A1 Proposed Motorway Service Area Crowhurst Lane, West Kingsdown, Kent Agricultural Land Classification Report February 1996

.

Resource Planning Team Guildford Statutory Group ADAS Reading

.

ADAS Reference: 2009/013/96 MAFF Reference: EL 20/1258 LUPU Commission: 02375

AGRICULTURAL LAND CLASSIFICATION REPORT

PROPOSED MOTORWAY SERVICE AREA, CROWHURST LANE, WEST KINGSDOWN, KENT

Introduction

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 51.4 ha of land at West Kingsdown, Kent. The survey was carried out in February 1996.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit (Reading) in connection with proposals to construct a motorway service area. The site was previously surveyed, as part of a larger area, in March and April 1981 (ADAS Ref 2009/028/81). Since the 1981 survey, MAFF has updated the ALC system (MAFF, 1988) and consequently a new survey was undertaken using the revised 1988 guidelines. This 1996 survey therefore supersedes the previous ALC survey on this land.

3. The work was conducted by the Resource Planning Team in the Guildford Statutory Group in ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix 1.

4. At the time of survey the land on the site was mainly rough grass and scrub. The scrub areas are most extensive and dense to the south west of the motorway, coinciding with the site of a former orchard which is understood to have been cleared in the late 1970's. Although scrub encroachment is evident over the rough grazing elsewhere on the site, this typically comprises small bushes which are very sporadically scattered. Exceptions occur to the immediate northwest of the site of Kingsdown House where a few blocks of dense scrub were noted in otherwise open grassland. Small areas of woodland also occur, principally to the north of the site.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10 000 it is accurate at this scale but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
3a	3.4	6.6	11.0
3b	27,4	53.3	89.0
Other land	20.6	40.1	•
Total surveyed area	30.8	59.9	100
Total site area	51,4	100	-

Table 1: Area of grades and other land

7. The fieldwork was conducted at an average density of one auger boring per hectare in the surveyed area. A total of 34 borings and 2 soil pits were described.

8. The majority of the surveyed land on the site is graded subgrade 3b (moderate quality land). Typical soil profiles are mainly imperfectly drained (wetness class III) and comprise soils having moderately stony (flinty) topsoils The principal limitation is due to high topsoil stone content which acts as an impediment to cultivation, harvesting and crop growth, as well as increasing soil droughtiness. Some heavier soil variants are also limited by wetness and workability constraints. Where the topsoil stone content is lower, similar imperfectly drained soils which lie to the south west of the site, are graded subgrade 3a (good quality land).

Factors Influencing ALC Grade

Climate

10. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

11. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Table 2: Climatic and altitude data

Factor	Units	Values		
Grid reference	N/A	TQ583 639		
Altitude	m, AOD	150		
Accumulated Temperature	day°C	1336		
Average Annual Rainfall	mm	707		
Field Capacity Days	days	145		
Moisture Deficit, Wheat	mm	100		
Moisture Deficit, Potatoes	mm	90		

12. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

13. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

14. The combination of rainfall and temperature at this site result in a climatic grade of 1. This means that climatic factors *per se* constitute no limitation to agricultural use. However, when climatic factors are considered together with soil factors an interactive limitation can occur. At this site the interaction of the climatic variable field capacity days with the soil variables wetness class and topsoil texture, results in a wetness/workability limitation which is more full described in paragraph 23.

Site

15. The site occupies a gently sloping north-south orientated ridge of land which straddles the M20 immediately east of Brands Hatch. From a high point of 160 m AOD at the southern tip of the site, the land falls very gently in a north and northeasterly direction, to a minimum altitude of 130 metres AOD in the extreme northeast. Over much of the site gradients are gentle (1-2°) with the steepest slopes (3-4°) being recorded south of The Kennels, as land falls eastwards towards Crowhurst Lane.

16. In the southern half of the site some minor surface disturbance was evident at the time of survey. This is believed to be a result of the orchard clearance and does not constitute a significant limitation to land use.

17. Fly tipping had also occurred on the site. This was most evident to the northeast of the motorway where several quite large mounds of soil and building debris were located, together with piles of gardening waste and household paraphernalia. Some minor fly tipping of household waste was also noted to the south west of the motorway, where occasional lumps of concrete and brick were also evident sporadically on the surface. At neither location was the fly tipping sufficiently extensive or severe to constitute an overriding limitation to land use.

