A1 MEDWAY TOWNS LOCAL PLAN Darland Farm, Gillingham, Kent

Agricultural Land Classification May 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

.

ADAS Reference: 2005/065/96 MAFF Reference: EL 20/1376 LUPU Commission: 2532

AGRICULTURAL LAND CLASSIFICATION REPORT

MEDWAY TOWNS LOCAL PLAN DARLAND FARM, GILLINGHAM, KENT

Introduction

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 130.1 ha of land at Darland Farm, Gillingham. The site comprises two distinct areas of land, one comprising the side slopes and bottom land of a dry valley to the north of Hempstead, whilst the second slightly smaller area occupies the ridge top and upper slopes of land to the west of Capstone Country Park. The survey was carried out in May 1996.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Medway Towns Local Plan. This survey supersedes previous ALC surveys on this land.

3. The work was carried out under sub-contracting arrangements by NA Duncan & Associates and was supervised by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey the majority of the land was in arable cultivation with the principal crops comprising wheat, barley and rape. Included within the site boundary are several areas of woodland, together with residential and farm buildings in the vicinity of Darland.

Summary

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

7. The fieldwork was conducted at an average density of one auger boring per hectare over the agricultural land. A total of 105 borings and 4 soil pits were described.

8. The area of Grade 2, very good quality agricultural land, occupies the lower lying land of the dry valley, where deep aeolian silty drift deposits have been identified. Soils in this area typically have a medium silty clay loam topsoil over a similar subsoil, which generally becomes heavier with depth. The soils are free draining, but tend to be variably flinty especially in the topsoil horizons. The major limitation associated with this area is a minor droughtiness restriction, although the quality of some areas may be further restricted by the amount of flints in the topsoil horizon. Included within this area are localised profiles of Grade 1 quality, where the available water capacity is slightly higher and the amount of topsoil stone less. However, due to the valley bottom being a frost pocket, land in this area does not qualify for Grade I.

Grade/Other land	Area (hectares)	% Total site area	% surveyed area
2	22.5	17.3	22.7
3a	39.2	30.1	39.4
3b	36.5	28.1	36.7
4	1.2	0.9	1.2
Other	30.7	23.6	-
Total survey area	99.4		100.0
Total site area	130.1	100.0	-

Table 1: Area of grades and other land

9. Good quality agricultural land, Subgrade 3a, has been mapped on the upper, north east facing slopes and also on the flatter land on the crests of the ridges. The soils in these areas are developed in Plateau Drift and Clay-with-flints, which caps the underlying chalk. On the more steeply sloping land aeolian drift forms the upper layers, but this thins out on the ridge tops, exposing the Clay-with-flints. Soils on the valley sides typically have a medium silty clay loam topsoil overlying a medium or heavy silty clay loam upper subsoil, which in turn overlies a stony reddish brown clay. The depth to the underlying chalk is variable, as is the amount of stone in the upper horizons which in many profiles is limiting in terms of ALC grading. On the crest of the ridges the soils typically have a medium or heavy clay loam topsoil over a reddish brown mottled clay subsoil, which is variably stony throughout. On the more gently sloping areas on the crests of the ridges, the land has a moderate wetness and workability limitation due to the presence of slowly permeable clayey soils, whilst on the more steeply sloping land, the soils typically have a moderate droughtiness restriction and in many profiles have a stoniness limitation due to the presence of more than 10% flints larger than 2 cm in the topsoil layer, restricting the land quality to Subgrade 3a.

10. Subgrade 3b, moderate quality agricultural land has been mapped on the more steeply sloping land on the site, where shallow, fine silty soils overlying chalk have been mapped. The major limitation associated with the majority of the area mapped as Subgrade 3b is due to a gradient limitation, as the slopes are generally in the range of 8-11°. In addition droughtiness is a further limitation on this land due to the shallow rooting depth over hard chalk. Moisture balance calculations indicate that in this low rainfall area such soils will be droughty restricting the land quality to Subgrade 3b.

11. A small area of Grade 4, poor quality agricultural land has been mapped in the north east corner of the site where the land is very steep (15-18°) and unsuited for arable cultivations.

