A1

Fareham Borough Local Plan Land east of Newgate Lane, Woodcot, Gosport, Hampshire.

Agricultural Land Classification ALC Map and Report

September 1997

Resource Planning Team Eastern Region FRCA Reading
 RPT Job Number:
 1504/110/97

 FRCA Reference:
 EL 15/00967

AGRICULTURAL LAND CLASSIFICATION REPORT

FAREHAM BOROUGH LOCAL PLAN LAND EAST OF NEWGATE LANE, WOODCOT, GOSPORT, HAMPSHIRE.

INTRODUCTION

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 52.5 ha of land located to the east of Newgate Lane, Woodcot, near Gosport in Hampshire. The survey was carried out during September 1997.

2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with the Fareham Borough Local Plan. The majority of this site was previously surveyed by the Resource Planning Team in September 1985 as job number 1504/034/85. This survey supersedes this and any other previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Eastern Region of the FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey land use on the site comprised permanent grassland being used to graze horses and set-aside. The areas mapped as 'Other land' include playing fields, dwellings, farm buildings and a church.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Grade/Other land	Area (hectares)	% surveyed area	% site area
3a	18.4	49.1	35.0
3b	19.1	50.9	36.4
Other land	15.0	N/A	28.6
Total surveyed area	37.5	100	71.4
Total site area	52.5	-	100

Table 1: Area of grades and other land

¹ FRCA is an executive agency of MAFF and the Welsh Office

7. The fieldwork was conducted at an average density of slightly more than 1 boring per hectare of agricultural land. A total of 43 borings and 5 soil pits were described.

8. The agricultural land on this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality). The principal limitations to land quality include soil wetness and soil droughtiness.

9. Across the majority of the site the land is principally limited by soil wetness. The soils comprise silty topsoils and upper subsoils overlying heavier silty lower subsoils. These heavier subsoil horizons impede soil drainage and occur at moderate and shallow depths in the profile. The relative depth determines the severity of the soil wetness problem and, therefore, the ALC grade. Soil wetness reduces the versatility of the land in terms of access by machinery (e.g. for cultivations or harvesting) and for grazing if damage to the soil is to be avoided. It also has the effect of reducing the level and consistency of yields.

10. Towards the south and west of the site, the land is principally limited by soil droughtiness. Soils comprise silty topsoils overlying clayey upper subsoils which become progressively more stony to a moderate depth, beyond which gravel was encountered. The stones in the profile inhibit the amount of water that is available for extraction to the extent that this area is appropriately mapped as Subgrade 3b on the basis of soil droughtiness. Because of the potential lack of available water, soil droughtiness can affect plant growth, especially in drier years.

FACTORS INFLUENCING ALC GRADE

Climate

11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

12. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values						
Grid reference	N/A	SU 574 035	SU 573 040					
Altitude	m, AOD	10	11					
Accumulated Temperature	day ^o C (Jan-June)	1546	1544					
Average Annual Rainfall	mm	779	782					
Field Capacity Days	days	158	158					
Moisture Deficit, Wheat	mm	117	116					
Moisture Deficit, Potatoes	mm	114	113					
Overall climatic grade	N/A	Grade 1	Grade 1					

Table 2: Climatic and altitude data

13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However, the site is in an area shown as being 'rather exposed' by the Met. Office (unpublished data, 1968). During the survey, there was no evidence of significant exposure across the site, in terms of the impact of windiness on perennial vegetation, such as trees and hedgerows. No detailed assessment of exposure was carried out as soil factors are more significant overall at this site. Other local climatic factors such as frost risk are not believed to affect the site.

Site

16. The site is flat overall, lying at approximately 10m AOD overall. Any gradients within the site are very slight and are not sufficient to adversely affect land quality. Other site factors such as microrelief and flooding are also not significant. At worst, the site is climatically on the border between Grades 1 and 2.