Geology and Soils

18. The geology of this area is mapped in the 1:50,000 drift edition geology map sheet 271 (Dartford). This shows the majority of the site to comprise of clay with flints overlying Upper Chalk. A small area of Upper Chalk is shown as being exposed in the northwest corner of the site (BGS, 1977).

19. No detailed soil map is available for this area. The generalised 1:250 000 scale soil map of South East England shows the Batcombe Association occurring over the majority of the site with a small area of Andover Association mapped in the northwest corner (SSEW, 1983).

20. Field survey observations largely confirm these findings identifying Batcombe Association soils, developed from clay with flints over most of the site. In some locations, the clay is overlain by thin deposits of a brickearth-like drift.

Agricultural Land Classification

21. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.

22. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III.

Subgrade 3a

23. This occurs in the south of the site. Typical profiles comprise slightly stony medium silty clay loam topsoils over slightly or moderately stony silty clay loam subsoils, which in turn overlie variably stony slowly permeable clay below 40/45 cm depth. Occasionally the clay subsoil is encountered immediately beneath the topsoil. These profiles are usually either ungleyed or only slightly gleyed in upper horizons, and are consequently mainly assessed as wetness class III, or occasionally, wetness class II where the clay occurs at greater depth (Definitions of soil wetness class are contained in Appendix II). Soil pit 2 is typical of land mapped as subgrade 3a.

24. Land of this type is mainly limited by stoniness and/or wetness constraints. The main effect of stones are to act as an impediment to cultivation, harvesting and crop growth and to cause a reduction in the available water capacity of the soil. (It should be noted that particularly stony soil variants may also be excluded from a higher grade by droughtiness constraints). Soil wetness influences the sensitivity of the soil to structural damage and is therefore a major factor in determining the number of days when the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock.

Subgrade 3b

25. This occurs extensively elsewhere on site. Typical profiles comprise moderately stony medium or occasionally heavy silty clay loam topsoils which usually directly overlie variably stony slowly permeable clay between 25-30 cm depth. Occasionally a shallow upper subsoil of silty clay loam texture is also present. Soil pit observations confirm that these soils are typically only slightly gleyed in upper horizons and are therefore mainly assessed as wetness class III. Due to the higher topsoil stone content, the majority of this land is limited by moderately severe stoniness constraints. Occasional auger borings with heavy clay loam topsoils are also limited by wetness/workability imperfections. Soil pit 1 is typical of land graded subgrade 3b.

K A Jewson J A Holloway Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCE OF REFERENCE

British Geological Survey (1977) Sheet No. 271, (Dartford). BGS: London

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils and their Use in South East England SSEW: Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹								
I.	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²								
Π	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.								
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.								
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.								
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.								
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.								

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR: Barley
CER:	Cereals	OAT:	Oats	MZE: Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA: Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD: Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW: Fallow
PGR:	Permanent Pastur	LEY:	Ley Grass	RGR: Rough Grazing
SCR:		Scrub	CFW:	Coniferous Woodland
DCW:	Deciduous Wood			
HTH:	Heathland	BOG:	Bog or Marsh	FLW: Fallow
PLO:	Ploughed	SAS:	Set aside	OTH: Other
HRT:	Horticultural Crop)S		

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL:Microrelief limitationFLOOD:Flood riskEROSN:Soil erosion riskEXP:Exposure limitationFROST:Frost proneDIST:Disturbed landCHEM:Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC:	Overall Climate	AE :	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
ST:	Topsoil Stonines	SS			_

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations.

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL :	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- **F**: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. **MOTTLE CONT:** Mottle contrast
 - F: faint indistinct mottles, evident only on close inspection
 - **D**: distinct mottles are readily seen
 - **P**: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. **STONE LITH**: Stone Lithology One of the following is used.

