse Broad 3.31 / 1.54 1.62 
Little Eye 0.05 0.03 0.12 0.12 
W. Gramborough Hill 0.13 0.13 0.07 0.06 
E. Gramborough Hill 0.10 0.11 0.11 0.11 
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Table 5.25  Difference between estimated areas of Blakeney saline lagoons between digital photography 
and CASI data for 2002 

Lagoon Area difference (ha) % Difference 
Half Moon Pond 0.002 3 
New Moon Pond -0.007 -4 
Seahorse Pond 0.123 10 
Arnold's Marsh Lagoon 0.067 1 
Salthouse Broad -0.080 -5 
Little Eye 0.005 4 
W. Gramborough Hill 0.009 15 
E. Gramborough Hill -0.005 -4 

Generally there was good agreement between the areas determined by CASI and digital 
photography, especially in 2002 (Table 5.24). There are greater differences in the estimated 
lagoon areas from each of the two sensors from the 2000 data than the 2002 data. This is 
likely to be due to data collection being on different dates and the lagoon area changing due 
to tide, rainfall or evaporation.  

Using the different methods of determining the lagoon area for the 2002 data (where no 
change will have occurred between image collections), it may be seen that the greatest 
absolute difference between the methods is 0.123ha and the largest percentage difference was 
15% (Table 5.25). The largest percentage difference occurred for a lagoon that was small and 
so relatively small changes in the boundaries could result in a large percentage difference. 

Problems arose trying to distinguish algal plant matter lying on the surface of the water, 
which should be included in lagoon area and land based plant matter, which shouldn’t. Other 
problems were encountered trying to distinguish between shallow waters and mud. LIDAR 
data were used to compare heights in order to determine if a tone or hue was likely to be part 
of the water body. This was achieved by comparing the height of pixels known to be water 
with pixels that were unknown.  

One method used to determine the colour boundaries of the water bodies was to pick 25 
random LIDAR pixels from the known water body part of the image and 25 random LIDAR 
pixels from the part where there was some doubt (in the same lagoon). Students’ T-tests were 
then performed on the two resulting data sets to see if there was a significant difference in 
height between the two sample sets. Figure 5.11 shows an area where such a test was 
performed. Section “A” is known to be water, but “B” may be shallow water or mud. Note 
the differing hue in “B” compared with “A”.  

In this case, there was shown to be a significant difference in heights between the random 
height pixels pulled out of A and B (Figures 5.11 and 5.12)  
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Figure 5.11  Example of uncertainty in whether area is water 

Water has a relatively low reflectance in near infrared compared with bare ground and 
vegetation. These characteristics enable visualisation of the water/land boundary using CASI 
imagery. Air photos with a spatial resolution of 0.25m and 0.15m (CASI is 1m) were also 
used to estimate the extent of lagoons. The finer spatial resolution enabled easier 
interpretation of the lagoon extent in most cases. However, shallow lagoons, with light 
sediment proved difficult to interpret and in those cases CASI imagery was easier to interpret 
or LIDAR was used as an additional data source. 

Figure 5.12  Plot of the t-test, showing the difference in mean heights between the sample areas A and B 
(Figure 5.11) 
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5.1.4 Mudflats 

The Budle Bay data were scheduled for collection during low water spring tides of the first 
year of the project. However, these coincided with poor weather in both 2000 and 2001. The 
CASI, LIDAR and aerial photography data were finally gathered in September 2002.  

The data were collected in good lighting conditions close to solar midday. However, there 
were problems radiometrically normalising the CASI using the edge matching technique and 
so image ratioing was used (Figure 5.15). Ground data were collected in the same week as the 
remotely sensed data, but a visual inspection of the data revealed that there were problems 
with the suitability of the ground data for image classification.  

The ground data appeared to give a synoptic overview of the cover, but did not seem to 
identify the full spatial complexity of the classes used. This was a particular problem for the 
Mytilus edulis class, as may be seen from Figure 5.16. On the basis that the ground data were 
synoptic, rather than a specific identification of land cover boundaries, an unsupervised 
classification was carried out. The ground data supplied were used to determine the general 
positioning of the classes used. The unsupervised classification was carried out using the 
ISODATA algorithm (Campbell, 1996) and 20 classes. Classes that belonged to more than 
one land cover type were reclassified and split further until they could be discriminated. 

Figure 5.14  2002 CASI imagery of Budle Bay 
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Figure 5.15  2002 ratioed CASI imagery of Budle Bay overlaid on grayscale image 

Figure 5.16  Example of Mytilus edulis ground data (blue outline) not matching remotely sensed data 
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Figure 5.17  Unsupervised classification of Budle Bay ratioed CASI data 

The unsupervised approach to image classification is likely to result in a classification 
accuracy well below that obtained using a supervised approach. This approach was only 
carried out as the ground data did not match the remotely sensed data. Synoptic ground data 
are not suitable for use as training data in a supervised classification. Ground data used in a 
classification should clearly identify the boundaries between land cover types. 

The problems encountered with the ground data also meant that an accuracy assessment 
could not be carried out. Therefore no conclusions can be made about the suitability of 
remotely sensed data for mapping intertidal habitats from this study. Other studies have used 
remote sensing to map cover and biomass of mudflats (Meulstee et al., 1988; Bajjouk et al.,
1998; Guichard et al., 2000) and so remote sensing is likely to be able to make a contribution 
to monitoring this habitat. 
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5.1.5 Vegetated shingle 

Figure 5.18  2002 CASI data of Rye site 

Vegetated shingle is a difficult habitat for CASI to provide a comprehensive vegetation map, 
as many of the species present occur in very low densities surrounded by shingle. The 
remotely sensed signal from the shingle can mask out the smaller signal from the vegetation 
and the resulting pixel is likely to be classified as shingle. This meant that species such as 
Crambe maritima (Sea-kale) are unlikely to be discriminated at 1m resolution.

A study was carried out using 2000 Rye data to determine which classes could be detected 
using the CASI sensor. The classes chosen for the CASI classification are listed in Table 5.26 
and were based on those classes that could be discriminated using the CASI sensor. The non-
shingle sediment class included mud, tarmac and concrete. These cover types were merged, 
as the classifiers had difficulty in discriminating between them. It should be noted that the use 
of digital photography has the potential to provide information that the CASI sensor can not 
due the large improvement in spatial resolution (Figure 5.19) 

Table 5.26  Classes used in Rye classification 

Water 
Non-shingle sediment 
Shingle 
Saltmarsh 
Grasses/moss/herb 
Arrhenatherum elatius low density 
Arrhenatherum elatius high density 
Reeds/rushes 
Centranthus ruber
(Red valerian)
Scrub 
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   A CASI           B Photography 

Figure 5.19  Example of CASI and photography of Rye site showing detail visible in photography 

The ML classifier was compared with the MLP neural network for the 2000 Rye 
classifications (Table 5.27). The MLP classifier was more accurate than the ML classifier 
data and so was used for the 2002 data. 

Table 5.27  Overall accuracy for Rye classifications 

Year 2000 2000 2002 
Classifier ML MLP MLP 
Accuracy 0.761 0.809 0.856 

Table 5.28  2000 Rye classification 

Ground data 
  Water Non-

shingle 
Sediment

ShingleSaltmarsh Grasses/ 
moss/ 
herb 

Arrhenatherum Reeds/ 
rushes 

Centranthus Scrub User’s 
accuracy

       Low 
density

High 
density

    

 Water 22 1 0 0 0 0 0 0 0 0 0.96 
 Non-shingle 

sediment 
1 25 2 0 0 0 0 0 0 0 0.89 

 Shingle 0 4 35 0 0 1 0 0 0 0 0.88 
 Saltmarsh 0 1 0 34 2 0 0 0 0 0 0.92 
Classif ied Grasses/ moss/ 

herb 
0 0 0 2 28 2 3 0 0 0 0.80 

Data Arrhenatherum
low density 

1 1 1 0 2 31 4 0 3 0 0.72 

 Arrhenatherum
high density 

0 0 0 0 1 6 12 1 0 0 0.60 

 Reeds 1 0 0 0 0 1 0 30 0 4 0.83 
 Centranthus  1 3 0 0 1 3 0 0 31 0 0.79 
 Scrub 0 0 0 0 0 0 0 5 0 32 0.86 

Producer’s 
accuracy 

0.85 0.71 0.92 0.94 0.82 0.70 0.63 0.83 0.91 0.89  
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Generally the class accuracy values of the classifications for both years were high, but the 
classifier had difficulty discriminating between low and high density Arrhenatherum (Table 
5.28 and 5.29). Visual inspection of these errors indicated that these errors generally occurred 
in medium density Arrhenatherum and so are not indicative of a major problem with the 
classification  

Table 5.29  2002 Rye classification 

Ground data 
  Water Non-

shingle 
sediment

Shingle Saltmarsh Grasses/ 
moss/ 
herb 

Arrhenatherum Reeds/ 
rushes 

Centranthus Scrub User’s 
accuracy

       Low 
density

High 
density

    

 Water 30 0 0 0 0 0 0 0 0 0 1.00 
 Non-shingle 

sediment 
0 21 2 0 0 0 0 0 0 0 0.91 

 Shingle 0 0 37 0 0 1 0 0 0 0 0.97 
 Saltmarsh 0 2 0 35 2 0 0 0 0 0 0.90 
Classif ied Grasses/ moss/ 

herb 
0 0 0 1 42 1 3 0 0 0 0.89 

Data Arrhenatherum
low density 

0 0 2 0 2 30 5 0 3 0 0.71 

 Arrhenatherum
high density 

0 0 0 0 3 6 14 0 1 0 0.58 

 Reeds 0 0 0 0 0 0 0 34 0 1 0.97 
 Centranthus  0 0 0 0 7 0 0 0 32 0 0.82 
 Scrub 0 0 0 0 0 0 0 2 0 20 0.91 

Producer’s 
accuracy 

1.00 0.91 0.90 0.97 0.75 0.79 0.64 0.94 0.89 0.95  

The Rye classifications indicate that multispectral remote sensing has the potential to 
discriminate between some of the general habitat types present on vegetated shingle. 
However, it has difficulty in discriminating between some species, particularly those that 
cover small proportions of the shingle. 