Geology and soils

17. The published geological information for the site (BGS, 1970 and 1971) shows the majority to be underlain by brickearth drift deposits. Towards the north of the site, London Clay solid deposits are mapped and Bracklesham Beds are shown towards the south, although it is likely that a thin drift layer of brickearth exists in these areas. In addition, plateau gravel drift deposits are mapped to the extreme south of the site

18. The most detailed published soils information for the site (SSEW, 1983 and 1984) shows it to comprise soils of the Park Gate association. These are described as 'deep stoneless silty soils variably affected by groundwater' (SSEW, 1983). Deep stoneless silty soils were found across the majority of the site, although they were considered to be affected by surface water, possibly in addition to groundwater. To the south and west of the site, variably stony and clayey soils were encountered.

AGRICULTURAL LAND CLASSIFICATION

19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 1.

20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Subgrade 3a

21. Land of good quality has been mapped in three separate units across the site. Principal limitations to land quality in these areas are soil wetness and topsoil workability. Soils are characterised by the soil pits, 2P and 3P (see Appendix II).

22. In these areas, soils are of a single overall type. They comprise a medium silty clay loam topsoil and upper subsoil overlying a heavy silty clay loam lower subsoil to depth (120cm). The soils were found to be relatively stone free although, occasionally, the lower subsoil was observed to be slightly stony (up to 15% flints by volume). The subsoils were observed to be gleyed and moderately structured throughout. However, the heavier lower subsoil, which occurred from between approximately 45cm and 60cm, was found to be slowly permeable (see Pit 3). Given the local climatic parameters, the depth to the slowly permeable horizon causes these soils to be appropriately placed in Wetness Class III. Consequently, this land has been mapped as Subgrade 3a given the workability status of the medium textured topsoils.

23. Towards the south east of the site, a small unit of slightly different soils were observed. These are characterised by the pit observation, 2P. The soils in this area comprise a heavy silty clay loam topsoil overlying gleyed, moderately structured silty clay and clay subsoils. Given the local climate, these soils are placed in a better Wetness Class (II), but are still classified as Subgrade 3a as the heavy textured topsoil places an additional workability limitation in this area.

24. Soil wetness restricts the versatility of the land by limiting the opportunities for cultivation or grazing without damaging the soil, as well as restricting plant growth and the level and consistency of yields.

Subgrade 3b

25. Land of moderate quality has been mapped in a single unit covering the majority of the site. Principal limitations include soil wetness across the majority of this area and soil droughtiness towards the south and west of the unit. Soils in this grade are characterised by the soil pit observations 1P, 4P and 5P.

26. Across the majority of this unit, the soils are of a single overall type. This is essentially similar to those described in para 22, except that the slowly permeable heavy silty clay loam subsoil occurs at a shallower depth (from 28cm). Given the local climate, Wetness Class IV is appropriate for these soils and subsequently Subgrade 3b has been mapped when the workability status of the topsoil is taken into account. The effects of the soil wetness that the slowly permeable horizon causes are described in para 24. However, Subgrade 3b land is less versatile than that classified as Subgrade 3a because the limitations are more severe.

27. Towards the south and west of the site, soil wetness gives way to soil droughtiness as the principal limitation. In this area the soils are characterised by the soil pit, 1P, and comprise a heavy silty clay loam topsoil overlying silty clay upper subsoils which become progressively more stony, overlying gravel at a moderate depth. In the topsoil approximately 5% (by volume) of flints was recorded. The upper subsoil contained approximately 15% flints by volume followed by a silty clay horizon containing 62% flints. These overlie the gravel

horizon assessed as containing 74% flints by volume in a loamy medium sand matrix. Stones in the profile restrict the water holding capacity and, as a consequence, the moisture available to plants is reduced. This affects yields, especially in drier years. Given the local climatic parameters, Subgrade 3b is appropriate for these profiles.

> Matthew Larkin Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1970) Sheet 331. Portsmouth. Solid & Drift Edition. 1:63 360 scale. BGS: London.

British Geological Survey (1971) Sheet 316. Fareham. Drift Edition. 1:63 360 scale. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1968) Unpublished Climatic Data relating to Sheet 180. 1:63 360 scale. Met. Office: Bracknell.

