Renishaw, Wotton Under Edge

Agricultural Land Classification

September 1997

Resource Planning Team Bristol FRCA Western Region Job Number 68/97

MAFF Reference EL 14/0362



# **RENISHAW WOTTON UNDER EDGE**

# AGRICULTURAL LAND CLASSIFICATION SURVEY

# CONTENTS

# Page

| INTRODUCTIO  | Ν                                       | 1                |
|--------------|-----------------------------------------|------------------|
| SUMMARY      |                                         | 1                |
| CLIMATE      |                                         | 2                |
| RELIEF       |                                         | 2                |
| GEOLOGY ANI  | D SOILS                                 | 3                |
| AGRICULTURA  | AL LAND CLASSIFICATION AND MAP          | 3                |
| REFERENCES   |                                         | 4                |
|              |                                         |                  |
| APPENDIX I   | Description of the Grades and Subgrades | 5                |
| APPENDIX II  | Definition of Soil Wetness Classes      | 7                |
| APPENDIX III | Survey Data                             | 8                |
|              | Sample Point Location Map               |                  |
|              | Pit Descriptions                        |                  |
|              | Boring Profile Data                     |                  |
|              | Boring Horizon Data                     |                  |
|              | Abbreviations and Terms use             | d in Survey Data |
|              |                                         |                  |

## **RENISHAW WOTTON UNDER EDGE**

## AGRICULTURAL LAND CLASSIFICATION SURVEY

#### **INTRODUCTION**

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 12.6 ha of land at Renishaw on the north eastern side of Charfield Green Field survey was based on 13 auger borings and one soil profile pit and was completed in September 1997

2 The survey was conducted by the Resource Planning Team of FRCA Western Region on behalf of MAFF in its statutory role in the preparation of the Stroud Local Plan

3 Information on climate geology and soils and from previous ALC surveys was considered and is presented in the relevant section. The published regional ALC map (MAFF 1977) shows the site at a reconnaissance scale as being Grade 3. Apart from this the site had not been surveyed previously. However, the current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF 1988) and therefore supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I

4 At the time of survey land cover was mainly permanent grassland The land to the north of the stream has been left unmanaged

## SUMMARY

5 The distribution of ALC grades is shown on the accompanying 1 10 000 scale ALC map The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas Areas are summarised in the Table 1

| Grade           | Area (ha)   | % Surveyed Area (12 4 ha) |
|-----------------|-------------|---------------------------|
| 3a<br>3b        | 2 3<br>10 1 | 18 5<br>84 5              |
| Other land      | 02          |                           |
| Total site area | 126         | 100 0                     |

#### Table 1 Distribution of ALC grades Renishaw Wotton Under Edge

6 An area of 2.3 ha of land was graded as best and most versatile Subgrade 3a (good quality land) of the agricultural land surveyed The rest of the site was mapped as Subgrade 3b (moderate quality) land

7 The Subgrade 3a land mapped in the southern part of the site has moderate wetness limitations The profiles have impaired drainage in their brown clay subsoils as well as medium clay loam topsoil textures 8 The land mapped as Subgrade 3b has moderate wetness limitations to its agricultural use There are slowly permeable brown clay subsoils higher up the profiles which will impair the drainage of the land

# CLIMATE

9 Estimates of climatic variables for this site were derived from the published agricultural climate dataset Climatological Data for Agricultural Land Classification (Meteorological Office 1989) using standard interpolation procedures Data for a key point on the site is given in Table 2

10 Since the ALC grade of land is determined by the most limiting factor present overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions Parameters used for assessing overall climate are accumulated temperature a measure of relative warmth and average annual rainfall a measure of overall wetness The results shown in Table 2 indicate that there is no overall climatic limitation

11 Climatic variables also affect ALC grade through interactions with soil conditions The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections

| Grid Reference                  | ST 737 928 |
|---------------------------------|------------|
| Altitude (m)                    | 35         |
| Accumulated Temperature (day C) | 1497       |
| Average Annual Rainfall (mm)    | 773        |
| Overall Climatic Grade          | 1          |
| Field Capacity Days             | 175        |
| Moisture deficit (mm) Wheat     | 101        |
| Potatoes                        | 91         |