Digital photography does provide a higher resolution solution to mapping vegetated shingle, 
but would probably require manual interpretation, which would require specialists with 
experience of both the habitat, and mapping it using photography. 

5.2 Morphological changes 

Morphological changes are an important indicator of the status of a habitat, particularly if 
there are erosion or accretion changes. Some of these changes are pertinent at local levels and 
indications of where change is taking place may be used to improve management of a site. 
The main advantage that a remote sensing approach has over a ground based study is that it 
provides continuous data. The ground-based transect approach used previously cannot 
provide information along a whole coastline and may miss important areas of change. These 
ground-based approaches are also unsuitable for surveillance. If change suddenly takes place
in an area without prior warning it may not be possible to establish a baseline. Remote 
sensing data may be gathered that provide general indicators of the changes taking place  

Research was carried out on multiple LIDAR data sets from the Rye shingle and Ainsdale 
dune sites in order to examine methods of detecting and quantifying morphological change.  
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5.2.1 LIDAR data preparation 

Systematic differences between LIDAR surfaces can occur due to a variety of reasons and are 
likely to result in errors in morphological change detection. Removal of these offsets is 
crucial if morphological analysis is to be as sensitive as possible to change. The easiest 
method of calculating these offsets is to identify areas within the LIDAR data that are flat, 
unlikely to have changed between the times of data collection and are unvegetated. Elevation 
data are extracted from both LIDAR surfaces and compared (Figure 5.20). The offset 
between the data may be calculated and applied to one of the surfaces (Table 5.30; Figure 
5.21). The data are then ready for change analysis. 

Table 5.30  Offsets between LIDAR surfaces 

Site LIDARt1 LIDARt2 Offset (m) 
(LIDARt2 – LIDARt1)

Ainsdale August 2001 September 2002 0.05 
Rye September 2000 July 2002 0.185 
Blakeney June 2000 July 2002 0.105 
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Figure 5.20  Rye harbour LIDAR data from 2000 and 2002 over a flat, unchanged area 
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Figure 5.21  Rye harbour LIDAR data from 2000 and offset 2002 over a flat, unchanged area (offset 
calculated from Figure MC1; 0.185m) 

5.2.2 Volume changes 

Volume change estimates were made for the Ainsdale, Rye and Blakeney sites. In all of these 
sites the following procedure was followed: 

1. A mask was created that removed areas that were not to be included in the analysis. 
This included areas with trees and scrub vegetation. 

2. A lower limit of analysis was determined. For example: for Ainsdale site this was 
approximately the high water mark, as calculated from local tide estimates. 

3. An upper limit of analysis was determined. The more pixels that are included in the 
analysis that have little or no change occurring, the lower the sensitivity of the 
analysis. 

4. The masks were applied to remove areas that should not be analysed. 

5. The volume changes were determined for approximately rectangular contiguous 
quadrats (Figure 5.22). 

6 A 95% confidence interval for volume change was determined using the following 
method. Areas were identified that were unlikely to have undergone change. The 
difference between the datasets for the two times was calculated for every pixel and 
the value for each pixel was extracted. Pixels were randomly grouped together and the 

Offset between 
points 
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average difference calculated for each group. The groups were then placed in order of 
absolute difference and the value of the group at the 95 percentile was found. It may 
be seen from Figure 5.23 that as the number of pixels grouped together is increased 
the 95% confidence interval decreases and reaches an asymptote. It is the confidence 
value at the asymptote that was used in the volume analysis.  

Figure 5.22  Quadrats used for Ainsdale volume change analysis 
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Figure 5.25  Volume change along Ainsdale coastline 2001-2002 

(Volume per 100m of coast; 95% confidence intervals) 
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5.2.3 Area of change 

In order to identify areas in which morphological change is taking place it is important to 
consider the errors and imprecision within the data sets being used. Though the vertical error 
within LIDAR is understood, its impacts when change detection is being carried out have not 
previously been documented. The effects of horizontal errors are also crucial in determining 
changes that have actually taken place and those that are artefacts of the data sets being used.  

The horizontal errors within LIDAR and the way that the data are processed can result in 
complex errors within the final change layer that are partially functions of the surface being 
studied. As slope increases, the effect of horizontal errors will increase (Figure 5.27). This is 
borne out by Figure 5.28, which shows the standard deviation of the error between two 
surfaces in an area where no change has taken place increasing with slope.  

A  320      B 680

Figure 5.27  Effects of varying slope on vertical error of change detection 

A system was devised that accounts for the horizontal errors that occur due to the LIDAR 
system error and the resampling carried out on the raw data (Figure 5.29). 

The system uses a filter with varying size to generate minimum and maximum values within 
a specified distance of a given point for two LIDAR data sets. The filtering reduces the 
combined effects of slope and horizontal error when LIDAR change detection is carried out, 
as can be seen in Figure 5.30. In flat areas the minimum and maximum filter have very 
similar values to the original LIDAR (Figure 5.30). In areas with high slope the minimum 
and maximum values account for the potential variation in vertical values due to horizontal 
errors (Figure 5.30). 

Vertical 
Error

Horizontal 
Error 

Vertical 
Error

Horizontal 
Error 
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Figure 5.28  SD of differences between two LIDAR DEMs in an area of no change 

Rye Harbour Nature Reserve June and September 2000 

Figure 5.29  LIDAR filtering system for identifying areas of significant change 
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The filtered minimum and maximum values of the two LIDAR datasets are then overlaid and 
the minimum difference between them is estimated (Figure 5.31). If there is overlap between 
the filtered data (Figure 5.31A) then it is assumed that there is no difference between them. If 
there is no overlap then the difference is the minimum elevation between them (Figure 5.31B 
and C)  
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Figure 5.30  Effect of minimum and maximum filter on simulated LIDAR transect 

The 99% confidence interval is estimated empirically using a separate area where no change 
has taken place. To do this, the absolute pixel values are ordered and the value at the 99 
percentile is assumed to be the confidence interval. This is applied to the filtered image to 
provide areas where the difference is greater than the 99% confidence interval. This could be 
carried out for any confidence interval.  

Using the difference surface, error statistics are generated for an area where no change has 
taken place. Difference surface and slope surface values are extracted for an area of no 
change. A regression is applied to the data with slope as the independent variable and 
standard deviation of the difference values as the dependent variable (Figure 5.32). If the 
number of pixels with a given slope is less than 50 these values are removed from the 
regression stage to reduce the possibility of noise. The correct filter size is assumed to occur 
when the slope of the regression line is approximately zero. The filtering and regression 
stages are repeated until the correct filter size is found. Once the correct filter size is found, 
the filter is applied to the whole of the area of interest. 
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 Figure 5.31  Calculating differences between filtered LIDAR data 

(Red minimum filter, blue maximum filter) 
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Figure 5.32  Error statistics generated from filtered difference layer in area of no change 

(Rye Harbour; September 2000 to July 2002) 
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Figure 5.33  Areas of significant elevation change (Rye Harbour; September 2000 to July 2002; 95% 
confidence interval) 

Figure 5.34  Areas of significant elevation change (Blakeney; June 2000 to July 2002; 95% confidence 
interval) 
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5.2.4 Combining elevation datasets for long term morphological change 

Though LIDAR is useful for determining morphological change it is a relatively new 
technique. However, there is the potential to use other datasets combined with LIDAR to 
detect change over longer timescales.  

Sefton Council provided a 1982 DEM generated using photogrammetry, enabling long term 
change monitoring of the Sefton coast to be carried out. The DEM was supplied as a series of 
points representing 2m vertical intervals. Additional points were present for areas where the 
topography was flat. In order to compare the dataset with the LIDAR data, a raster grid had to 
be constructed. This was carried out by interpolating the point dataset to a 2m horizontal 
spacing raster using a method known as kriging (Swales, 2002).  

Figure 5.35  Elevation changes between 1982 and 1999 for Ainsdale Sand Dunes NNR

(NNR boundary marked in black) 
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This allowed a comparison of elevations to be made between 1982 and more recent data sets. 
It was decided that using 1999 LIDAR would allow a comparison to be made along much of 
the Sefton coast, as a more extensive survey was carried out in this year. As the 1982 
photogrammetry data is not as precise as the LIDAR data, the final comparison cannot be as 
precise and so the changes are assumed to occur when the differences between the LIDAR 
and the photogrammetry are greater than 2m, the spacing of the contours of the 
photogrammetry data. This resulted in a data layer that is insensitive to change (ie 
underestimates change). Despite this the resulting elevation change layer shows clearly the 
gross long term change that is occurring along the Sefton coast (Figure 5.35).  

5.2.5 Profiles 

LIDAR data allow multi date profiles to be generated for change detection (Figure 5.36). 
These may be targeted at areas where change has been identified as taking place using the 
methods above, or at regular intervals. The main advantage of using LIDAR to gather these 
transects is that they may be revisited if the transect position is unsuitable. This is one 
considerable advantage of using LIDAR data for generating profiles rather than ground based 
approaches. 
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Figure 5.36  2000 LIDAR Profiles, Rye Harbour, East Sussex 

5.2.6 Ridge characteristics 

The characteristics of the ridge between open water and percolation lagoons are important 
factors in the determining whether the system is changing over time.  

Ridge width 

In order to plot the width of Blakeney ridge as a function of distance along coast, a reference 
line was set up from which to create transects of the landward extent of the dune. The 
intersection of these transects and the landward extent line would form the basis for 
measuring the minimum distance to the line of the mid water mark  

A baseline for the ridge width was required. On the seaward side the baseline was mean 
water height (MWH). For each year this was determined by the following technique: 
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1. Twenty-five sample LIDAR heights were taken over the sea. 

2. The height difference between MWH and the tide at the time of data gathering over 
the sea was then estimated. 

3. The MHW was estimated using the value calculated in (2) and the mean LIDAR sea 
value. 

4. Large differences in the position of the MWH between 2000 and 2002 were examined 
using the raw LIDAR imagery.  

Figure 5.37  Technique for determining ridge width 

The ridge width was determined using the following method (Letters refer to Figure 5.37):  

a. The MWH line was estimated from the LIDAR. 2000 (green) and 2002 (red) 

b. Line of landward side of ridge extent as determined from 2000 LIDAR data.  

c. Straight distance reference line, parallel to ridge direction. 

d. Transect lines perpendicular to distance reference line (c). 

e. Points at intersection of perpendicular transect lines(c) and ridge extent line (b) 

f. The lines of shortest distance from points (e) to MWH line (a) were calculated. 