Met. Office (1989) *Climatological Data for Agricultural Land Classification*. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils of South East England. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No. 15. SSEW: Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. **GRID REF**: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent	LEY:	Ley grass	RGR:	Rough grazing
	pasture				
SCR:	Scrub	CFW:	Coniferous woodland	ОТН	Other
DCW:	Deciduous	BOG:	Bog or marsh	SAS:	Set-Aside
	woodland				
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. **GRDNT**: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. **MB (WHEAT/POTS)**: Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. **DRT**: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL:Microrelief limitationFLOOD:Flood riskEROSN:Soil erosion riskEXP:Exposure limitationFROST:Frost proneDIST:Disturbed landCHEM:Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC :	Overall Climate	AE: Aspect	ST:	Topsoil Stoniness
FR:	Frost Risk	GR: Gradient	MR:	Microrelief
FL:	Flood Risk	TX: Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE: Wetness	WK:	Workability
DR:	Drought	ER: Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure			-

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations:

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- **F**: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology one of the following is used:

HR:	all hard rocks and stones	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	CH:	chalk
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered	GH:	gravel with non-porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development	WK: ST:	weakly developed strongly developed	MD :	moderately developed
Ped size	F: C:	fine coarse	M :	medium
Ped shape	S: GR: SAB: PL:	single grain granular sub-angular blocky platy	M: AB: PR:	massive angular blocky prismatic

9. CONSIST: Soil consistence is described using the following notation:

L: loose	FM: firm	EH: extremely hard
VF: very friable	VM: very firm	-
FR: friable	EM: extremely firm	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.
- 15. Other notations:
 - APW: available water capacity (in mm) adjusted for wheat
 - **APP**: available water capacity (in mm) adjusted for potatoes
 - MBW: moisture balance, wheat
 - MBP: moisture balance, potatoes

LIST OF BORINGS HEADERS 23/09/97 FAREHAM BLP NEWGATE LANE

SAMP	LE	ASPECT				WET	NESS	-WH	IEAT-	-PC)TS-	м.	REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIŤ		COMMENTS
1 P	SU57150277	PGR		18		2	3A	61	-56	63	-51	4				DR	38	PIT 70
2P	SU57300310	SAS		28		2	2	110	-7	116	2	3A				DR	3A	PIT 80 AUG 120
ЗР	SU57300341	SAS		35	50	3	3A	160	43	125	11	1				WE	3A	PIT 80 AUG 120
4P	SU57220358	SAS		34	44	3	3A	160	43	125	11	1				WE	3A	PIT 80 AUG 120
5P	SU57400340	SAS		32	32	4	38	160	43	124	10	1				WE	3B	PIT 90 AUG 120

.

COMPLETE LIST OF PROFILES 16/09/97 FAREHAM BLP NEWGATE LANE

page	5
------	---

					MOTTLE	S	- PED	-	S	TONES	,	STRUCT/	SUE	s				
SAMP	LE	DEPTH	TEXTURE	COLOUR	COL ABUN	CON.	T COL.	GLEY >	2 >6	LITH	TOT	CONSIST	STR	2 PO	R IMP	> SPL	CALC	
	1P	0-18	HZCL	25Y 41	75YR58	CF		Y	0	0 HR	5							AT BORING 52
		18-33	ZC	25Y 51	75YR68	СD	25Y 61	Y	0	0 HR	15	WKCSAB	FM	Р				
_		33-48	ZC	25Y 61	10YR58	MD	25Y 71	Y	0	0 HR	62	WKCSAB	FM	Р	Y			WET SIEVED
		48-70	GH	25Y 61	75YR58	MF		Y	0	0	0			Ρ				SIEVED 74% FLINTS
	2P	0-28	MZCL	10YR42					0	0 HR	2							AT BORING 47
_		28-60	ZC	25Y 62 63	75YR58	С		Y	0	0 HR	1	MVCSAB	FR	M				
I		60-82	С	25Y 61 62	75YR56	М	MN	Y	0	0 HR	1	MVCSAB	FR	M				PIT 80 AUG 120
	3P	0-35	MZCL	10YR42					0	0 HR	1							AT BORING 32
H		35-50	MZCL	25Y 63 73	10YR66	С		Y	0	0 HR	1	MCSAB	FR	м				
		50-120	HZCL	10YR62 72	75YR58	M	MN	Y	0	0 HR	1	MDCPR	FR	Μ	Y		Y	PIT 80 AUG 120
_	4P	0-34	MZCL	10YR42					0	0 HR	1							NEAR BORING 22
		34-44	MZCL	10YR53 54	10YR56	CD		Y	0	0 HR	1	MDCSAB	FR	M	N			
•		44-62	HZCL	25Y 62	10YR58	MD	MN	Y	0	0 HR	1	MDCPR	FR	M	Y		Y	
		62-120	HZCL	25Y 61 62	10YR58	MD	MN	Ŷ	0	0 HR	1	MDCPR	FR	М	Y		Ŷ	PIT 80 AUG 120
	5P	0-32	MZCL	10YR43					0	0 HR	1							AT BORING 33
		32-65	HZCL	25Y 72	75YR68	MD	10YR63	Y	0	0 HR	1	MDCPR	FR	M	Y		Y	
8		65-120	HZCL	25Y 63	75YR58	MD	10YR63	Y	0	0 HR	1	MDVCAB	FR	м	Y		Y	PIT 90 AUG 120