HR:	all hard rocks and stones	SLST:	soft oolitic or dolimitic limestone
CH:	chalk	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	GH:	gravel with non-porous (hard) stones
MSST:	soft, medium grained sandston	GS:	gravel with porous (soft) stones
SI:	soft weathered igneous/metamo	orphic ro	ck

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

<u>degree of development</u>	WK: weakly developed ST: strongly developed	MD: moderately developed
<u>ped size</u>	F: fine C: coarse	M: medium VC: very coarse
<u>ped shape</u>	S: single grain GR: granular SAB: sub-angular blocky PL: platy	M: massive AB: angular blocky PR: prismatic

9. **CONSIST**: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extre	mely firm	EH: extremel	y hard	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name :	: CROWHUI	rst la msa,	, KENT	Pit Number	: 1	Ρ						
Grid Referi	ence: TQ	58206410	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ty Level	: 1336 degree days							
HORIZON . 0-20	Texture MZCL	COLOUR 75yr42 00	STONES >2	TOT.STONE	LITH HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC		
20- 35	C	75YR54 00		27	HR	С	WKMAB	FM	Р			
35- 60	C	05YR54 00		27	HR	M	WKCAB	VF	Ρ			
Wetness Gra	ade : 3A		Wetness Clas Gleying SPL		cm							
Drought Gra	ade : 3B		APW : 63 mm. APP : 68 mm.	мвн : -3 мвр ; -2								
FINAL ALC G	RADE : 3	B										

MAIN LIMITATION : Topsoil Stoniness

.

Į

SOIL PIT DESCRIPTION

Site Name	e : Crowhu	RST LA MSA,	KENT	Pit Number	: :	2P						
Gr1d Refe	erence: TQ		Land Use									
HORIZON	TEXTURE	COLOUR	stones >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC		
0- 20	MZCL	10YR42 00	8	10	. HR							
20- 35	HZCL	10YR54 00	0	25	HR		WKMSAB	FR	G			
35- 50	С	10YR56 00	0	15	HR	С	WKCAB	FM	Р			
50- 75	С	75YR43 00	0	12	HR	M	MDCAB	FM	Р			
Wetness G	irade : 3A		Wetness Clas									
			Gleying	:050	cm							
			SPL	:035	cm							
Drought G	irade : 3A		APW : 91 mm	MBW : -	9 mm							
			APP: 98 mm	MBP :	8 mm							
FINAL ALC	GRADE : :	34										

.