## Table 2 Climatic Interpolations Renishaw Wotton Under Edge

#### RELIEF

12 Altitude ranges from 30 metres at Renishaw to 39 metres on the Western boundary of the site towards Lower Barnes Farm Gradients within the site area are mainly level  $(0\ 1)$  and gently  $(2\ 3)$  sloping Gradient on this site is not limiting to the agricultural use of the land

# **GEOLOGY AND SOILS**

13 The underlying geology of the site is shown on the published geology map (IGS 1970) as being Lower Lias clay over much of the site. There is a band of alluvium to the north of the centre of the site and a small area of whiter and blue lias at the south west tip of the site. The type of soils which are expected to develop over this geology were found during the current survey

14 Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1 250 000 (SSEW 1983) as being from the Denchworth Association Soils from the Evesham I Association are mapped across the northern half of the site

15 Denchworth soils are described as being slowly permeable seasonally waterlogged clayey soils They are associated with fine loamy soils over slowly permeable subsoils which experience slight seasonal waterlogging The Evesham I Association is described as being slowly permeable calcareous clayey soils associated with shallow well drained brashy calcareous soils over limestone

# AGRICULTURAL LAND CLASSIFICATION

16 The distribution of ALC grades found by the current survey is shown on the accompanying 1 10 000 scale map and areas are summarised in Table 1 The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas

## Subgrade 3a

17 The land mapped as Subgrade 3a tends to have a moderate wetness limitation This will restrict moderate or high yields to a narrow band of crops These profiles have medium clay loam topsoils and slowly permeable brown subsoils The gleying occurs below 40 cm and the profiles were assessed as Wetness Class III

## Subgrade 3b

18 Most of the land mapped as Subgrade 3b has a moderate wetness limitation This will reduce yields to moderate or low levels depending on the crop as well as affecting the timing and type of cultivation and harvesting These profiles have medium and heavy clay loam topsoils over olive brown clay subsoils These subsoils are slowly permeable starting above 49 cm and gleyed within 40 cm of the soil surface so the profiles were assessed as Wetness Class IV

> S Kangh Resource Planning Team FRCA Worcester September 1997

#### REFERENCES

INSTITUTE OF GEOLOGICAL SCIENCES (1970) Sheet 251 Malmesbury 1 63 360 series Solid and Drift edition IGS London

HODGSON J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 SSLRC Cranfield

MAFF (1977) 1 250 000 series Agricultural Land Classification South West Region MAFF Publications Alnwick

MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for grading the quality of agricultural land MAFF Publications Alnwick

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification Meteorological Office Bracknell

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5 Soils of South West England 1 250 000 scale SSLRC Cranfield

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England Bulletin No 14 SSLRC Cranfield

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 3 Soils of Midland and Western England 1 250 000 scale SSLRC Cranfield

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in Midland and Western England Bulletin No 12 SSLRC Cranfield

## **APPENDIX I**

## **DESCRIPTION OF GRADES AND SUBGRADES**

#### Grade 1 excellent quality agricultural land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

#### Grade 2 very good quality agricultural land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1

#### Grade 3 good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

#### Subgrade 3a good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

#### Subgrade 3b moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

#### Grade 4 poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

# Grade 5 very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Source MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land MAFF Publications Alnwick

## **APPENDIX II**

## DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile

#### Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

#### Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

#### Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 and 90 days in most years

#### Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

#### Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

#### Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

Notes The number of days specified is not necessarily a continuous period

In most years is defined as more than 10 out of 20 years

Source Hodgson J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 Silsoe

## **APPENDIX III**

## ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below These conform to definitions contained in the Soil Survey Field Handbook (Hodgson 1997).