.

.

.

LIST OF BORINGS HEADERS 23/09/97 FAREHAM BLP NEWGATE LANE

SAME	ΊLE	ASPECT				WETI	NESS	-inf-	IEAT-	-PC)TS-		M. REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE	GRDNT	GLEY	SPL		GRADE			AP	MB	DR		EXP				COMMENTS
													•					
6	SU57600400	PGR		28	60	3	3A	172	55	136	22	7				WE	3A	
7	SU57680393	PGR		28	28	4	38	172	55	136	22	1				WE	3B	
– 11	SU57500390	PGR		25	60	3	3A	155	38	121	7	2				WD	3A	
1 2	SU57600390	PGR		28	55	3	3A	167	50	133	19	1				WE	3A	
16	SU57500380	PGR		28	28	4	3B	138	21	124	10	2				WE	3B	IMP 100
-																		
-	SU57600380			28	28	4	38	124		123		2				WE	3B	IMP 85
18	SU57200370			28	28	4	3B		0		0					WE		IMP 90
19	SU57300368 SU57400370			35	35	4	3B	101	0		0	•				WE		IMP 100
20 2 1	SU57500370			36	52	3 2	3A 2	161 140		125	11					WE	3B	THE 100
	303/3003/0	SAC		35		2	2	140	23	126	12	2				WE	2	IMP 100
a 22	SU57200360	SAS		33	33	4	3B		0		0					WE	38	SEE 4P IMP 100
23	SU57300360			35	35	4	3B		ŏ		0					WE	38	
24	SU57400360			30	50	3		156	-	121	7	2				WE	3A	
25	SU57500360			30	55	3		130		125	11	2				WE		IMP 90
26	SU57200350	SAS		35	35	4	38	161	44	125	10	1				WE	3B	
27	SU57300350	SAS		30	48	3	3A	15 9	42	124	10	1				WE	3A	
28	SU57400350	SAS		38	38	4	3B	157	40	125	11	1				WE	3B	
e ²⁹	SU57500350			33	33	4	38	160	43	126	12	1				WE	3B	
30	SU57100340			0		2	2	81		81	-34	3B				DR	3B	IMP 45 SEE 1P
- 31	SU57200340	SAS		35	43	3	3A		0		0					WE	3A	
22	SU67200241	CAC		25	~~	-	24	150			10						<u>.</u> .	
32 33	SU57300341 SU57400340			35	50 20	3		158		124	10					WE		SEE 3P
- 33 34	SU57500340			28 30	28 60	4 3		157 161		123 125	9 11	2 1				WD MC		SEE 5P
35	SU57100330			35	48	3	34	101	0	125	0	•				WE WE	3A 3A	IMP 100
36	SU57200330			35	35	4		161	-	125	10	1				WE	38	THE TOO
					••	•			•••			•					50	
37	SU57300330	SAS		30	30	4	38	154	37	125	11	1				WE	38	
38	SU57400330	SAS		28	60	3	3A	172	55	136	22	1				WE	3A	
39	SU57500330	SAS		30	55	3	3A	161	44	125	11	1				WE	за	
40	SU57000320	PGR		28	28	4	3B	92	-25	96	-18	3B				WE	38	IMP 80
41	SU57120317	SAS		33	65	3	3A	135	18	124	10	2				WE	3A	IMP 95
	A								-									
	SU57200320			38		4		131		122	7							IMP 100
	SU57300320			33		4		162		126	12						3B	
	SU57400320			30	55	3		161		125	11						3A	
	SU57100310 SU57200310			25	1 5	1	1	51	-66		-64							IMP 30 SEE 1P
40	3057200310	SAS		25	25	4	38	128	11	123	8	2				WE	3B	IMP 90
47	SU57300310	SAS		32		2	3A	134	17	102	-6	2				MK	34	SEE 2P
	SU57400310			30	78			129	12			2						SEE 2P IMP 90
	SU57060303						2 3A		-66		-63							IMP 30 SEE 1P
	SU57210293			30					10		-8							SEE 2P
	SU57150277			0		2	- 3A				-48							IMP 42 SEE 1P
																-		
53	SU57230345	SAS		33	55	3	ЗА	162	45	126	12	1				WE	3A	
54	SU57260355	SAS		33	33	4	3B	162	45	126	12	1				WE	38	