MAIN LIMITATION : Wetness

3

SAMP	LE	A	SPECT				WETI	NESS	-MH	IEAT-	-PC	ITS-	M. F	REL	EROSN	FRO	DST	CHEM	ALC	
NO.	GRID REF	USE		GRONT	GLE	/ SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ε	XP	DIST	LIMIT		COMMENTS
_																				
1	TQ58306450			01			2	2	76	-24		-14	3B					ST	38	SEE 1P
	TQ58206410			02		020	3	3A	63	-37		-22	38					ST	38	
	TQ58106370			01	050		3	3A	91	-9		8	3A					WE	34	SL GLEYED 35CM
6	TQ58406440		W	01		030	3	3A	73	-27		-9	3B					ST	38	SL GLEYED 30CM
7	TQ58506440	RGR	W	01		055	2	2	90	-10	96	6	3A					ST	3A	SL GLEYED 550M
10	T058806440	000	-	02		027	3	20	75	-25	00	-10	3B					ST	20	
10	TQ58806440 TQ58406430		K W	02		030	3	3B 3A	43	-25		-47	4					ST	38 38	SL GLEYED 270M SL GLEYED 300M
12 13	TQ58506430		H	01		025	3	38	43 57	-43		-33						ST	38	WE/SLGLEY 250M
14	TQ58606430		E	01	040		3	3A	77	-23		6	3B					ST	38	
_ 15	TQ58706430		E	01	045	-	3	34	81	-19		ō	3A					ST	38	
	1400700400		-	•••			•		0.		20	•						0.		
16	TQ58806430	PGR	E	02		027	3	3B	75	-25	80	-10	3B					ST	3B	WE/SLGLEY 2704
18	TQ58406420				025		3	38	68	-32	68	-22	3B					ST	38	AND WETNESS
19	TQ58506420	RGR	W	01	000		2	3A	80	-20	80	-10	3A					ST	38	TSST AS AB 20
20	TQ58606420	RGR	Ε	01	000		2	2	66	-34	66	-24	3B					ST	38	
21	TQ58706420	RGR	Ε	02	000		2	2	73	-27	73	-17	3B					ST	38	
22	TQ58806420			03	000		3	3A	51	-49	51	-39	38					ST	38	
23	TQ58206410			02		020	3	3A	59	-41		-31	38					ST	38	SL GLEYED 2004
25	TQ58506410						3	3B	40	-60		-50	4					ST		TSSTAS26
26	TQ58606410			01		025	3	38	66 50	-34		-21	38					ST		WE/SLGLEY 500M
27	TQ58706410	RGR	E	02		030	3	38	58	-42	58	-32	38					ST	38	WE/SLGLEY 30CM
28	TQ58206400	000	u	02		023	3	3A	43	-57	43	-47						ST	38	SL GLEY 23+
28	TQ58306400			ΨZ		025	3	38	43 56	-44		-34	38					ST	38	SL GLEY 25+
30	TQ58506400			01		040	3	38	79	-21		-4	38					ST		WE/SLGLEY 400M
31	TQ58606400			02		025	3	3A	90	-10		6	3A					ST	38	MN25+SLGLEY 70
32	TQ58106390			02			3	3A	61	-39		-29	38					ST	38	SL GLEYED 30CM
	•••••																			
33	TQ58206390	RGR	W	01	045	045		3A	74	-26	74	-16	3B					ST	38	
34	TQ58306390	RGR	W		023	023		38	36	-64	36	-54	4					ST	38	TSSTAS33/WE
35	TQ58406390	RGR	W				3	38	44	-56	44	-46	4					ST	38	TSSTAS41
37	TQ58606390	RGR	N	02	000		3	38	47	-53	47	-43	4					ST	3B	TSSTAS31
39	TQ58206380	RGR	M	01		030	3	3A	68	-32	68	-22	3B					ST	38	SL GLEYED 300M
41	TQ58406380					025	3	3A	50	-50		-40	3B					-	3B	SL GLEYED 2504
42	TQ58606380				060		2	2	103		115	25	3A						2	WE/TS AS 2P
43	TQ58106370			02		040	3	3A	71	-29		-19	3B					ST		WE/SLGLEY 400M
47	TQ58106360					025	3	3A	63	-37		-27	38							WE/SLGLEY 250M
48	TQ58206360	RGR	M			028	3	3A	66	-34	00	-24	38					ST	3A	SL GLEY 28+
F1	1050105350	000	LL			040		24	79	-22	70	-12	78					ет	24	
51 52	TQ58106350 TQ58206350				030		3	3a 3a	78 57	-22 -43		-33								WE/SLGLEY 400M WE/SL GLEY 30+
52	1430400330	RUR	м		0.00	0.00	5		37	-43	57	-33	30					31	34	AL/OL ALLI JUT