FACTORS INFLUENCING ALC GRADE

Climate

9. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

10. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values
Grid reference	N/A	TQ 797 629
Altitude	m, AOD	125
Accumulated Temperature	day°C	1361
Average Annual Rainfall	mm	670
Field Capacity Days	days	136
Moisture Deficit, Wheat	mm	106
Moisture Deficit, Potatoes	mm	97

Table 2: Climatic and altitude data

11. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

12. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

13. The combination of rainfall and temperature at this site mean that the area is relatively dry and warm. The site is not considered to be exposed but the farmer indicated that the valley bottom was a frost pocket, due to cold air draining into this area from the surrounding higher land. The majority of the land therefore has no climatic limitation, but it is considered that because of the frost risk in the valley bottom, this area should not be graded higher than Grade 2.

Site

14. The site constitutes two distinct areas of land, the larger comprising the side slopes and bottom land of a dry valley, running south east to north west, to the north of Hempstead, with the second area occupying the ridge top and upper slopes of land to the west and north of Capstone Country Park. On the larger area, the altitude ranges form 90 m AOD on the upper valley slopes to 50 m AOD in the valley bottom. The gradients on the north east facing slopes are typically 5-7°, whilst on the south west facing slopes the land is steeper, typically 8-10°, with very steeply sloping land (15-18°) on the upper slopes at the northern end of the area. These steeper areas are therefore limiting in terms of ALC grading, restricting the land at best to Subgrade 3b and Grade 4 respectively

15. On the smaller area to the west of Capstone Country Park, the land ranges in altitude from 105 m AOD on the south western boundary to 40 m AOD in the valley bottom beside Capstone Road. Steep slopes occur at the southern end of the area and to the north west of the pumping station where slopes of 8-11° occur limiting the ALC grading to Subgrade 3b. Over the remainder of the area, the slopes are relatively gentle.

Geology and soils

16. The published geological information (BGS, 1977), shows the whole site to be underlain by Clay-with-flints.

17. There is no detailed published soil map for the area, but the reconnaissance soil survey map (SSEW, 1983) for the area shows the site to comprise soils of the Batcombe association. These soils are described as variably flinty, fine silty or fine loamy over clayey with slowly permeable subsoils and slight seasonal waterlogging, developed in Plateau drift and Clay-with-flints.

AGRICULTURAL LAND CLASSIFICATION

18. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 1

19. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III.

Grade 2

20. The area of Grade 2, very good quality agricultural land, occupies the lower lying land of the dry valley, where deep aeolian silty drift deposits have been identified. Soils in this area typically have a medium silty clay loam topsoil over a similar subsoil, which generally becomes heavier with depth. The soils are free-draining Wetness Class I (see Appendix II), but tend to be variably flinty, especially in the topsoil horizons. The major limitation associated with this area is a minor droughtiness restriction, although the quality of some areas may als be restricted by the amount of flints in the topsoil horizon. Included within this area are localised profiles of Grade 1 quality, where the available water capacity is slightly higher and the amount of topsoil stone less, but the climatic limitation in this area, referred to in paragraph 13, prevents any upgrading.

Subgrade 3a

21. Good quality agricultural land, Subgrade 3a, has been mapped on the upper, north east facing slopes and also on the flatter land on the crests of the ridges. The soils in these areas are developed in Plateau Drift and Clay-with-flints, which caps the underlying chalk. On the more steeply sloping land, aeolian drift forms the upper layers, but this thins out on the ridge tops, exposing the Clay-with-flints. Soils on the valley sides typically have a medium silty clay loam topsoil overlying a medium or heavy silty clay loam upper subsoil, which in turn overlies

a stony reddish brown clay. The depth to the underlying chalk is variable, as is the amount of stone in the upper horizons which in many profiles is limiting in terms of ALC grading (10-15% > 2 cm). The soils are generally free draining (Wetness Class I). The major limitations therefore associated with this area are droughtiness and stoniness. Moisture balance calculations indicate that the soils typically have a moderate droughtiness restriction especially for deeper rooting crops, due to the restricted rooting depth and the amount of hard stone in the soil profile, which restricts the land to Subgrade 3a. Furthermore many profiles have a stoniness limitation due to the presence of more than 10% flints larger than 2 cm in the topsoil layer, which again restricts the land quality to Subgrade 3a.