.

.

COMPLETE LIST OF PROFILES 16/09/97 FAREHAM BLP NEWGATE LANE

-									_	TOUCO	070107/	0000			
				MOT			PED				STRUCT/				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AE	SUN	CONT	COL.	GLEY	>2 >6		TOT CONSIST	STR POR I	MP SPL CALC		
6	0-28	ZL	10YR42	10YR66	F			N	0	0	0				
6	28-60	MZCL	25Y 71	10YR58 6				Ŷ	0	0	0	м			
	60-120	HZCL	25Y 61	10YR58	M	D N	N	Ŷ		0	0	М	Y		
	00 120	1,202		101130	••	5,		•	Ť	v	·		•		
7	0-28	ZL	25Y 42	10YR66	с	D		Y	0	0	0				
	28-60	HZCL	25Y 61	10YR58	М	DM	พ	Ŷ	0	0	0	м	Y		
	60-120	HZCL	25Y 62	10YR58	м	DM	N	Y	0	0	0	м	Y		
11	0-25	MZCL	25Y 42	10YR46	С	D		Y	0	0 HR	5				
	25-60	MZCL	25Y 61 71	10YR58	Μ	D		Y	0	0	0	м			
-	60-120	HZCL	25Y 61	10YR58	M	DN	ÍN 🛛	Y	0	0 HR	5	м	Y		
		,													
12	0-28	ZL	25Y 42	10YR46	С	D		Y	0	OHR	2				
_	28-55	MZCL	25Y 71	10YR58 6	8 M	D		Y	0	0	0	M			
	55-120	HZCL	25Y 61	10YR58	М	D M	1N	Y	0	0 HR	5	м	Ŷ		
•															
16	0-28	MZCL	25Y 42	10YR58	С	D		Ŷ	0	0	0				
	28-60	HZCL	25Y 61	10YR58	С	DM	1N	Y	0	0	0	м	Y		
	6090	HZCL	25Y 62	10YR58	М	DM	N	Y	0	0 HR	5	M	Ŷ		
	90-100	HZCL	25Y 62	10YR58	М	DM	IN	Y	0	0 HR	15	м	Ŷ	IMP FLINT	S 100
		_									_				
17	0-28	MZCL	25Y 42						0	0	0				
-	28-55	HZCL	25Y 51 61		М		N	Y	0	0	0	M	Ŷ		
-	55-80	HZCL	25Y 52 62		М		'N	Y		0 HR		M	Y		
	80-85	HZCL	25Y 52 62	10YR58	M	D M	IN	Y	0	O HR	10	м	Ŷ	IMP FLINT	\$ 85
_	0.00	M201	100000						•	0 U.D	2				
18	0-28	MZCL	10YR32	10VD4C	м	•		v	0	0 HR		м	v		
	28-75	HZCL	10YR62	10YR46	M			Ŷ	0	0	0	м	Ŷ	IMP FLINT	00 31
	75-90	HZCL	10YR62	10YR46	M	ייע	IN	Y	0	0 HR	5	м	Y	IMP FLINI	2 90
19	0-35	MZCL	25Y 53						0	0 HR	1				
	0-35 35-55	HZCL		10YR58	c		6.1	v	0	0	0	м	Y		
			25Y 64		C		1N 1N	Y Y	0		0	M M	Ŷ	IMP FLINT	rs 100
-	55-120	RZUL	25Y 62 72	751638	M	DM	MM	Ŧ	v	Ŭ	U	п	r	THE CLINE	3 100
20	0-36	MZCL	10YR42						0	0 HR	1				
20	36-52	MZCL	25Y 53	10YR58	с			Ŷ	-	OHR		м			
	52-120		25Y 72	75YR58	M	м	N	Ý		OHR		M	Y		
					•••				-	•	-				
21	0-35	MZCL	10YR42						0	0	0				
-	35-75	MZCL	25Y 52 62	10YR58	м	DM	N	Ŷ	0	0	0	м			
_	75-100		25Y 52 62		м	D M	พ	Y	0	0 HR	10	м		IMP FLINT	IS 100
22															
22	0-33	MZCL	10YR33						0	0	0			SEE 4P	
	33-90	HZCL	10YR62	10YR58	Μ	D		Y	0	0	0	м	Y		
	90-100	HZCL	10YR62 61		Μ	D		Ŷ	0	O HR	5	м	Y	IMP FLINT	'S 100
23	0-35	MZCL	10YR33						٥	0	0				
	35-120	HZCL	10YR62	10YR58	Μ	D		Y	0	0	0	м	Y		