page 1

page 1

•					MOTTLES		PED			S	TONES		STRUCT	/	SUB	s			
SAMPL	E DEPTH	I TEXTURE	COLOUR														IMP	SPL CALC	
-																			
			10YR42 00								HR	26							RIDDLED TS
	30-50) hzcl	75YR43 00						0	0	HR	22			G				IMP 50CM
- ,	n 0.20		757043 00						25	<u>د</u>	HR	26							
•	P 0-20 20-35		75YR42 00 75YR54 00	10705	6 00 C			s	23			26 27	WKMAB	FM	D	Y		Y	
	35-60		05YR54 00 0					S			HR		WKCAB					Ŷ	
-	33-00		0311(34 00 1	Jorko	0 00 11			Ũ	Ŭ	Ŭ	TIK	51	nnund	••	•	•		•	
2	P 0-20) mzcl	10YR42 00						8	3	HR	10							
	20-35	5 hzc1	10YR54 00						0	0	HR	25	WKMSAB	FR	G				
-	35-50) c	10YR56 00	75YR4	6 00 C	1	OYR65	00 S	0	0	HR	15	WKCAB	FM	₽			Ŷ	
-	50-75	5 c	75YR43 00 2	25YR5	8 00 M	7	5YR64	00 Y	0	0	HR	12	MDCAB	FM	Ρ			Y	
6			75YR42 00						23	9	HR	24							RIDDLED TS
-	30-65	j c	10YR46 00 1	10YR5	6 00 C			S	0	0	HR	15			Ρ			Y	IMP 65CM
Ι.	0.00								10			••							
7			10YR42 00								HR HR	14 23			G				RIDDLED TS
_	30-55 55-60		10YR54 00 75YR66 00 1	10704	6 00 C			¢	0			23 20			P			Y	IMP 600M
	35-00) C	731100 00	IVIR4	0 00 C			5	U	Ŭ	rik.	20			r			T	THE DOCH
10	0-27	hzcl	75YR42 00						22	0	HR	23							
_	27-60		75YR54 00		С			s	0			7			Ρ			Y	COMMON MN CONCS
12	0-30	mzcl	10YR42 00						27	11	HR	28							IMP 31CM
	30-31	с	75YR44 00					S	0	0		0			Ρ			Y	
13			10YR42 00							6		25							
	25-45	с	75YR56 00 1	OYR5	500C			S	0	0	HR	20			Ρ			Y	IMP 450M
	0.05	. .	754040 00						24	10		A 5							
14	0-25 25-40		75YR42 00 75YR54 00 0						24	0		25 23			Ρ			Y	RIDDLED TS
	40-75		10YR56 00 0			1	0YR56	nn v	0			23 17			P			Y	
	40-75			J I K T		•	VINJU		Ŭ	Ŭ		.,			•			•	
15	0-25	mzcl	75YR42 00						17	0	HR	18							
_		hzcl	75YR54 00								HR	20			G				
	30-45		75YR56 00 0)5YR5(500C			S	0	0	HR	20			Ρ			Y	
	4570	с	75YR56 00 0)5YR5	5 00 M	1	OYR64	00 Y	0	0	HR	20			Ρ			Y	
-																			
16	-		75YR42 00								HR	23							
	27-60	с	75YR54 00			1	OYR54	00 S	0	0	KR	7			Ρ			Y	IMP 60CM
												_							
18			75YR42 00					_		0		0			_				
	25-45	c	75YR56 00					S	0	0	HR	23			Ρ			Y	IMP 450M - FLIMTS
19	0-25	hzcl	75YR42 00						27	11	HP	28							
-	25-50		75YR54 00									20 15			G				IMP SOCH
	£3−30	TIZET							Ŭ	Ŭ		.5			-				
20	0-30	mzc]	75YR42 00						27	11	HR	28							RIDDLED TS
_	30-45		75YR43 00									23			G				

.