22. On the crest of the ridges the soils typically have a medium or heavy clay loam topsoil over a reddish brown mottled clay subsoil, which is variably stony throughout. The upper clay subsoil has a moderate coarse subangular blocky structure, but below approximately 45 cm the structure is coarse angular blocky and hence the soil is slowly permeable. These soils therefore have been assessed as Wetness Class II, although occasional profiles of Wetness Class I and III occur locally. The major limitation therefore associated with the more gently sloping land on the crests of the ridges, is a moderate wetness and workability limitation. The presence of slowly permeable subsoil horizons together with clay loam topsoil textures mean that these soils will be susceptible to structural damage, limiting the time that the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock, restricting the land quality to Subgrade 3a.

Subgrade 3b

23. Subgrade 3b, moderate quality agricultural land, has been mapped on the more steeply sloping land on the site, where shallow, fine silty soils overlying chalk have been mapped. The major limitation associated with the majority of the area mapped as Subgrade 3b is due to a gradient limitation, as the slopes are generally in the range of 8-11°. In addition droughtiness is a further limitation on this land due to the shallow rooting depth over hard chalk. Moisture balance calculations indicate that in this low rainfall area such soils will be moderately droughty, restricting the land quality to Subgrade 3b.

Grade 4

24. A small area of Grade 4, poor quality agricultural land, has been mapped in the north east corner of the site where the land is very steep (15-18°) and unsuited for arable cultivations.

NA Duncan for Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1977) Sheet No. 272. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) *Climatological Data for Agricultural Land Classification*. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, South East England. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
Ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	LEY:	Ley Grass	RGR:	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW:	Fallow
PLO:	Ploughed	SAS:	Set aside	OTH:	Other
HRT:	Horticultural Crops				

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.

8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column. MREL: Microrelief limitation EROSN: Soil erosion risk FLOOD: Flood risk EXP: Exposure limitation DIST: Disturbed land FROST: Frost prone CHEM: Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC :	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
CTC.	T				

ST: Topsoil Stoniness

Soil Pits and Auger Borings

1. **TEXTURE:** soil texture classes are denoted by the following abbreviations:

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts
- 1					

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content:

M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.
 F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +
- 4. MOTTLE CONT: Mottle contrast.
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. PED. COL: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology. One of the following is used:

HR:	all hard rocks and stones	SLST:	soft oolitic or dolimitic limestone
CH:	chalk	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	GH:	gravel with non-porous (hard) stones
MSST:	soft, medium grained sandston	GS:	gravel with porous (soft) stones
CT.	and much mad tam an adverter and the second	-1-	

SI: soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

degree of development	WK: weakly developed	MD: moderately developed
	ST: strongly developed	
ped size	F: fine	M: medium
	C: coarse	VC: very coarse
ped shape	S : single grain	M: massive
	GR: granular	AB : angular blocky
	SAB: sub-angular blocky	PR: prismatic
	PL: platy	

9. **CONSIST**: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extrem	ely firm	EH: extremely	hard	

- SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness:
 G: good M: moderate P: poor
- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.
- 15. Other notations:
 - APW: available water capacity (in mm) adjusted for wheat
 - APP: available water capacity (in mm) adjusted for potatoes
 - MBW: moisture balance, wheat
 - MBP: moisture balance, potatoes.