#### 1 Terms used on computer database in order of occurrence

GRID REF National 100 km grid square and 8 figure grid reference

LAND USE At the time of survey

| WHT | Wheat        | SBT | Sugar Beet          | HTH | Heathland               |
|-----|--------------|-----|---------------------|-----|-------------------------|
| BAR | Barley       | BRA | Brassicas           | BOG | Bog or Marsh            |
| OAT | Oats         | FCD | Fodder Crops        | DCW | Deciduous Wood          |
| CER | Cereals      | FRT | Soft and Top Fruit  | CFW | Coniferous Woodland     |
| MZE | Maize        | HRT | Horticultural Crops | PLO | Ploughed                |
| OSR | Oilseed Rape | LEY | Ley Grass           | FLW | Fallow (inc Set aside)  |
| РОТ | Potatoes     | PGR | Permanent Pasture   | SAS | Set Aside (where known) |
| LIN | Linseed      | RGR | Rough Grazing       | OTH | Other                   |
| BEN | Field Beans  | SCR | Scrub               |     |                         |

**GRDNT** Gradient as estimated or measured by hand held optical clinometer

GLEY SPL Depth in centimetres to gleying or slowly permeable layer

| AP (WHEAT/POTS) | Crop adjusted available water capacity |                   |                |  |
|-----------------|----------------------------------------|-------------------|----------------|--|
| MB (WHEAT/POTS) | Moisture Balance<br>MD)                | (Crop adjusted AP | crop potential |  |

DRT Best grade according to soil droughtiness

If any of the following factors are considered significant Y will be entered in the relevant column

| MREL<br>EXP<br>CHEM | Microrelief limitation<br>Exposure limitation<br>Chemical limitation |       | 'LOOD<br>'ROST | Flood risk<br>Frost prone | ER<br>DIS | .OSN<br>ST | Soil erosion risk<br>Disturbed land |
|---------------------|----------------------------------------------------------------------|-------|----------------|---------------------------|-----------|------------|-------------------------------------|
| LIMIT               | The main limitation used                                             | on to | o land qua     | ility The foll            | owin      | g abbre    | eviations are                       |
| OC                  | Overall Climate                                                      | ٩E    | Aspect         | EX                        | K         | Expos      | ure                                 |
| FR                  | Frost Risk                                                           | GR    | Gradier        | nt M                      | R         | Micro      | relief                              |

| FL | Flood Risk | ТХ | Topsoil Texture | DP | Soil Depth  |
|----|------------|----|-----------------|----|-------------|
| СН | Chemical   | WE | Wetness         | WK | Workability |
| DR | Drought    | ER | Erosion Risk    | WD | Soil        |

Wetness/Droughtiness

ST Topsoil Stoniness

**TEXTURE** Soil texture classes are denoted by the following abbreviations

| S<br>SZL | Sand<br>Sandy Sılt Loam | LS<br>CL | Loamy Sand<br>Clay Loam | SL<br>ZCL | Sandy Loam<br>Silty Clay Loam |
|----------|-------------------------|----------|-------------------------|-----------|-------------------------------|
| ZL       | Silt Loam               | SCL      | Sandy Clay<br>Loam      | С         | Clay                          |
| SC       | Sandy clay              | ZC       | Silty clay              | OL        | Organic Loam                  |
| Р        | Peat                    | SP       | Sandy Peat              | LP        | Loamy Peat                    |
| PL       | Peaty Loam              | PS       | Peaty Sand              | MZ        | Marine Light Silts            |

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (< 27% clay) H heavy (27~35% clay)

MOTTLE COL Mottle colour using Munsell notation

**MOTTLE ABUN** Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40%+

MOTTLE CONT Mottle contrast

- F faint indistinct mottles evident only on close inspection
- D distinct mottles are readily seen
- P Prominent mottling is conspicuous and one of the outstanding features of the horizon
- PED COL Ped face colour using Munsell notation
- GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- STONE LITH Stone Lithology One of the following is used
- HR All hard rocks and stones SLST Soft oolitic or dolimitic limestone

| СН   | Chalk                              | FSST      | Soft fine grained sandstone          |
|------|------------------------------------|-----------|--------------------------------------|
| ZR   | Soft argillaceous or silty rocks   | GH        | Gravel with non porous (hard) stones |
| MSST | Soft medium grained sandstone      | GS        | Gravel with porous (soft) stones     |
| SI   | Soft weathered igneous or metamory | phic rock |                                      |