Ridge height 

The LIDAR elevation data had a maximum value filter customised to the direction of the 
shingle ridge (Appendix E). The filter consisted of a kernel, organised perpendicular to the 
direction of the ridge. This enabled the maximum value across the ridge to be estimated.  
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6. 3D visualisations  

In order to educate people of the effects of coastal change or to provide an alternative 
perspective of an area it is possible to provide three dimensional (3D) visualisations using 
CASI, digital photography and LIDAR data. The visualisations may be generated in specialist 
software that uses the elevation data to generate a 3D model. The digital photography or 
CASI data may then be draped over the elevation model to provide a real world 3D view 
(Figure 6.1).  

The 3D visualisation techniques may be used to provide an alternative aerial perspective of a 
habitat. These perspectives may be generated using a camera in an aircraft. However, as the 
original digital elevation and multispectral data are available, the perspective may be changed 
and emphasis placed on alternative areas depending on requirements.   

Figure 6.1  3D LIDAR and CASI visualisation of Blakeney saline lagoons 

Additional data may be added to the 3D world in order to visualise morphological changes. It 
is possible to highlight areas of change by adding data derived from multi temporal LIDAR 
data (Figures 6.2  and 6.3). The LIDAR data may be used by itself to provide visualisations 
of the morphological changes taking place (Figure 6.4). These methods can be very 
successful in conveying an impression of the dynamics occurring at these sites.   

Any form of similar resolution DEM may be used in a visualisation. Using 1982 
photogrammetry data with 2002 LIDAR data it is possible to see the large changes in the 
Ainsdale dune system (Figure 6.5). All of the visualisations described can be presented as 
static images or as flythroughs. These simulate a bird eye or plane eye view of the habitat and 
may be used to provide a particularly dynamic view of the area of interest. 



64

Figure 6.2  3D LIDAR and CASI visualisation with significant change between 1999 and 2001 overlaid, 
Ainsdale Sands 

Figure 6.3  3D LIDAR and CASI visualisation with significant change 2000-2002 overlaid, Rye Harbour 
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A  1982 photogrammetry data 

B 2002 LIDAR data 

Figure 6.5  3D Visualisation of change at Ainsdale Sands, Merseyside 1982-2002 

(View from end of Fisherman’s path facing approximately north) 
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7. Conclusions and recommendations 

7.1 Image normalisation 

Preparing the imagery for classification is one of the most important stages in a successful, 
accurate classification. Using edge matching is generally appropriate when terrestrial habitats 
are being classified, as long as care is taken when selecting the areas that can be matched. 

The use of image ratioing is an interesting development for intertidal sites and can be used to 
increase classification accuracy when there are variations in lighting due to bi-directional 
effects or variations in overall lighting levels.  

The technique may also be used to expand the window of opportunity for collection of data 
over intertidal sites, by collecting data when bi-directional effects are high such as early 
morning. By expanding the time that data can be collected by 1 hour either side of low water 
the number of monitoring opportunities per month can be increased by between 3 and 4 days 
per month. This equates to a 25%-35% percentage increase in the number of days that data 
can potentially be collected.  

This is an area that will continue to be developed by the Environment Agency, as the success 
or otherwise of a monitoring program can be dependent on the quality of the image 
normalisation. 

7.2  Classification 

7.2.1 Alternative classifiers 

This study has conclusively shown that the use of traditional statistical based approaches for 
classification can be less accurate than more modern techniques. Remote sensing is a 
relatively new science and hardware and software are improving rapidly. The development of 
alternative classification methods will continue both for commercial and academic use, and as 
methods are developed, it is essential that they be considered in the context of habitat 
monitoring.  

7.2.2 Use of additional datasets in classification 

The use of additional datasets in classification has been shown to be successful, particularly in 
the case of saltmarsh and sand dune systems. The data used in the classifications in this study 
were LIDAR derived, but there is no reason why other datasets could not be used, including 
those derived from non-remote sensing sources, such as soil type.  

7.2.3 Probability and uncertainty 

The derivation of per pixel probabilities enables two main types of change detection to be 
carried out more accurately, estimates of class area and identification of the areas where 
change is occurring.  

Estimates of the area of each class may be improved by accounting for probability of correct 
allocation and deriving confidence intervals to these areas. This is particularly useful for the 
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reporting of the status of habitats, as it may be determined whether the level of change is 
significant. 

When classifications from different years are compared, the probability of correct 
classification for each pixel may be used to determine the probability of change for each pixel. 
This will enable the areas of change to be identified, combined with a probability that the 
change is occurring, enabling management decisions to be made on the basis of where change 
is occurring and what the change is. 

7.3 Morphological monitoring 

This study has examined methods of monitoring the morphology of coastal habitats. This is an 
area of remote sensing that has advanced a great deal in recent years. LIDAR systems have 
improved to stage where high precision DEM generation over large areas has become routine. 
Using the high quality DEMs available offers a method of monitoring habitats that was 
previously unavailable. Data may be used for targeted monitoring of specific areas, or 
surveillance of whole habitats. This approach is a vast improvement on the one or at best two 
dimensional ground based methods that had the potential to miss large areas of change in a 
dynamic environment such as the UK coast. 

7.4 Obtaining remote sensing ground data 

Remote sensing offers a broad-brush approach to land cover mapping and is able to map the 
main species present and may be used to detect general trends in species composition. It is not 
possible to detect single plants of a rare or infrequent species.  

The accuracy of maps derived from remotely sensed data has in the past been compromised 
by ground data that do not meet the requirements of image analysis. This is largely due to lack 
of communication between image analysts and ground survey teams. In order to improve the 
accuracy of data derived from remotely sensed imagery it is essential that collaboration occur 
between the personnel carrying out ecological ground data collection and those carrying out 
image analysis. In remote sensing terms, it is better to gather large quantities of what may be 
considered broad-brush data than attempting to map each individual plant on the ground.
Difficulties were found during this study where ecologists were interested in individual rare or 
unusual species, increasing the time taken for data gathering and reducing the amount of 
usable data gathered.  

Problems may also occur when synoptic data are collected as in the Budle Bay section of this 
study. Areas of a given class must be clearly identified, so that any pixel within a given 
polygon will belong to that class. 

This report recommends that a consistent method of obtaining ground data for classifications 
is derived and used to provide standard operating procedures for future work. 

7.4.1 Image resolution/ground resolution 

The spatial resolution (the pixel size) of a CASI image is generally somewhere between 1-
10m. To maximise classification accuracy, the training sites need to be as pure as possible. 
This has two implications from the point of view of image analysts. This means that there 
should only be one class of vegetation present. In an area such as saltmarsh this may be 
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difficult or impossible. Some areas of saltmarsh are intermediate communities that are made 
up of a number of species, such as Puccinellia lawns, that contain Aster, Limonium, etc.  

Where it is not possible to identify pure areas, then the approximate amount of coverage by 
each species should be recorded. This should include the amount of bare ground and what 
surface this is e.g. mud, shingle or sand. Remote sensing is not able to distinguish coverage at 
a very small level and so unless specifically required cover of less than 10% should be 
ignored. 

7.4.2 Classes 

It is essential that the classes present in a habitat be known prior to ground data collection. A 
classifier cannot know whether an area belongs to a class other than the ones that data have 
been collected for and will misclassify any areas that belong to classes that ground data have 
not been collected for. Knowledge of the land cover types present in a study area prior to 
ground data collection will enable surveyors to ensure that sufficient data are collected for all 
classes.  

7.4.3  Training sites 

Areas should be identified of each of the classes used in the classification. It is essential that 
enough pixels be identified for use in the classification. Selecting point samples is not an 
option unless large numbers of points are sampled (See 7.4.4 below). 

Sites should be as large as possible. The classification is most accurate when the range of 
variation in the class is represented in the training data. This means that low and high 
productivity areas should be represented, as well as the variation in the dominance of the 
species making up the class. 

The effects of mixing at boundaries can severely reduce the quality of training data and 
therefore the accuracy of the subsequent classification if a statistical classifier is used (Foody, 
1999). However, for non-parametric classifiers such as neural networks this is less 
importance. 

During processing the training sites have to be identified on the image. This creates problems 
between data obtained and requirements for image processing. GPS or other accurate position 
data from the field may be of less use than mapping straight to an image. When an image is 
obtained it is distorted. The process of fitting the image to a map is not perfect and so there 
will be positional errors in the final map. Even though the ground data may be perfect, the 
image data may not be.  

This means that areas of vegetation marked on an image are easier to identify. If the imagery 
is not available a sketch map may be of use to the image analyst. This may show positions 
relative to roads, streams or creeks. A map is particularly useful when the areas identified are 
small patches of vegetation. The position of a point will be of use as well, but a sketch map 
will tie down geographic position with more accuracy than many commercially available GPS 
systems. 
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Even with a differential GPS there may be problems associated with post processing and 
fieldwork may be of little use unless simple maps are obtained. Photographs of the general 
position may also help.  

Data should be gathered for all of the classes being used. A particular problem with 
classification of intertidal vegetation is algae, but a lot of ground surveys do not include this 
class. It is then up to the image analyst to identify areas of algae from the imagery, a task 
many are not qualified for. It is therefore essential that all classes are included in the ground 
data collection. 

7.4.4 Number of pixels gathered 

The number of pixels gathered per class is an essential factor in the accuracy of final 
classification. It is critical that enough pixels are gathered per class and that the areas gathered 
cover the variation within the class. For example, for a mixed woodland class, it would not be 
acceptable to gather ground data that does not include deciduous woodland. There are rules 
for the number of pixels used, but these generally apply to statistical classifiers. Work was not 
carried out to identify the correct number of pixels per class. However, for the habitats 
classified here, between 500 to 1000 pixels per class were adequate to provide a high accuracy 
classification.  