page 2

					-MOTTLES	5 -	PED			s	TONE	S	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN								CONSIST		IMP SPL	CALC	
								•									
21	0-25	mzc]	75YR42 00						17	0	HR	18					
	25-45	mzc)	75YR43 00						0	0	HR	20		G			
_ 22	0-30	mze]	75YR42 00						33	0	HR	35					
	30-40	hzc]	75YR54 00						0	0	HR	23		M			
23	0-20	mzc]	75YR42 00						25	5	HR	26					RIDDLED TS
	20-50	с	75YR66 00	10YR5	6 00 C			s	0	0	HR	23		Р	Y		IMP 500M
25	0-28	hze]	75YR42 00						25	0	HR	26					IMP 280M - FLINTS
26	0-25	hze1	75YR42 00						25	0	HR	26					
-	25-50	c	75YR54 00	10YR5	6 00 F				0	0	HR	17		Р	Y		
-	50-55	¢	75YR55 00	05YR4	600C			S	0	0	HR	17		Ρ	Y		IMP 55CM
27	0-30	hze]	10YR42 00						17	0	HR	18					
_	30-40	С	75YR54 00	05YR5	4 00 C			S	0	0	HR	20		Р	Y		IMP 400M
28	0-23	mzc]	75YR42 00					_	25			26		_			
	23-33	C	75YR54 00	75YR5	6 00 C			S	0	0	HR	23		P	Y		IMP 330M
										-							
29	0-25	hzc]	75YR42 00	10/05	c			_			HR	26		-			
-	25-45	с	75YR54 00	10485	6 00 C			S	0	0	HR	23		Р	Y		IMP 45CM
30	0.25	h-41	751040.00						10	F	un	10					
30	0-25 25-40	hze] hze]	75YR42 00 75YR54 00						18		HR	18 23		м			RIDDLED TS
-	20-40 40-65	C	75YR54 00	75705	5 56 0			s	0			20		M P	Y		IMP 65CM
-	40 -03	C	731630 00	73183	5 30 0			3	Ŭ	Ű	rus	20		F	'		
31	0-25	mze]	75YR42 00						17	0	HR	18					
	25-50	c	75YR54 00								HR	17		Р	Y		
_	50-70	mzc]	75YR53 00								HR	15		M			Q SPL
	70-80	с	75YR54 00	10YR5	6- C			S	0			10		Ρ	Y		SL GLEYED 7004+
5																	
32	0-30	mze]	75YR42 00						17	0	HR	23				Y	RIDDLED TS
	30-40	mze]	75YR54 00	75YR4	6 00 C			S	0	0	HR	23		G		Y	IMP 40CM
33	0-25	mze]	75YR42 00						23	10	HR	24					
	25-30	mzel	10YR54 00						0	0	HR	23		G			
	30-45	hzel	75YR54 00						0	0	KR	25		G			
-	45-50	c	75YR54 00	10YR5	6 00 C			S	0	0	HR	20		Р	Ŷ		IMP 50CM
-		_										_					
34	0-23	hzc]	75YR42 00						23			24		_			
	23-25	c	75YR56 00					S	0	0	HR	23		P	Ŷ		IMP 250M FLINTS
— 25	0.30	h-a3	100040 00	30404	c				25			25					THE 2004 CI THEE
35	0-30	hzel	10YR42 00	/51K4	0 UU C				25	12	нк	25					IMP 300M FLINTS
37	0-30	hzc]	10YR42 00						17	0	ΗР	18					IMP 300M - FLINTS
	0-50		101142 00							0	7117	10					THE DOOL - CETHIO

COMPLETE LIST OF PROFILES 18/04/96 CROWHURST LA MSA, KENT

----STONES---- STRUCT/ SUBS ---- MOTTLES----- PED AMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL, GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 75YR42 00 24 12 HR 25 39 0-25 mzcl RIDDLED TS 25-30 hzc1 75YR54 00 10YR56 00 F OOHR 23 G 30–40 c 75YR54 00 10YR56 00 M S 0 0 HR 12 Ρ ¥ Ρ 75YR66 00 05YR56 00 M Y 40--50 c S 0 0 HR 12 IMP 45CM 0-25 mzc1 41 75YR42 00 25 12 HR 25 RIDDLED TS P 25–38 с 10YR56 00 10YR58 00 C S O O HR 23 Y IMP 38CM - FLINTS 0-20 mzc1 42 75YR42 00 8 8 HR 10 20-30 hzc1 75YR43 00 0 0 HR 17 G 30-60 hzc1 75YR44 00 0 0 HR 17 G 60-70 zc 75YR54 00 75YR56 00 C S 0 0 HR 17 Ρ Y 43 0-20 10YR42 00 15 6 HR 15 RIDDLED TS mzc1 10YR54 00 0 0 HR 20-40 hzc1 23 G 40–45 c 75YR54 00 10YR56 00 C S 0 0 HR 23 Ρ Y IMP 450M 0-20 mzc1 75YR42 00 14 5 HR 14 47 20-25 hzc1 75YR43 00 0 0 HR 17 G S O O HR 75YR54 00 10YR56 00 C IMP 450M - FLINTS 25–45 с 20 Ρ Y 10YR43 00 15 6 HR 15 48 0-20 mzc1 10YR44 00 20-28 hzc1 0 0 HR 17 Μ 28-47 с 75YR54 00 75YR56 00 C S 0 0 HR 10 Ρ Y IMP 47CM 0-15 mzcl 10YR42 00 15 O HR 51 RIDDLED TS 15 10YR43 00 15-40 mzc1 O O HR 20 G S 0 0 HR 40-50 c 75YR54 00 75YR56 00 M 20 Ρ Y IMP 50CM 52 0-20 mzc1 10YR42 00 15 0 HR 15 10YR54 00 20-30 hzc1 0 0 HR 20 M 75YR54 00 10YR56 00 C 30-40 c S 0 0 HR 17 Ρ Y IMP 400M - FLINTS

page 3