.

COMPLETE LIST OF PROFILES 16/09/97 FAREHAM BLP NEWGATE LANE

.

.

									ç	TONES	STRUCT/	CUDE		
CANOL F	DEDTU	TEVTUDE			MOTTLES	-					-			
SAMPLE	DEPTH	TEXTURE	COLOUR	ωL	ABUN	CUN	IT COL.	GLEY	>2 >0	LIM	TOT CONSIST	SIK PUK I	np spl calc	
24	0-30	MZCL	10YR42						0	0 HR	2			
	30-50	MZCL	25Y 53	10YR5	в с			Ŷ	0	0 HR	2	м		
-	50-120	HZCL	25Y 72	10YR5			MN	Ŷ	0	0 HR	2	м	Y	
-									-	• • • • •	_			
25	030	MZCL	25Y 42						0	0	0			
	30-55	MZCL	25Y 52	10YR5	B M	D		Ŷ	0	0	0	м		
	55-80	HZCL	25Y 62	10YR5		D	MIN	Ŷ	0	0	0	м	Y	
Ê	80-90	HZCL	25Y 62	10YR5		D	MN	Y	0	0 HR	10	м	Y	IMP FLINTS 90
26	0-35	MZCL	10YR33						0	0 HR	2			
•	35-95	HZCL	10YR62	10YR5	8 M	D	MN	Ŷ	0	0	0	м	Y	
	95–120	HZCL	10YR61	10YR5	в м	Ð	MN	Ŷ	0	0	0	M	Y	
•														
27	0-30	MZCL	10YR42						0	0 HR	1			
	30-48	MZCL	25Y 53	10YR5	в С			Y	0	0 HR	1	M		
	48-120	HZCL	25Y 63 72	75YR5	в м			γ	0	0 HR	1	M	Y	
28	0-28	MZCL	10YR42						0	0	0			
	28-38	MZCL	10YR44						0	0	0	м		
_	38-70	HZCL	25Y 52 62	10YR5	в С	D		Ŷ	0	0	0	M	Y	
•	70-85	HZCL	25Y 52 62	10YR5	в м	D	MN	Ŷ	0	0	0	м	Ŷ	
	85-120	HZCL	25Y 52 62	10YR58	B M	D	MN	Y	0	0 HR	10	M	Y	
29	0-33	MZCL	10YR42						0	0	0			
	33-55	HZCL	25Y 62 52	10YR58	B Mi	D		Y	0	0	0	м	Ý	
	55-100	HZCL	25Y 62	10YR58	5 M	D	MN	Y	0	0	0	M	Y	
	100-120	MZCL	25Y 62	10YR58	в м	D	MN	Y	0	0 HR	10	м	Y	
30	0-45	HZCL	10YR62 61	10YR46	6 C	D		Y	0	0 HR	5			IMP FLINTS 45 SEE
- 31	0-35	MZCL	10YR33						0	0	0			
	35-43	MZCL	10YR63	10YR5	B C	D		Y	0	0	0	M		
-	43-75	HZCL	10YR62	10YR4(5 M	D		Y	0	0	0	м	Y	
_	75-120	ZC	10YR61	10YR58	в м	D	MN	Y	0	0	0	M	Y	
32														
32	0-35	MZCL	10YR42						0	0 HR	1			SEE 3P
	35-50	MZCL.	25Y 53 63					Y	0	O HR	1	M		
	50-120	HZCL	25Y 63 72	75YR5	8 M			Y	0	0 HR	5	M	Y	
33	0-28	MZCL	25Y 42						0	0	0			SEE 5P
•	28-50	HZCL	25Y 62 63			D		Y	0	0	0	м		
	50-120	HZCL	25Y 62 72	10YR5	B M	D	MN	Y	0	0 HR	5	М	Ŷ	
-														
34	0-30	MZCL	25Y 42						0	0	0			
	30-60	MZCL	25Y 53	10YR5		D		Y	0	0	0	м		
	60-120	HZCL	25Y 62	10YR5	B M	D	MN	Y	0	0	0	М	Y	
		_									_			
35	0-35	MZCL	10YR33						0	0	0			
	35-48	MZCL	10YR53	10YR4(D	•	Y	0	0	0	M		
	48-80	HZCL	10YR63	10YR5		D		Y	0	0	0	M	Y	
	80-100	HZCL	10YR72	10YR5	8 M	D		Ŷ	Q	0 HR	5	М	Ŷ	IMP FLINTS 100