7.4.5 Ground survey teams 

Throughout this study it was found that having an image analyst involved in data gathering 
was very useful. It aided the classification process for two main reasons: 

�� Ensuring the correct data were gathered. 
�� An understanding of the site was helpful during the QA of the classification stage and 

reduced errors in the final product.  

7.5 Remote sensing for monitoring coastal SACs 

The use of remote sensing will not remove the need for ground based studies, but can provide 
additional information that may not be obtained using ground studies. There are a number of 
differences to a remote sensing approach to monitoring the environment that may be used 
positively to provide additional information that may be difficult or impossible to gather using 
a ground based approach. 

Remote sensing provides a continuous coverage. This is a particular advantage with elevation 
data. Ground surveys are generally points or transects and cannot represent the three 
dimensional complexity of the landscapes being examined. 

A ground based approach to mapping habitats cannot completely cover the entire area being 
mapped unless it is small. For this reason the boundaries between habitats may be incorrectly 
mapped, particularly when the area may be difficult to reach, such as intertidal vegetation 

This may be a particular problem if large areas are to be monitored, as the distance between 
survey points may be increased due to time constraints. As coastal habitats are spatially 
heterogeneous, much of the variation within these habitats is not accounted for. Boundaries 
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are drawn by eye between sampling points. This approach is necessarily limited due to the 
discontinuous nature of these sampling strategies. 

When ground based mapping is carried out the map layers used to record on may not be up to 
date. This is a particular problem in dynamic habitats such as the intertidal zone where 
mapping occurs less frequently than in terrestrial environments (Collier et al., 1995). 

Access to intertidal habitats can be very difficult or dangerous. On saltmarsh and mudflats 
deep mud can create access problems, as well as being dangerous for surveyors. The foot and 
mouth outbreak in 2001 also highlighted the access problems with ground-based surveys.  

As a tool for monitoring coastal habitats, especially the intertidal zone, remote sensing can 
provide information that may be difficult or impossible to gather using ground based studies. 
Thick layers of saturated sediments and water can make intertidal or offshore areas 
inaccessible without specialist equipment. Comprehensive surveys may be difficult, especially 
at areas low in the tidal range.  

7.5.1 Operational use of remote sensing in SAC monitoring 

This project has developed a series of operational methodologies for the application of remote 
sensing techniques to the monitoring of marine Special Areas of Conservation (mSACs).  
These tools may now be implemented by qualified remote sensing staff either within the 
Environment Agency or within English nature. 

Further developments are still to be made to these tools, making use for example of the new 
generation of satellite sensors.  Similarly, it may be appropriate to transfer the technologies 
used to other environments, for example terrestrials SACs.  All the methodologies suggested 
are completely transferable, but their success will depend on the spectral characteristics of the 
habitat being surveyed. 

A number of key points are valid for each of the habitat types: 

�� Remote sensing methods offer the ability to conduct large scale surveys with limited 
ground data thus reducing the impact on the environment being  monitored and 
improving the monitoring of areas which have poor access 

�� The digital nature of the data mean that analysis of change between years and seasons 
is a real possibility 

�� The use of terrain information derived from LIDAR data results in a three-dimensional 
view of the site, which has huge benefits in planning, education and demonstration of 
monitoring to the wider public 

7.5.2 Saltmarsh 

This study in conjunction with previous studies (ABP 2000) has shown that it is possible to 
derive accurate vegetation maps using CASI or CASI and LIDAR data. The use of alternative 
neural network classifiers was extensively tested and found to be an improvement on 
previously used classification methods. The study did not successfully use the saltmarsh 
classification for monitoring change due to the inaccuracy within the 2001 classification. This 
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was due to the data being collected too early within the growing season. A classification of 
the 2002 data was not carried out due to incomplete ground data. 

Remote sensing methods offer the following capabilities: 

�� Classification of main SAC habitats 
�� Classification of dominant species (although with greater uncertainty) 
�� Hydrological modelling of creeks (using LIDAR) 

A combination of CASI and LIDAR data is recommended, with a ground resolution of 1m to 
2m. 

7.5.3 Sand dunes 

This habitat type has been monitored over each of the three years leading to some clear 
findings. 

Remote sensing data from this habitat have been found to be suitable for: 

�� Identification of main SAC habitats 
�� Monitoring of dune development and erosion 
�� Production of a 3D visualisation 

A combination of CASI and LIDAR data is recommended, with a ground resolution of 1m to 
2m. 

7.5.4 Saline lagoons 

The area considered for this habitat was complex, with a mix of fresh water, salt water and 
terrestrial vegetation. 

The remote sensing deliverables from this habitat are: 

�� Lagoon area at one instant (remembering that it is highly temporal variability) 
�� Ridge width 
�� Ridge height 

In terms of monitoring of status, the remote sensing methods offer no clear advantages over 
traditional methods. 

However, the remote sensing methods can offer a three-dimensional view of the 
environmental system.  This type of visualisation is becoming increasingly important in the 
education of the public in environmental matters, in addition to demonstrating monitoring in 
action and enabling clear planning to be carried out. 

Moreover, DEM data will aid in the monitoring of percolation barrier width. 
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7.5.5 Mudflats 

No conclusions could be drawn for this habitat type due to problems with ground data capture. 

However previous studies and qualitative results indicate that remote sensing methods can: 

�� Monitor the extent of algae 
�� Monitor the extent of mussel beds 
�� Distinguish different surface types 

The environment is typically difficult to monitor due to access problems and the wide areas 
requiring coverage.  This means that remote sensing techniques are ideally suited.  The use of 
satellite data would probably be precluded by problems associated with cloud cover, but 
should be further investigated as current sensors offer the required spatial resolution and may 
offer sufficient spectral information for this habitat type. 

If using airborne data, CASI data collection is recommended with full spectral classification.  
A spatial resolution of 4m would offer the required differentiation and would allow higher 
altitude flying and a reduced survey cost.  Although data collection has proved difficult for the 
Budle Bay site, the techniques being developed, including band ratio methods, will most 
probably extend the weather window of opportunity. 

Further investigations are also being conducted under contract to the EC Life Ythan Project to 
measure the biomass of algal in estuarine and mudflat environments.  This would offer a 
substantial increase in the value of the CASI data collected. 

7.5.6 Vegetated shingle 

Whilst the multispectral CASI methods are able to classify the presence of coarse vegetation 
they are unable to detect the presence of some of the most important species in this habitat due 
to the small areas over which they grow.  Assuming that species cannot be differentiated, it is 
recommended that digital photography data be gathered.  The increased spatial resolution of 
these data would allow a better identification of the presence of vegetation. 

The collection of LIDAR data has proven of high value in the monitoring of erosion and 
accretion at the front of the shingle system.  Examples of this have been seen at both the Rye 
Harbour site and at the shingle ridge offshore of Blakeney. 

Thus although the remote sensing methods cannot replace the traditional sampling for the 
monitoring of key species the data can offer added value in terms of the wider environmental 
management of a shingle ridge system. 

7.5.7 Costs of remote sensing 

If use is to be made of remote sensing for monitoring marine SACs some decisions need to be 
made on the data collection and processing model to be adopted. 
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Table 7.1  Recommended sensors for coastal monitoring 

Habitat LIDAR CASI Digital Photos 
Saltmarsh � �

Sand dune � �

Mudflats  �

Vegetat ed shingle � �

Saline lagoon � �

To date the work has been carried out by the Environment Agency National Centre for 
Environmental Data and Surveillance.  This has involved the development of methodologies 
that could in theory now be applied either by Environment Agency staff or by staff within 
English Nature.  For the work to be carried out within EN, the following would be required: 

�� Hardware set up costs equivalent to £3000 per staff member 
�� Software set up costs equivalent to £5000 per staff member 
�� Suitably qualified remote sensing staff 

If the work were to continue with NCEDS, then a charge would be made to cover staff time, 
which in the Table 7.2 has been worked out on a per square kilometre basis. 

Table 7.2  Costs of coastal SAC monitoring using remote sensing 

Data collection 
CASI LIDAR Digital Photos 

Ground data  
*

Classification  * 

Saltmarsh £200 £200 N/A £50 £200 
Sand Dunes £200 £200 N/A £50 £200 
Mudflats £150 N/A N/A £30 £150 
Vegetat ed 
shingle 

 £300 £50 £50 N/A 

Saline lagoons N/A £200 £50 £30 N/A 

Alternatively, the work could be carried out within the NCEDS by one or a number of staff 
funded directly by English Nature, which may allow for some cost savings. 

7.6 Future areas of study 

Though this study took operational remote sensing of the coastal zone forward in terms of 
image preparation, classification and morphological change detection, there are still areas that 
require further study.  

7.6.1 Satellite data 

This study only examined the use of airborne remote sensing for monitoring coastal SACs. 
However, satellites are now capable of producing fine spatial resolution multispectral data 
(Table 7.3). There are three main factors to be considered when selecting a multispectral 
sensor to monitor vegetation; ground resolution, waveband availability (wavelength and 
width) and monitoring opportunities. Much of the variation within UK coastal habitats 
particularly saltmarshes, occurs at scales of a few metres and so coarse spatial resolution data 
would be inappropriate for monitoring the diversity of species within the intertidal zone, even 
if sub pixel classifications are carried out. Of the satellite data readily available, SPOT HRV 
and Landsat TM are therefore inappropriate as they have multispectral spatial resolution of 
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20m and 30m respectively (Table 7.3). In the last 4 years, three high spatial resolution 
satellites have been launched that provide the spatial resolution that is suitable for coastal 
monitoring in the UK and two more are due in the next two years. 

Table 7.3  High spatial resolution imaging satellites 

Satellite Resolution (m)
(panchromatic or black and white) 

Resolution (m) 
(multispectral) 

Operational 

Landsat 
Enhanced TM 
(ETM+) 

15 30 Yes 

SPOT HRV 10 20 Yes 
IKONOS 1 4 Yes 
EROS-A1 1.8 N/A Yes 
QuickBird-2 0.6 2.5 Yes 
Orbview-3 1 4 Late 2003 
EROS-B 0.9 4 Late 2004 

The classification and erosion monitoring techniques developed in this study could be directly 
applicable to satellite remote sensing. Radar data may be of use to provide DEMs for 
monitoring coastal morphological changes.  