LIST OF BORINGS HEADERS 30/07/96 GILLINGHAM, DARLAND FARM

page	1
------	---

-	Sampi	F		۵	SPECT				WFTI	NESS	-WH	FAT-	-P0	TS-	м	I. REL	EROSN	FR	DST	CHEM	ALC	
	NO.		REF	USE	or Lor	GRDNT	GLEY	SPL	CLASS				AP		DRT	FLOOD		XP.	DIST			COMMENTS
-	1	TQ775	658	WHT	N	05	000		1	1	078	-37	084	-25	38					DP	3B	DR
	1P	TQ787	653	OSR	NE	04	070		1	1	105	-10	101	-8	3A					DR	3A	STONES
-		TQ776		WHT		11	000		1	1	000	Ó	000	0						GR	3B	
_		TQ787		OSR		01	000		1	1	149		114	5	2					DR	2	STONY
	3	TQ779	658	BAR	Ε	03	000		1	1	000	0	000	0					Ŷ		2	
	20	*****		000			007.0		•		104	~	100	-	2						74	
		TQ775 TQ775		OSR		01	027 (,45	2 1	3A 1	124 071		102 074	-7 -35	2 38					WE DR	3A 3B	
		TQ781		WHT Bar	NE	03	000 000		1	1 1	000		000	-35	30			Y	Y	DR	3A	
		TQ782		BAR	NW	01	000		' 1	1	000		000	ō					Ŷ	UK	34	
		TQ785		OSR		08	000		1	1	000		000	ō					•	GR	38	
	•		••••			•••			•	•		-		•								
	8	TQ786	658	OSR	SW	09	000		1	1	000	0	000	0						GR	38	
		TQ775		WHT		04	000		1	1	101	-14	087	-22	3A					DP	3B	
	10	TQ776	657	MHT	NE	04	028		2	3A	103	-12	106	-3	3A					DR	3A	WE
	11	TQ777	657	WHT	Ε	08	030		2	3A	000	0	000	0						GR	3B	
_	12	TQ778	657	BAR	Ε	10	000		1 -	1	000	0	000	0						GR	38	
		TQ779		BAR	N	01	000		1	1	153		118	9	2			Y		DR	2	FR
-		T0781		BAR		02	000		1	1	000		000	0	_			Y	Y	DR	3A	
_		TQ782		BAR	N	02	000		1	1	149		113	4	2				Y	DR	2	
	19	TQ785		OSR	SM	10	000		1	1	000		000	0						GR	3B	
	20	TQ786	65/	OSR	SW	07	000		1	1	000	U	000	0						DR	3B	
_	21	TQ787	657	RGR	SW	18	000		1	1	000	٥	000	0						GR	3B	GRADE 4
	22	TQ775		WHT		02	000		1	1	000		000	ŏ						DP	3B	DR
		TQ776		WHT		04	060		2	3A	000		000	0						WE	3A	DR
	24	TQ777		WHT	NE	03	000		-	•	000		000	0						ST	3A	
	25	TQ778		BAR	Ε	12	000			1	000	0	000	0						GR	38	
	26	TQ779	656	BAR	Ε	07	000		1	1	162	47	125	16	1				Y		1	2-DIST
	30	TQ784	656	OSR	NE	05	000		1	1	000	0	000	0						DR	3A	
		TQ785		OSR	NE	01	000		1	1	121	6	115	6	2					DR	2	
		TQ786		OSR	SW	08	000		1	1	000		000	0						GR	38	
	33	TQ787	656	OSR	SH	08	000		1	1	000	0	000	0						GR	38	DR
					~ /	~~						-		-						~~	20	
_		TQ788		OSR		08	000		1	1	000		000	0						GR	38	
		TQ775				02	000		1	1	000		000	0						DR WE	3A 24	0P
		TQ776 TQ777				01	030		2	3A 1	000		000 084	0 25	20					DR	3A 38	DR
-		TQ778				04 04	000 030		1 2 ·	1 3A	082 000		000	-25 0	3B					WE	38 38	
-	50	14770	000	OAK	L	V 4	0.00		٤	.	000	Ų	000	v						n.		
	39	TQ781	655	BAR	W	07	000		1	1	113	-2	085	-24	3A					DP	38	
		TQ783		OSR	NW	06	000		1	1	122		094	-15	3A					ST	38	
_		TQ784		OSR	NE	06	000			1	000		000	0						ST	3A	
		TQ785		OSR		07	000		1	1	000		000	0						DR	2	
		T0786				02	000		1	1	000		000	0						ST	2	
_																						
		TQ787				01	000		1	1	151		116	7	2					DR	2	ST
	46	TQ788	655	OSR	SH	09	000		1	1	000	0	000	0						GR	38	