COMPLETE LIST OF PROFILES 16/09/97 FAREHAM BLP NEWGATE LANE

				MO TT	LES		- PED		S	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABU							-	STR POR IM	P SPL CALC	
36	0-35	MZCL	10YR33						0	0 HR	2			
	35-40	HZCL	10YR53	10YR53	С	D		Y	0	0	0	м	Y	
	40-50	HZCL	10YR62	10YR58	M			Y	0	0	0	M	Y	
	50-120	HZCL	10YR61	10YR58	M	D	MN	Y	0	0	0	М	Ŷ	
37	0-30	MZCL	25Y 42						0	0	0			
57	30-100		25Y 62 63	10YR58	м	Ð	MIN	Y	ŏ		0	м	Y	
	100-120		25Y 62 63		M	_	MN	Ŷ		0 HR	-	M	Ŷ	
	•-													
38	0-28	ZL	10YR41						0	0	0			
	28-60	MZCL	25Y 63 73	10YR58	M	D	MN	Ŷ	0	0	0	м		
	60-120	HZCL	25Y 62 72	10YR58	Μ	D	MN	Y	0	0	0	М	Y	
_														
39	0-30	MZCL	10YR42		_	_			0	0	0			
	30-55	MZCL	10YR64	10YR58	C	D	MIN	Ŷ	0	0	0	M	.,	
—	55-75	HZCL	25Y 61	10YR58	M	D	MN MN	Y Y	0	0	0	M M	Y Y	
-	75-120	HZUL	25Y 62	10YR58	М	D	FIN	ſ	v	U	U	17	Ŧ	
40	0-28	HZCL	25Y 62	10YR58	c			Ŷ	0	0 HR	5			
	28-55	C	05Y 63	75YR58	M		MN	Ŷ		0 HR		p	Y	
	55-80	с	05Y 72	75YR58	М		MN	Y	0	0 HR	25	P	Ŷ	IMP FLINTS 80
41	0-33	MZCL	10YR42						0	0 HR	2			
-	33-65	MZCL	25Y 53 63		С	D		Ŷ	0	0	0	M		
	65-90	HZCL	25Y 62	10YR58	Μ		MN	Ŷ	0	0	0	M	Y	
	90-95	HZCL	25Y 62	10YR58	M	D	MN	Ŷ	0	0 HR	10	м	Y	IMP FLINTS 95
42	0.00		100022						0	0 HR	-			
42	0-28 28-38	MZCL MZCL	10YR33 10YR44						0	0 HR	2 5	М		
-	38-55	HZCL	10YR46	10YR46	с	D		Ŷ	0	0 HR		M	Y	
-	55-75	HZCL	10YR63	10YR56	M	_		Ŷ	0	0	0	M	Ŷ	
	75-100	ZC	10YR62	75YR58	M		MN	Y	0		0	М	Y	IMP FLINTS 100
43	0-33	MZCL	10YR42 52						0	0	0			
	33-55	HZCL	25Y 62	10YR58 68				Y	0		0	м	Y	
	55-120	HZCL	25Y 62	10YR58	M	D	MN	Y	0	0	0	М	Y	
	0.00		10/040						•	•	•			
44	0-30	MZCL	10YR42 25Y 62	100050	ы	•		v	0 0		0	м		
	30-55 55-120	MZCL HZCL	257 62 61	10YR58	M M		MN	Y Y	0		0 0	M M	Y	
_	33-120	RZUL	251 02 01	101130	ri -	U	1.94	,	U	Ŭ	Ū	61	1	
45	0-30	MZCL	10YR32						8	2 HR	12			IMP FLINTS 30 SEE
									-					
46	0-25	MZCL	10YR33						0	0 HR	2			
	25-75	HZCL	10YR53	10YR58	С	D	MN	Y	0	0	0	M	Y	
	75-90	HZCL	10YR53	10YR58	Μ	D	MN	Y	0	0 HR	5	м	Y	IMP FLINTS 90
47	0-32	MCL	25Y 42						0	0 HR	1			SEE 2P
	32-60	C	25Y 62	75YR58	M		MN	Ŷ	0	0 HR	2	M		
	60-90 90-120	HCL	25Y 63 25Y 62	75YR58 75YR58	M M		MN MN	Y Y		0 HR 0 HR	5 15	M M		
	30-12U	C C	231 02	701800	Μ		1.11.11	Ŧ	U	U HK	13	m		