Satellite data are cheaper and provide greater coverage than airborne data, but there are other 
limitations. The satellites only overpass at certain times of the day and in most cases do not 
overpass every day and so are more weather dependent than airborne systems.  

7.6.2 Habitat change detection 

Change detection is an area of remote sensing that needs to be examined further. Any further 
work should study overall habitat area estimates and identifying areas of change. Though 
these areas were examined during this study, there was insufficient time to carry out a full 
study. 

7.6.3 Other habitats 

The use of remote sensing is applicable to monitoring other habitats. All of the techniques 
developed here have the potential to be transferable. Other habitats in which remote sensing 
may be of considerable use include:  

�� Grazing marsh: habitat monitoring 
�� Maritime cliffs and slopes: erosion monitoring  
�� Reed beds: habitat monitoring 
�� Moorland areas: habitat monitoring 

7.7 Logistical changes 

One of the limitations with the project plan for this study was the short time between the final 
flights and project delivery (approximately 6 months). This meant that a large amount of 
work, including ground data collection and collation, classifications, morphological change 
detection and report writing had to be carried out over a relatively short time frame. This 
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resulted in certain areas not being studied as fully as was required, particularly the crucial area 
of habitat change detection. 

Ideally, more time would have been allocated for each classification. However, this time was 
not available and so classification accuracy may be reduced from the optimum achievable. In 
future studies it is essential that enough time be given for technique development.  

There were also problems with the ground data collection for the Tollesbury site in 2002. This 
was because certain areas belong to local wildfowling groups who were unwilling to let a 
survey team onto their land during the wildfowling season. This resulted in incomplete ground 
data collection for the site. Ideally the sites chosen for developing techniques should be 
accessible for as long a period as possible for ground data collection, so that these problems 
do not arise again. 
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Appendix A. Original work packages 

A1 Work Package 1: Saline lagoons 

Over the proposed three year period, combined LIDAR and CASI data will be collected on 
two occasions at a two-year or greater separation. The use of CASI data in addition to LIDAR 
is justified on the need to identify the vegetation of the surrounding areas in order to establish 
the likelihood of lagoon creation. 

The study site will be confined to a small area, approximately 2km by 5km to allow intensive 
study of the ground cover types.  Data will be collected at 2m resolution to allow operational 
use of techniques developed.  

Initial research will investigate the spectral signatures associated with each of the ground
cover types surrounding the lagoon sites to establish whether they will or will not be 
spectrally distinguishable.  The results of these investigations, to include discussion of the 
relevant literature, will be presented in the final report for this habitat type. 

The CASI and LIDAR imagery will then be processed and an unsupervised classification 
carried out on the CASI data.  This classification will be provided to ground staff from 
English Nature who will be asked to verify the composition of spectrally differentiated classes 
within the study site.  This information will be used to fine tune the classification.  The results 
of this classification will be included in the final report including pictorial representation of 
the study site. 

The LIDAR data will be used to derive a three-dimensional digital elevation model of the 
study site.  Investigations will then be carried out into the potential for flooding using 
specialist techniques developed within the National Centre in association with expert 
information from English Nature scientists.  Various techniques for three-dimensional change 
detection analysis will also need to be explored.  All the techniques developed within this 
study will be included within the final report. 

A2 Work Package 2: Inter-tidal mudflats 

The scientific requirements for this habitat type do not ask for any assessment of change.  
Data will therefore be collected on only one occasion, which will be in September. This 
period coincides with the peak in growth of the mussel beds, one of the sub-habitats which is 
being investigated, and will precede the die off of macro-algae. 

Both CASI and LIDAR data will be collected.  The CASI data will be used in association with 
detailed ground truth data, to classify the various ground cover types within the inter-tidal 
mudflat.  Attempts have been made previously to distinguish between sediment types within 
mudflats, including the differentiation of sand, silt and mud.  These have had limited success 
due to the similarity in spectral signature between the sediment types.  The different sediment 
types have clearly distinguished particle size which will result in the establishment of 
differing slopes on the beach profile.  It is proposed that this study will investigate the use of 
LIDAR derived slope as a further information source to improve the quality of the 
classification.   
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The study site will again be confined to a small area to enable the groundcover types to be 
surveyed in detail.  Currently the preferred study site is Lindisfarne, although the area within 
this would need to be discussed in detail to allow each of the ground cover types to be 
encompassed. 

Initial research will investigate the spectral signatures associated with each of the ground
cover types to establish whether they will or will not be spectrally distinguishable.  The 
expected variation in sediment type and consequent variation in anticipated beach profile will 
also require investigation.  The results of these investigations, to include discussion of the 
relevant literature, will be presented in the final report for this habitat type. 

The CASI and LIDAR imagery will then be processed and an unsupervised classification 
carried out on the data.  This classification will be provided to ground staff from English 
Nature who will be asked to verify the composition of spectrally differentiated classes within 
the study site.  This information will be used to fine tune the classification.  The results of this 
classification will be included in the final report including pictorial representation of the study 
site. 

A3 Work Package 3: Coastal shingle 

Rye Harbour has been chosen for this study, as it comprises areas in which shingle is both 
eroding and accreting.  Both CASI and LIDAR data will be collected as two surveys separated 
by at least one year to allow the detection of changes in the morphology.  Data will be 
collected at 2m resolution to allow an assessment of the operational use of these techniques to 
be made. 

The CASI data will be used to establish the ability to classify vegetation on the shingle ridges.  
It is anticipated that the narrow nature of this habitat type may make this difficult, with 
problems of mixed pixels.  Initially the spectral signatures of the vegetation types will be 
investigated, through review of current literature as well as investigation of new data.  An 
unsupervised classification will then be carried out, and the ground cover types identified will
be verified by English Nature ground staff to allow fine tuning of the classification. The 
results of this analysis will be included in the final report for this habitat type. 

The LIDAR data will be used to derive a digital elevation model.  The models derived from 
the two surveys will be compared using three dimensional change detection analysis which 
will be developed by the National Centre as part of this project.  The results of this analysis 
will be included in the final report including pictorial representation of the study site. 

A4 Work Package 4: Saltmarsh 

Recent investigations have shown that the ability to distinguish saltmarsh species may depend 
on a combination of the amount of time that the vegetation is submerged and the elevation of 
the site.  In order to establish the ability of remote sensing to aid in the investigation of 
individual species it will be necessary to collect a combination of CASI and LIDAR data from 
four different seasons. 

The CASI data will be used to derive a classification of vegetation with information from the 
LIDAR being used as an extra classification tool.  This work is experimental and has not been 
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attempted previously, but it is anticipated that a combination of the two techniques will 
greatly enhance the classification of saltmarsh vegetation.   

The LIDAR data will also be used to investigate the development of creeks within the 
saltmarsh.  In order to allow a reasonable time scale over which to monitor creek 
development, an area with historic data should be used.  The Blackwater estuary has therefore 
been selected as both historic CASI and LIDAR data exist for this site. 

A site will be selected within the Tollesbury Marsh (Blackwater Estuary) approximately 2km 
by 5km.  Data will be collected at 2m spatial resolution to allow testing of the operational use 
of the techniques developed.  The study area will be overflown with both CASI and LIDAR 
data.   

The CASI data will initially be used to derive an unsupervised classification of the vegetation 
types within the marsh.  This will be provided to English Nature ground staff who will check 
the composition of the spectral classes derived from the classification.  This information will
then be combined with the data on elevation from the LIDAR data to improve the quality of 
the classification.  It is anticipated that the addition of the LIDAR data will enable the 
differentiation of more spectral classes at certain seasons which may necessitate further 
ground data collection.  Comparison of the data collected at differing seasons will enable 
decisions to be made on the optimum time of year for future data collection exercises. It is 
possible that differing seasons will be recommended depending upon the final information 
required, for example whether the extent of annual species is required.  The results of this 
analysis and recommendations for future monitoring will be included within the final report. 

A5 Work Package 5: Sand dune morphology and vegetation change 

This section of the project will investigate the use of LIDAR to monitor erosion and accretion 
of sand dunes and to measure volumetric changes.  In addition, the use of CASI to monitor 
changes in the vegetation types found within dune systems will also be examined.  

The site chosen is Ainsdale, which forms part of the Sefton coast mentioned above.  A small 
area approximately 2km by 5km will be selected within this dune system.  The main 
requirement for this habitat type is the measurement of change.  Data will therefore be 
collected twice, once early in the three year project plan and once within the third year to 
allow for maximum change to take place. 

The first data set will be used to produce a three-dimensional digital elevation model of the 
dune system within the study area.  Techniques will then be developed to allow accurate 
measurement of change in three dimensions.  This work will obviously be carried out in 
parallel with the work carried out on shingle ridges.  When the second data set is gathered 
change analysis will be carried out and the results of this, including the techniques used, will 
be included within the final report for this habitat type. 

The CASI data will also be used to produce an unsupervised classification of vegetation types 
within the dune area.  This classification will be provided to English Nature ground staff to 
identify the classes within the classification.  The data from this ground survey will be used to 
fine-tune the classification.  The results of this classification will be included in the final 
report for this habitat type. 
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Appendix B. Instrumentation 

B1 LIDAR overview 

LIDAR (Light Detection and Ranging) is an airborne mapping technique which uses a laser to 
measure the distance between the aircraft and the ground. This technique results in the 
production of a cost-effective terrain map suitable for assessing flood risk. 

The aircraft is positioned and navigated using global positioning (GPS) corrected to known 
ground reference points.  

Figure B.1  Principle of operation of the LIDAR 

The aircraft flies at a height of about 800 metres above ground level and a scanning mirror 
allows a swathe width of about 600 metres to be surveyed during a flight (Figure B.1), with 
individual measurements made at 2 metre intervals. Highly accurate attitude data and post-
processed differential GPS enable the direction of the laser pulse and the position of the laser 
head to be accurately determined, allowing a highly resolved model of the terrain to be 
generated.  

The Agency’s Flood Defence function has a requirement under the Water Resources Act 1991 
to monitor the flood plain. LIDAR is being used to measure land topography and assess 
coastal erosion and geomorphology.  The Conservation function requires information on land 
being set aside for managed retreat of sea defences. There is also a need to obtain data for a 
model linking land use, soil type and the potential for erosion prediction. 