	SAMP	IF		۵	SPECT				WET	IESS	-WH	FAT-	-P0	TS-		M. REL	1	EROSN	FR	OST	CHEM	ALC	
		GRID	RFF		01 201	GRDNT	GLEY	SPL.					AP		DR				EXP	DIST			COMMENTS
	47	TQ789	655	OSR	SW	08	000		1	1	000	0	000	0							GR	38	
	48	TQ774	654	BAR	W	06	000		1	1	082	-33	088	-21	38						DR	3B	OP
	49	TQ755	654	OSR	NE	01	030		2	3A	000	0	000	0							WE	3A	
_	50	TQ776	654	OSR	NE	01	000		1	1	000	0	000	0							ST	3A	DR
	53	TQ784	654	OSR	N	02	000		1	1	115	0	087	-22	3A						DR	3A	
	54	TQ785	654	OSR	NE	08	000		1	1	000	0	000	0							GR	38	
	55	TQ786	654	OSR	NE	07	000		1	1	153	38	118	9	2						DR	2	ST
	56	TQ787	654	OSR	NE	04	000		1	1	158	43	122	13	1							1	
		TQ788		OSR		04	000		1	1	153		118		2						DR	2	ST
	58	TQ789	654	OSR	Μ	01	000		1	1	154	39	119	10	1						ST	2	
																						_	
		TQ790				06	000		1	1	156		120	11	ł						ST	2	
		TQ792		-		08	000		1	1	000		000	0	-						GR	3B	
		TQ774				06	000	140	1	1	099	-16		-11							DR	3A 24	
		TQ775				01	025 0	J4U	2	3A 24	124		101	-8	2						WE	3A 30	
	05	TQ776	005	USK	C	03	027		2	3A	000	U	000	0							WE	3B	
	65	TQ784	653	DAD	N	05	025		2	3A	000	0	000	0							ST	3A	WE
		TQ786				07	000		1	1	000		000	0							ST	34	nc.
	68	TQ787				04	060		2	2	000		000	ō							ST	34	
	69	TQ788				05	000		1	1	000		000	õ							ST	34	
	70	TQ789				05	000		1	1	000		000	õ							ST	2	
						•••			•			•		•							•	-	
	71	TQ790	653	WHT	NE	04	000		1	2	000	0	000	0							ST	2	
	72	TQ791	653	WHT	NE	04	000		1	1	000	0	000	0							ST	2	
-	73	TQ792	653	BAR	NW	01	000		1	1	000	0	000	0							ST	2	
	74	TQ793	653	BAR	W	03	000		1	1	000	0	000	0							ST	2	
	75	TQ774	652	WHT	N	01	027		2	3A	154	39	116	7	2						WE	3A	
-																							
_		TQ775				02	050		2	за	000	0	000	0							WE	3A	
		TQ776				03	027		2	3A	000		000	0							WE	3A	
	78	TQ784				03	000		1	1	000		000	0							ST	34	
		TQ785				03	030		2	3A	000		000	0							WE	3A 24	
	81	TQ787	ъ52	USR	NE	04	000		1	1	000	0	000	0							ST	3A	
	~~	10200				00	000		•	•		•	000	•							ст	20	
		T0788			NE	06 05	000		1	2	000		000	0							ST DR	38 3A	
		TQ789 TQ790			NE		000 000		1	1	000		000 000	0							DR	34	CH AT 48
		T0790			NE NE		000		1 1	1 1	000 000		000	0							ST	2	VI A1 40
		TQ792				04	045		2	2	000		000	0							DR	2	
		14136	V JC	74111			ل ب		E.	د	000	5		0							M.	-	
	87	T0793	652	ынт	ε	05	000		1	1	000	0	000	0							ST	2	
		TQ794				09	000		1	1	000		000	ō							GR	- 38	
		TQ773					028		2	ЗА	000		000	ō							WE	3A	DR
		T0774					065 0	65	2	3A	000		000	ō							WE	3A	
		TQ775					028 0		2	3A	128		108	-1	2						WE	3A	
_											-	-											
	92	TQ776	651	OSR	ε	04	000		1	1	089	-26	088	-21	38						ST	38	DR
		TQ785				02	000		1	1	106			-31	38						DR	38	ST