Stone contents are given in % by volume for sizes >2cm >6cm and total stone >2mm

**STRUCT** The degree of development size and shape of soil peds are described using the following notation

| Degree of development | WA<br>Adhei          | Weakly developed<br>ent                                 | WK            | Weakly developed                       |
|-----------------------|----------------------|---------------------------------------------------------|---------------|----------------------------------------|
|                       | MD<br>develo         | Moderately<br>oped                                      | ST            | Strongly developed                     |
| <u>Ped size</u>       | F<br>C               | Fine<br>Coarse                                          | M<br>VC       | Medium<br>Very coarse                  |
| <u>Ped Shape</u>      | S<br>GR<br>SAB<br>PL | Sıngle graın<br>Granular<br>Sub angular blocky<br>Platy | M<br>AB<br>PR | Massive<br>Angular blocky<br>Prismatic |

**CONSIST** Soil consistence is described using the following notation

| L  | Loose     | VF | Very Friable   | FR | Friable | FM         | Fırm |
|----|-----------|----|----------------|----|---------|------------|------|
| VM | Very fırm | EM | Extremely firm |    | EH E    | xtremely H | lard |

- SUBS STRSubsoil structural condition recorded for the purpose of calculating<br/>profile droughtinessG GoodM ModerateP Poor
- **POR** Soil porosity If a soil horizon has poor porosity with less than 0.5% biopores >0.5mm a Y will appear in this column
- **IMP** If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- **SPL** Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column

CALC If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a Y will appear this column

#### 2 Additional terms and abbreviations used mainly in soil pit descriptions

#### STONE ASSESSMENT

VIS Visual S Sieve D Displacement

## **MOTTLE SIZE**

| EF | Extremely fine <1mm | Μ | Medium 5 15mm |
|----|---------------------|---|---------------|
| VF | Very fine 1 2mm>    | С | Coarse >15mm  |
| F  | Fine 2 5mm          |   |               |

MOTTLE COLOURMay be described by Munsell notation or as ochreous<br/>(OM) or grey (GM)ROOT CHANNELSIn topsoil the presence of rusty root channels should<br/>also be noted

## MANGANESE CONCRETIONS Assessed by volume

| Ν | None   |       | Μ  | Many      | 20 40% |
|---|--------|-------|----|-----------|--------|
| F | Few    | <2%   | VM | Very Many | >40%   |
| С | Common | 2 20% |    |           |        |

#### POROSITY

| Р | Poor | less than 0 5% biopores at least 0 5mm in diameter |
|---|------|----------------------------------------------------|
| G | Good | more than 0 5% biopores at least 0 5mm in diameter |

#### **ROOT ABUNDANCE**

| The number of | roots per 100cm <sup>2</sup> | Very Fine and Fine | Medium and Coarse |  |  |  |
|---------------|------------------------------|--------------------|-------------------|--|--|--|
| F             | Few                          | 1 10               | 1 or 2            |  |  |  |
| С             | Common                       | 10 25              | 2 5               |  |  |  |
| Μ             | Many                         | 25 200             | >5                |  |  |  |
| Α             | Abundant                     | >200               |                   |  |  |  |

#### **ROOT SIZE**

| VF | Very fine | <1mm  | Μ | Medium | 2 5mm |
|----|-----------|-------|---|--------|-------|
| F  | Fine      | 1 2mm | С | Coarse | >5mm  |

#### HORIZON BOUNDARY DISTINCTNESS

| Sharp  | <0 5cm    | Gradual | 6 13cm |  |  |
|--------|-----------|---------|--------|--|--|
| Abrupt | 0 5 2 5cm | Diffuse | >13cm  |  |  |
| Clear  | 25 6cm    |         |        |  |  |