The National Centre has generated routines to allow for the removal of surface features from 
the data sets including vegetation and buildings. Products that can be generated from the 
LIDAR data include colour coded elevation models, height contour plots and three-
dimensional perspective views allowing easy visualisation of surveyed areas. 

B2 CASI overview 

The CASI (Compact Airborne Spectrographic Imager) is a passive sensor, which generates 
imagery by detecting visible and near infrared electromagnetic energy that is reflected from 
the earth’s surface.  CASI is designed to provide a flexible system which is easy to transport 
and straightforward to install and operate in small aircraft.  The system operates in a 
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‘pushbroom’ configuration, mapping out a swath that lies directly below the aircraft (Figure 
B.2).  By instantaneously imaging the full swath width at repetitive intervals, a full image is 
built up line by line.  

Figure B.2  Principle of operation of the CASI 

Imagery produced by the CASI consists of up to 512 pixels across the swath and the spatial 
resolution (area represented by one pixel) can be varied from ten metres down to less than a 
metre by adjusting the altitude of the aircraft and the CASI imaging lens.  The maximum 
operational altitude of the aircraft is 10,000 feet, restricting the maximum swath width to 
approximately 5.2 km.  If the area to be imaged is larger than the swath width available at the 
desired resolution, it is possible to obtain a number of adjacent flight lines and join these in 
order to generate a single large image, or mosaic. 

The CASI uses a Charge Coupled Device (CCD) detector to produce hyperspectral imagery 
which can comprise of up to 288 spectral bands (wavelengths), covering the electromagnetic 
spectrum from 430 nm (visible blue light) to 900 nm (near infra-red).  The number and width 
of wavelength channels recorded is flexible with more channels providing more detailed 
spectral profiles of the different ground cover types. 

The CASI has three operational modes, which are suited to different applications and should 
be selected according to the spatial and spectral resolution required of the data.  The 
operational modes are: 

Spatial mode: All 512 swath pixels are recorded in up to 19 wavebands.  The wavelengths 
covered by all the bands and the width of the bands are configurable. 
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Spectral mode: Data from all 288 bands are recorded from 39 pixels across the swath. 

Enhanced spectral mode: This flexible mode allows a compromise between spatial and 
spectral modes to be achieved.  The exact combination of pixels and bands that is achievable 
is determined by the amount of ambient light at the time of imaging. 

B3 Data analysis 

B3.1 Data preparation and accuracy 

In order for accurate reproducible information to be obtained from remote sensing data there 
has to be an understanding of the inaccuracies within the data. These inaccuracies then need to 
be reduced. The inaccuracies of the sensors used in this study are inherently different and the 
implications of these errors are therefore different. The inaccuracies in the LIDAR system are 
in the x, y z planes. The CASI system has inaccuracies in the x and y planes and caused by 
changes in the relative levels of lighting or the radiometric effects. 

B3.1.1 LIDAR accuracy 

The accuracy of the Environment Agency LIDAR system and the errors incurred when 
converting the LIDAR data to OSGB co-ordinates has been independently assessed 
(Ashkenazi, 1999). Errors are calculated using Root Mean Square addition and are not strictly 
additive.  The quoted error is ± one standard deviation which means that 66% of the values lie 
within the defined error bands. This complies with the standard practice for error calculation 
in surveying. 

Height accuracy of point measurements (z).   

The LIDAR system accuracy for a WGS84 product (including instrument errors, calibration 
errors and GPS errors) may be stated as ± 9 – 15 cm.

The accuracy after transformation to OSGB36 (inclusive of LIDAR system errors) may be 
stated as ± 11 – 25 cm.

Plan accuracy of point measurements (x,y) 

The LIDAR system accuracy for a WGS84 product (including instrument errors, calibration 
errors and GPS errors) may be stated as ± 40 cm.

The accuracy after transformation to OSGB36 (inclusive of LIDAR system errors) may be 
stated as ± 45 cm.
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B3.1.2 CASI Geometric accuracy

Figure C.1   Estimated Positional Standard Deviation   
(Estimates from GPS processing software) 
(Red: X, Green: Y, Blue: Z) 

The current CASI system uses high accuracy, high precision positional and attitude data to 
georeference imagery. Each time the CASI is inserted into the plane a calibration is carried 
out, to estimate positional and angular offsets between the CASI system and the navigation 
data. This is then applied at the georeferencing stage.  

The system uses differential GPS to provide the increased accuracy positional data. The 
positional accuracy of the GPS system is better than 5cm at 1 standard deviation (ie 66% of 
the data are within 5cm or better). This means that the positional errors caused by the GPS are 
less than 10 % of 1 pixel at 1m resolution. The GPS processing provides an indication of this 
error (Figure C.1). 

Tests have been made of the CASI system positional accuracy using a test site at Coventry 
airport. The results indicate that the RMSE (66% of the data are within 1 RMSE) is better than 
1.6m if the base station GPS is within 120km of the survey site and if topographic errors are 
ignored. As the positional data are so precise, it is likely that the GPS causes a small 
proportion of the error. The main errors are therefore likely to be in the calibration stage and 
the inertial measurement unit (IMU) that provides the attitude data. The calibration stage is 
only accurate to the nearest pixel and so errors of 50cm (in 1m resolution data) can result from 
this stage. 
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Figure C.2 Frequency of CASI positional errors for long baseline (120km)  

Figure C.3 Effect of topographic errors on CASI horizontal accuracy 
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However topographic errors need to be incorporated in any consideration of the CASI errors 
(Figure C.3). Topographic errors will be dependant on the accuracy of the digital elevation 
model (DEM) used and the terrain being surveyed. In areas in which the slopes are high the 
topographic errors will tend to be greater. Using the CASI system currently in operation at the 
Environment Agency, an error in the DEM of 1m will produce an x, y error of approximately 
26cm, at the edge of the imagery. In the sites being studied for this project, topographic errors 
will generally be relatively low, as most of the study sites are flat and even in the sand dune 
site a high accuracy LIDAR DEM was used in the geocorrection process. 

Radiometric normalisation 

The CASI data collected for this project consist of multiple flightlines gathered over time 
periods of up to 2 hours. Within this time period it is possible for the lighting and atmospheric 
conditions to change considerably, resulting in large variations in light levels on the ground. 
Even in relatively stable atmospheric and lighting conditions, the effects of lighting changes 
may severely reduce the accuracy of any land cover output (Figure C.4). 

There may also be variations due to the surfaces being viewed. For example wet mud will 
exhibit what is known as bi-directional reflectance. The amount of light reflected from the 
surface is dependant on the angle of the sun and the viewing angle (Figures C.5 and 4.6). Bi-
directional reflectance can have effects within a single image, resulting in changes within the 
imagery due to the angle that a surface is viewed from. These variations can result in a very 
large decrease in the accuracy of the classification.

These will result in variations within any given image and are very difficult to remove using 
conventional techniques. Therefore two types of variations within lighting need to be 
considered: 

�� Between image differences due to changes in lighting levels or atmospheric conditions 
�� Within image differences due to changes in lighting levels or bi-directional effects 

Figure C.4 Example mosaic showing differences in lighting between images
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Figure C.5 Bi-directional effects in remote sensing imagery 

In order to reduce the effects of changes in lighting and atmospheric conditions and minimise 
bi-directional effects, radiometric correction has to be carried out. The simplest form of 
radiometric correction normalises the imagery in order to reduce lighting differences. Errors 
in classification due to radiometric changes are minimised and the possibility of having to 
classify CASI flightlines individually, rather than as a mosaic, is avoided. 

There are numerous radiometric normalisation methods that are used in remote sensing. 
However, many are not practical for this form of study, as they require specialised equipment, 
fieldwork simultaneous to flights or sophisticated modelling. Three approaches were 
identified that are applicable to the imagery gathered in this study and have potential for 
operational use in airborne remote sensing studies: 

�� Edge matching 
�� Image ratioing 
�� On-board irradiance measurements 
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Figure C.6  Bi-directional effects in CASI imagery 
(Left hand edge of image: vegetation- high radiance, mud-low radiance 
 Right hand edge of image: vegetation- low radiance, mud-high radiance) 

Edge matching 

Edge matching is a relatively common approach when overlapping images are to be merged 
(ABP, 2000). In this method the relationship between the radiance values in the overlapping 
areas between images are used to compensate for differences in lighting.  

The technique can use specifically selected calibration areas where bi-directional effects are 
minimal (ie there is little directional reflection), or match the whole of the area of overlap. 
The use of calibration sites in a scene to calibrate imagery to reflectance or normalise images 
has been relatively common in remote sensing studies. Studies identify that care must be 
taken to select surfaces with wide ranges of reflectance, or the relationship obtained is liable 
to be skewed. Specifically selecting areas is time consuming and difficult especially where 
there are few areas that have the required surface characteristics, such as concrete and tarmac. 
This was the case in this study.  

The second approach where the whole of the overlap area is used is much easier, and the 
approach may be modified slightly to remove obvious problem areas. Areas that should be 
omitted include; mudflats, water with glint and woodland. This approach can work well when 
there is very little variation within the images due to bi-directional effects or clouds. 
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However, when the imagery has been flown over a wet surface or the flightlines are across the 
sun azimuth angle this approach may be unsuccessful. One major limitation is that small bi-
directional effects may result in a systematic error being introduced into the imagery (Figure 
C.7).

The most common reasons for a directional component to imagery are when images are flown 
at an offset to the solar azimuth angle, particularly when the surface being surveyed is wet. 
This limits the approach for intertidal habitat monitoring. Directional imagery is also common 
when the sun angle is low. 

Figure C.7 Effect of bi-directional lighting on edge matching techniques 
(using same imagery as Figure C.6) 

Image ratios 

The principle behind image ratios is that though there may be differences in the level of 
lighting, the relative light levels in different wavelengths remain relatively constant. This will 
not apply over long time periods as atmospheric conditions change, but the approach is a 
possible method of compensating lighting variations. This method also has the potential to 
reduce within image differences due to bi-directional effects. 