COMPLETE LIST OF PROFILES 16/09/97 FAREHAM BLP NEWGATE LANE

page 4

-												
					MOTTLES		PED	STONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY >2 >6 LITH TOT	CONSIST	STR POR IM	P SPL (CALC

	48	0-30	MZCL	10YR42 53	5					0	0 н	R	1				
		30-40	MZCL	25Y 64	10YR66	С			Y	0	0 Н	R	1	M			
—		40-78	MZCL	25Y 72	10YR66	С			Y	0	0 н	R	1	Μ			
		78-90	HZCL	25Y 72	10YR56	М		MN	Y	0	0 H	R	10	м	Y		IMP FLINTS 90
	49	0-30	HCL	25Y 62	75YR58	м			Y	0	0 н	R	5				IMP FLINTS 30 SEE
	51	0-30	MCL	25Y 41	10YR58	с			Y	0	0 н	R	5				SEE 2P
		30-40	HCL	25Y 52 62	75YR58	С			Y	0	οн	R	5	м			
		40-70	С	05Y 71	10YR68	м			Ŷ	0	0		0	м			
		70-90	С.	05Y 71	10YR68	С			Y	0	0 S	LST	5	Μ			
		90-120	С	05Y 62	10YR68	С			Y	0	0 S	LST	10	м		Y	
	52	0-30	HZCL	25YR61	75YR58	м			Y	0	0 н	R	5				SEE 1P
		30-40	ZC	25Y 61	75YR58	С			Y	0	0 н	R	20	м			
		40-42	HZCL	25Y 61	75YR58	С			Ŷ	0	0 HI	R	45	M			IMP FLINTS 42
	53	0-33	MZCL	10YR42						0	0		0				
		33-55	MZCL	25Y 53 63	10YR56	С	D		Y	0	0		0	м			
_		55-120	HZCL	25Y 62	10YR58	М	D	MN	Y	0	0		0	м	Y		
	54	0-33	MZCL	10YR42						0	0		0				
•		33-60	HZCL	25Y 53 62	10YR58	С	D		Y	0	0		0	м	Y		
A		60-120	HZCL	25Y 62	10YR58	M	D	MN	Ŷ	0	0		0	м	Ŷ		

.