**HORIZON BOUNDARY FORM** Smooth wavy irregular or broken \* \* See Soil Survey Field Handbook (Hodgson 1997) for details

| SITE NAME                                                  |     | PROFILE NO     |                              | SLOPE AND ASPECT |                                                         |                   | LAND USE        |                                               |            | Av            | Raınfall                     | 773 mm              |                                | PARENT MATERIAL                 |                                                |  |                 |
|------------------------------------------------------------|-----|----------------|------------------------------|------------------|---------------------------------------------------------|-------------------|-----------------|-----------------------------------------------|------------|---------------|------------------------------|---------------------|--------------------------------|---------------------------------|------------------------------------------------|--|-----------------|
| Renishaw                                                   |     | Pit 1 (ASP 12) |                              | Flat             |                                                         | Permanent Grass   |                 | AT                                            | 0          | 1497 day C    |                              | Lower Lias Clay     |                                |                                 |                                                |  |                 |
| JOB NO                                                     |     | DAT            | ATE GRID                     |                  | D REFERENCE                                             |                   | DESCRIBED BY    |                                               | FC         | Days          | 175                          |                     | PSD SAMPLES TAKEN              |                                 |                                                |  |                 |
| 68/97                                                      |     | 17/9/97 ST 74  |                              | ST 747           | 17 938                                                  |                   | SK/ HLJ         |                                               |            |               | None                         |                     |                                |                                 |                                                |  |                 |
| Horizon Lowest<br>No Av Texture (Ped Face<br>Depth<br>(cm) |     | (Ped Face)     | Stomme<br>Size Ty<br>Field M | pe and           | Mottling<br>Abundance<br>Contrast<br>Size and<br>Colour |                   | Mangan<br>Concs | Structure 1<br>Developme<br>Size and<br>Shape | Ped<br>ent | Consistence   | 1<br>Structural<br>Condition | Pores<br>(Fissures) | Roots<br>Abundance<br>and Size | Calcium<br>Carbonate<br>Content | Horizon<br>Boundary<br>Distinctnes<br>and form |  |                 |
| 1                                                          | 22  | N              | 1CL                          | 10YR41<br>25Y53  | <1% H                                                   | <1% HR (VIS) None |                 |                                               | None       |               |                              |                     |                                | Good                            | MF + VF                                        |  | Clear<br>smooth |
| 2                                                          | 60+ |                | С                            | 05Y53            | 1% SLST (VIS) CDFO<br>75YR46                            |                   |                 | None                                          | MDCAB      |               | Friable                      | Moderate            | Poor                           | CF + VF                         |                                                |  |                 |
| Profile Gleyed From 22 cm                                  |     | 22 cm          |                              |                  | Available                                               | Water W           | /heat           | 140 n                                         | ım         |               |                              | Final ALC           | Grade                          | 3b                              |                                                |  |                 |
| Slowly Permeable<br>Horizon From                           |     |                | 22 cm                        |                  |                                                         |                   |                 | otatoes 116 mm<br>Wheat 101 mm                |            |               |                              |                     | Main Limiting Factor(          |                                 | s) Wetness                                     |  |                 |
| Wetness (                                                  |     |                | IV<br>3b                     |                  |                                                         |                   | Pe              | otatoe                                        | es 91 mi   | n             |                              |                     |                                |                                 |                                                |  |                 |
|                                                            |     |                |                              |                  |                                                         | Moisture E        | Balance W       | Vheat                                         | 39 mi      | n             |                              |                     | Remarks                        |                                 |                                                |  |                 |
|                                                            |     |                |                              |                  |                                                         |                   | P               | otato                                         | es 25 mi   | n             |                              |                     |                                |                                 |                                                |  |                 |
|                                                            |     |                |                              |                  |                                                         | Droughtin         | ess Grade 1     |                                               | (Calc      | ulated to 120 | ) cm)                        |                     |                                |                                 |                                                |  |                 |