There are limitations with this approach, as the assumption that the relative lighting levels 
remain constant may not be met, especially if atmospheric changes occur. Another limitation 
of this approach is that information may be lost by the ratioing process, reducing the 
separability of classes and therefore reducing classification accuracy. The effectiveness of 
ratioing as a method of radiometrically correcting imagery is likely to be dependant on the 
habitats being examined. 
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Figure C.8 Radiance (a) and ratios (b) for intertidal classes showing bi-directional effects 
(W and E of Figure C.6) 

The ratioing method was tested by creating consecutive ratios (eg band 3 and band 4) for all 
the CASI bands. This results in a number of ratio layers equal to one minus the total number 
of bands (eg 14 data layers from the 15 band coastal bandset). Ratios were also generated 
using all combinations of blue, green, red and NIR, providing up to 6 more data layers 
depending on the bandset (Table C.1).  

A
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Table C1  Additional ratios based on colour combinations 

Coastal Bandset 
(15 bands) 

Vegetation Bandset 
(14 bands) 

Colour combinations 

Ratio No. CASI Band 
Combinations 

Ratio No. CASI Band 
Combinations 

Blue/Green 15 2/4 14 2/4 
Blue/Red 16 2/7 15 2/5 
Blue/Near Infrared 17 2/15 16 2/14 
Green/Red 18 4/7 17 4/5 

(all ready generated) 
Green/Near Infrared 19 4/15 18 4/14 
Red/Near Infrared 20 7/15 19 5/14 

Table C2  Grades and descriptions for ratioing 

Grade Description 
1 Mostly noise/little land cover information 
2 Noise greatly reducing usefulness of land cover information 
3 Noise reducing usefulness of land cover information 
4 Some noise 
5 Little or no noise 

The ratios were all inspected visually to ascertain whether they contained artefacts from 
lighting differences or noise. Each ratio was graded from 1 to 5 using a descriptive scale 
(Table C.2 and Figures C.9 and 4.10). Any ratios with a grade of less than 4 were not used in 
the classification.  

Figure C.9 Example of grade 2 ratio 
(Tollesbury 2001 data) 
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Figure C10 Example of grade 5 ratio 
(Tollesbury 2001 data) 

On board irradiance measurements 

The CASI system includes an incident light sensor (ILS) that provides a measure of irradiance 
at the level of the aircraft in the same wavebands as those viewing the ground. This has the 
potential to provide estimates of changes in light on the ground and therefore may be used to 
normalise imagery. The Geodata Institute at Southampton University has examined this 
method previously in 1999 and 2000 in a joint project between the Agency, Geodata and ABP 
for the English Nature Hampshire and Isle of Wight office in 1999-2000 (ABP, 2000). 
However, at the time the approach did not work, as it was not possible to accurately estimate 
the look direction of the ILS. Since that time the CASI has been integrated with the LIDAR 
allowing accurate attribute data to be obtained. This has enabled a robust method of 
estimating a sky radiance model from ILS data to be developed (Choi and Milton, 2001). The 
Agency commissioned Geodata to produce a software package that would normalise CASI 
imagery using ILS data. This software was delivered in 2002. The software has shown 
promise, but issues with calibrating the system have meant that the software has not been 
properly commissioned. 

Testing radiometric normalisation 

The most effective method of testing the various approaches to operational radiometric 
normalisation is to compare classification accuracy values. The results of these tests are in the 
classification section. 
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B4 Classification 

Classification is the process by which remotely sensed data are converted to thematic data 
layers generally representing land cover or land use. This process may be carried out by 
manual digitisation of the boundaries or using automated computer based methods.  

The manual approach has advantages in that it may be carried out on data where the lighting 
conditions vary and requires less specialist software than automated classification. The 
limitation with this approach is that it is time consuming and requires specialist knowledge of 
the habitats being classified. It is also not suited to habitats that are continuums (ie where the 
boundaries are not sharp), as drawing lines between land cover types will always be arbitrary. 

The automated approach to classification has limitations in that the remote sensed data need to 
be well radiometrically normalised and ground data are required for each classification. 
However, no specialist knowledge of the habitat is required by the person processing the data, 
automated approaches can be relatively quick and therefore cheaper than manual methods. 
This approach is also suitable for continuums.  

The supervised approach to classification involves three stages: 

1. Training 
2. Allocation 
3. Assessment 

The training process involves identifying pixels within the image that belong to the classes to 
be used in classification. The spectral characteristics of the pixel are then determined by the 
classification algorithm used.  

In the allocation stage the characteristics of each class as determined in the training process 
are used to allocate the most likely class to each pixel. 

The assessment stage determines the accuracy and therefore usefulness of the classification.
The accuracy of each classification can be derived using the tau coefficient, also known as the 
modified kappa (Foody 1992, Ma and Redmond 1995). Tau variance was used to estimate Z
scores and test for a significant increase in classification accuracy when testing for the most 
appropriate method of classification (Ma and Redmond 1995). 

This study will consider two main approaches to classification: 

�� Traditional statistical methods 
�� Neural networks.  

B4.1 Traditional classification 

The most common of the traditional parametric approaches to classification is maximum 
likelihood (ML) classifier (Campbell, 1996). The ML classifier provides an approach for 
classifying remotely sensed data that is relatively easy to understand and to carry out.  
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In the ML approach, mean vectors are generated for each class and the variances about these 
means are generated from training data. Probability density functions for all classes are then 
derived from these statistics. The probabilities of class membership are estimated for each 
pixel and the pixel is then allocated membership to the class that it has the greatest probability 
of membership to.  

If the data are normally distributed, this approach can produce high classification accuracies. 
The analyst does not have to set any parameters for the classification to run, just select 
suitable training data and classes. To an analyst who has a minimal amount of statistical 
knowledge, the ML classifier is relatively simple to understand and most image processing 
packages (e.g. ERDAS Imagine, ENVI, IDRISI) have an easy to use ML classifier. 

However, in the last ten to fifteen years, studies have shown that there are other non-
parametric classifiers that classify more accurately than the ML under certain conditions 
(Kanellopoulos et al., 1992; Peddle et al., 1994; Yool, 1998). 

The ML classifier assumes normal distribution of the spectral data (Campbell, 1981; 
Benediktsson et al., 1990). This is often not the case, especially when a class contains a 
number of different surfaces. For example, a woodland class may contain a variety of species, 
with mixtures of coniferous and deciduous species, resulting in multi-modal distributions. 

The ML classifier is also very sensitive to the form and quality of ground data. There should 
be enough sampling points to represent the full variety within each class. According to Swain 
(1978) the amount of training data required for the ML classifier is linked to the 
dimensionality of the data set being classified. The greater the number of dimensions, the 
larger the sample size of training points needs to be. Therefore, if the training set is too small 
ML classification accuracy may be reduced as the number of data layers is increased (Lee and 
Langrebe, 1993). According to the study by Swain (1978), the sample size for each class 
should be at least 30 times and preferably 100 times the number of dimensions. Carrying out a 
ML intertidal classification using the 15-band bandset recommended by Thomson et al.
(1998) and additional LIDAR data, it may be impractical to gather the required amount of 
training data for each class. 

If the training data do not incorporate the variation within the classes used, the accuracy of the 
classification may be reduced, even if the required numbers of pixels are used for each class 
(Campbell, 1981). In many cases, training data are sampled in blocks of contiguous pixels. As 
these pixels may exhibit autocorrelation, the class statistics (means, variances and 
covariances), may inadequately represent the classes, leading to a reduced classification 
accuracy (Campbell, 1981). A requirement for statistical classification approaches is that the 
training data need to be pure (Paola and Schowengerdt, 1995). However, in the case of 
intertidal vegetation this is very difficult, as certain species rarely exist in pure stands. This is 
particularly true of the mid and upper marsh species 

The use of data from multiple sources has the potential to reduce ML classification accuracy 
(Peddle et al., 1994). Data sources are not equally reliable or useful in discriminating between 
classes and the ML classifier does not have a mechanism for weighting data according to 
importance (Benediktsson et al., 1990). Thematic data, such as soil class, may have the 
potential to increase class discrimination, but as they are non-parametric, they should not be 
used in ML classification. If thematic data are used, they may result in reduced classification 
accuracy. 
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Though the ML classifier may be of use under certain conditions, in this study there are a 
number of factors that may make its use inappropriate. These include the use of relatively 
high dimensionality multisource data and small training data sets.  

B4.2 Neural networks 

Neural networks (NN) are the computing equivalent of a very simple biological brain. They 
provide a possible solution to a variety of problems in remote sensing including classification 
and biophysical property extraction. 

Neural network and statistical methods of classification are fundamentally different in 
approach. The non-parametric properties of neural networks mean that the underlying 
assumptions made for statistical classification, such as the data are normally distributed and 
data layers are not correlated do not need to be met.  

As well as being distribution free, neural networks are importance free (Zhou, 1999), meaning 
that the network will model the relative importance of the input data surfaces during the 
training process without requiring operator input. This characteristic is particularly critical 
when considering multisource data, as prior knowledge of the level of importance of data 
layers is not required. A neural network will set weightings to account for a data layer’s 
importance during the training process (Zhou, 1999). 

The most commonly used neural network in remote sensing is the multi-layer perception 
(MLP). The following sections offer a brief description of its characteristics. 

Structure of the Multi Layer Perceptron (MLP) 

The basic unit of the MLP is the node, which mimics a biological neurone. The node sums the 
inputs and performs a function on the summed input. The MLP consists of three types of 
layers; input, hidden and output (Figure C.11). The input layer has as many nodes as there are 
input data layers. There may be one or more hidden layers with the number of layers and 
nodes specified by the user. The output layer contains as many nodes as there are output 
classes. Every node in the hidden and output layers is connected to all nodes in the previous 
layer. As the signal passes between nodes it is modified by weights specific to each node-node 
connection 

Input signals are passed through the MLP, being modified by the weights associated with the 
connection between nodes and the functions of each node. The movement of input signals and 
their modification through the network from input to output is the ‘feed-forward’ stage of the 
MLP. The outputs of the MLP are activation levels at each output node. These activation 
levels may be linked to a biophysical property or land cover class. 
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Figure C11  Multi Layer Perceptron Neural Network

Training the MLP 

Training data are entered into the NN and the activation level of each of the output nodes is 
compared with the validation values, generally ground data, and an error function is 
calculated. A learning algorithm is applied that alters the weightings within the network to 
minimise the error. The whole process is then repeated until a specified number of iterations 
have taken place, or the error is minimised or reduced below a predetermined level.  

This process allows the network to ‘learn’ the characteristics of the training data set.  

The number of iterations used in training can strongly influence the accuracy of the final 
classification. If too few iterations are carried out, the network will not be able to model the 
full complexity of the data set. If too many iterations are carried out, the network may become 
very good at classifying the training data, but may be much poorer at classifying the main data 
set. This effect is known as over-training and results in a loss of the network’s ability to 
classify data it has not seen before. 

Network architecture  

The ability of a neural network to accurately classify data that are not used in the training 
process is known as generalisation. This is an important consideration when constructing and 
training the network. There are a number of factors that affect the ability of a network to 
generalise and therefore optimise classification accuracy. These include the architecture of the 
network, the training set and training time. 

The structure of a network can be crucial to its success as a classifier. Generally the larger the 
network the more accurate it is at classifying the training data (Kavzoglu and Mather, 1999),
but it may be less able to generalise. Subjectivity has been identified as an issue when setting 
up the structure, specifying the training parameters and the starting conditions of a neural 
network (Peddle et al., 1994). However, a study by Paola and Schowengerdt (1997) found that 
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the number of nodes in a single hidden layer could be varied a great deal with only minimal 
effects on classification accuracy. This would suggest that though there may be subjectivity in 
the determination of network architecture, this may have little effect on the final classification. 
However, this is likely to be data dependant and should be tested with each new habitat 
classified. 

There have been a variety of approaches for empirically determining MLP architecture 
(Hirose et al., 1991; Kavzoglu and Mather, 1999; Foody et al., 1995; Paola and 
Schowengerdt, 1997). Trials to determine the optimum network are a useful operational 
approach for determining network architecture. However, exactly the same training and 
accuracy assessment datasets should not be used as for the main study, as this may bias the 
final results creating the optimum network to classify the accuracy assessment dataset, rather 
than one that will classify general data well.  

Training data 

As with most classifiers, one critical factor in selecting training data is that they are 
representative of classes (Gong et al., 1996). Classification accuracy may be reduced if 
training data do not represent the variation within classes. Neural networks are more likely to 
misclassify pixels that are not similar to those in the training samples (Benediktsson et al.,
1990). Unlike statistical approaches, neural networks are able to cope with mixed pixels in 
training data (Paola and Schowengerdt, 1995). Indeed when training pixels from border 
regions are used, neural network classification accuracy may be increased compared with 
training using pure pixels (Foody, 1999). 

A study by Arora and Foody (1997) found that classification accuracy using a neural network 
related to training set size and waveband combination. 

MLP outputs  

The MLP provides an activation level for every output class of each pixel. In a hard 
classification the pixel is allocated the class with the highest activation level. However, the 
activation levels for all classes may be used to provide additional information for each pixel. 
Output activation levels have been used to provide estimates of the probability that a given 
pixel is correctly classified.  

B4.3 Classifier summary 

Statistical approaches have traditionally been used in remote sensing and are well 
documented. Most commercially available image processing packages offer this form of 
classifier. In many cases these approaches work well. However, there are a number of 
limitations to this approach and so other techniques are being assessed, in order to maximise 
the potential for accurate classification of coastal habitats.  

The MLP neural network is a non-parametric classification method that complements the aims 
of this study as it can provide high accuracy classifications using high dimensionality, 
multisource data with complex distributions. As well as providing classifications, additional 
data may be derived from neural networks that may be used to provide indications of correct 
classification on a per-pixel basis. Neural networks are simple artificial intelligence systems 
and have been shown by a number of studies to provide accurate classifications of a variety of 
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habitats. In recent years neural network systems suitable for classifying remotely sensed data 
have become commercially available, making this more than just an academic approach to 
classification. The operational use of neural networks for classification is being examined 
within this project. 

B4.4 Classification uncertainty and probability of error 

As use of remote sensing increases, there has been an increase in the realisation that 
estimations of error are an important part of remote sensing studies, both for a whole study 
area and at the pixel or local level. A global measure may provide estimations of the overall 
classification error, but it does not indicate where those errors are occurring. The error at the 
pixel level, or the uncertainty associated with correct categorical allocation has recently 
generated considerable academic interest (Ediriwickrema and Khorram, 1997; de Bruin and 
Gorte, 2000; McIver and Friedl, 2001). 

One aim of this study is to provide a method of classification that is appropriate for 
monitoring change in coastal habitats. If pixel level categorical uncertainty is not accounted 
for, classification errors have the potential to be magnified in the change detection process. 
Per-pixel thematic uncertainty measures would allow probabilities of change to be derived, 
increasing informational content of the change surface and its usefulness for reporting and 
management purposes. They may also be used to increase the accuracy of estimates of habitat 
area. Normalised MLP activation levels have been used as indicators of membership on a per-
pixel basis, where a pixel with a high normalised activation is assumed to have a high 
probability of correct class allocation (Gong et al. 1996).

B4.5 Testing classification accuracy 

In order to compare classifications, accuracy measures were required. Comparisons of 
classifiers are generally carried out using a global accuracy measure. Of the two global 
accuracy measures most commonly used in remote sensing, the overall accuracy (Po;
proportion of correctly classified pixels) fails to take into account the correct allocation of 
pixels by chance and kappa overestimates chance agreement and therefore underestimates 
accuracy (Foody 1992, Ma and Redmond 1995). The accuracy of each classification was 
therefore derived using the modified kappa or tau coefficient, which considers correct 
allocation of pixels by chance, but does not overestimate chance agreement (Foody 1992, Ma 
and Redmond 1995). 

Tau variance (Ma and Redmond 1995) was used to estimate Z scores and test for significant 
differences in classification accuracy. 
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Table C1 Example confusion matrix 

Ground Data    

Classes A B C D Correct Total User's 
Accuracy 

A 54 3 3 3 54 63 0.86 

Classified B 5 20 2 1 20 28 0.71 

Data C 2 1 65 2 65 70 0.93 

D 0 0 5 11 11 16 0.69 

Correct 54 20 65 11    

Total 61 24 75 17    

Producer's 
Accuracy 0.89 0.83 0.87 0.65    

Other methods of providing measures of accuracy may be used that further describe the 
classification. The confusion matrix may be used to provide indications of what 
misclassifications occur within the data (Table 5.1). The confusion matrix may be used to 
show how classes are misclassified and provide overall indications of the class accuracy. The 
matrix may be used to determine the suitability of the final classification for the purpose for 
which it is required.  





107

Appendix C. Band ratios used in study 
Table D1 Ratioing for Tollesbury Data 

CASI Band Central wavelength (nm) Information content relative to noise 
content of ratio 

(1 = low, 5=high) 
A B A B 2000 2001 
1 2 443 490 2 2 
2 3 490 512 1 3 
3 4 512 555 1 2 
4 5 555 600 5 5 
5 6 600 626 5 4 
6 7 626 663 5 5 
7 8 663 673 3 1 
8 9 673 684 2 5 
9 10 684 692 5 5 

10 11 692 703 5 5 
11 12 703 712 5 5 
12 13 712 751 5 5 
13 14 751 857 1 1 
14 15 857 881 1 1 
2 4 490 555 1 2 
2 7 490 663 5 2 
2 15 490 881 5 3 
4 7 555 663 5 4 
4 15 555 881 5 2 
7 15 663 881 5 3 

Table D2 Original ratioing for Ainsdale Data 

CASI Band Central wavelength (nm) 
A B A B 

Information content relative to noise 
content of ratio 

(1 = low, 5=high) 
1 2 445 471 2 
2 3 471 490 2 
3 4 490 550 5 
4 5 550 671 5 
5 6 671 682 1 
6 7 682 701 5 
7 8 701 710 4 
8 9 710 720 4 
9 10 720 750 3 
10 11 750 762 1 
11 12 762 780 1 
12 13 780 860 1 
13 14 860 880 1 
2 4 471 550 3 
2 7 471 701 3 
2 14 471 880 3 
4 7 550 701 2 
4 14 550 880 3 
7 14 701 880 4 
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Table D3 Final ratioing for Ainsdale data 

CASI Band Central wavelength (nm) Information content relative to noise 
content of ratio 

(1 = low, 5=high) 
A B A B 2001 
4 5 550 671 5 
5 6 671 682 4 
6 7 682 701 5 
8 9 710 720 5 
9 10 720 750 5 

10 11 750 762 5 
11 12 762 780 5 
12 13 780 860 5 
4 7 550 701 4 
4 9 550 720 4 
9 11 720 762 5 
9 14 720 880 5 

Table D4 Ratioing for Budle Bay Data 

CASI Band Central wavelength (nm) 
A B A B 

Information content relative to noise 
content of ratio 

(1 = low, 5=high) 
1 2 443 490 2 
2 3 490 512 3 
3 4 512 555 5 
4 5 555 600 5 
5 6 600 626 4 
6 7 626 663 4 
7 8 663 673 3 
8 9 673 684 1 
9 10 684 692 5 

10 11 692 703 5 
11 12 703 712 5 
12 13 712 751 5 
13 14 751 857 3 
14 15 857 881 3 
2 4 490 555 5 
2 7 490 663 3 
2 15 490 881 5 
4 7 555 663 3 
4 15 555 881 5 
7 15 663 881 5 
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Appendix D. Kernel for determining shingle 
ridge height 

Kernel used in determining maximum height of Blakeney shingle ridge along it’s length. 
Actual kernel used was 35 (x) by 135 (y). Red line indicates approximate bearing of ridge. 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix E. Data layers supplied with this 
project

Ainsdale Blakeney Budle Bay Rye Tollesbury 
CASI JPEGs Y Y Y Y Y 
Digital photography Y Y Y Y Y 
LIDAR JPEGs Y Y Y Y Y 
LIDAR ASCII Y Y Y Y Y 
Classifications Y N Y Y Y 
Lagoon areas N Y N N N 
Morphological change 
polygons 

Y Y N Y N 

Morphological change 
spreadsheets 

Y Y N Y N 
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