LIST OF BORINGS HEADERS 30/07/96 GILLINGHAM, DARLAND FARM

SA	MPLE			A	SPECT				WETI	NESS	-WHE	EAT-	-P0	TS-	м	I. REL	EROSN	FRO	ST	CHEM	ALC	
NC). G	RID	REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	KP	DIST	LIMIT		COMMENTS
		791	651	WHT	NE	05	045		2	2	000	0	000	0						ST	3A	
10	0 TQ	792	651	WHT	NE	05	000		1	2	000	0	000	0						ST	3A	
10	1 TQ	793	651	WHT	Ε	60	000		1	2	143	28	120	11	2					GR	38	
10	2 TQ	794	651	BAR	NW	02	000		1	1	000	0	000	0						ST	2	
10	3 TQ:	795	651	8AR	SH	08	000		1	1	000	0	000	0						GR	38	ÐR
- 10	5 TQ	774	650	WHT	N	01	030	065	2	3A	129	14	110	1	2					WE	3A	
_ 10	6 TQ	775	650	WHT	NE	02	000				000	0	000	0						DR	3A	
10	7 TQ	776	650	OSR	Ε	05	050		2	3A	107	-8	109	0	3A					WE	3A	DR
I 10	8 TQ	786	650	BAR	NW	01	030		2	3A	000	0	000	0						WE	3A	
11	4 TQ	794	650	WHT	NE	05	000		1	1	000	0	000	0						DR	3A	
11	5 TQ	795	650	BAR	NW	02	000		1	1	152	37	118	9	2					ÐR	2	ST
11	7 TQ	774	649	HHT	NE	02	028		2	3A	000	0	000	0						WE	3A	
n 11	8 TQ	775	649	WHT	Ε	05	027		2	3A	000	0	000	0						WE	3A	
11		795	649	BAR	NW	03	000		1	1	084	-31	090	-19	38					DR	38	
12	0 TQ:	773	648	WHT	Ε		028		2	38	000	0	000	0						WE	38	
12		774	648	ынт	E	06	000		1	1	085	-30	091	-18	38					DR	3B	
12	2 TQ	775	648	WHT	Ε	11	000		1	1	000	0	000	0						GR	38	DR
12	3 TQ	774	647	WHT	E	08	000		1		000	Û	000	Ô						GR	3B	DR
12	4 TQ	773	646	WHT	£	03	030 (030	3	3B	131	16	095	-14	3A					WE	3B	
12	5 TQ	774	646	WHT	Ε	08	000		1	1	000	0	000	0						GR	3B	
1 2	6 TQ	773	645	WHT	E	08	000		1	1	000	0	000	0						GR	3B	DR
12	7 TQ	774	645	WHT	Ε	10	000		1	1	000	0	000	0						GR	38	
12	8 TQ	774	644	WHT	Ε	07	000		1	1	085	-30	090	-19	38					DR	38	
_ 12	9 TQ	774	643	WHT	E	08	000		1	1	000	0	000	0						GR	3B	
13	0 то	780	659	BAR	NE		000		1	1	137	22	121	12	2			Y		DR	2	FR

.

.

---- MOTTLES----- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 10YR43 00 1 0-25 mcl 7 2 HR 10 Y 25-70 10YR43 00 0 0 HR 5 P ch 19 10YR33 00 0-27 10 0 HR 12 ٧ mzcl 25 MDCSB FM M 27-70 75YR55 00 0 0 HR hzc1 70-90 С 05YR46 00 75YR56 00 C 05YR44 00 S 0 O HR 12 MDMAB VM M 90-110 ch 10YR81 00 Ρ S 0 0 HR 5 2 0-27 hc1 10YR34 00 6 O HR 8 75YR56 00 0 0 HR 5 27-70 70 4 2 HR 2P 0-28 mzcl 10YR33 00 7 Y 28-80 hzc1 10YR55 00 Ó O HR 10 MDCSB FR M 80-120 mzcl 75YR55 00 0 0 HR 5 WKCSB FR M Y 3 0-30 10YR43 00 3 0 HR 6 hc1 . 30-65 10YR44 00 0 0 HR 6 hc1 . 65-80 10YR55 00 0 0 HR 5 hzc1 80-85 hzc1 10YR55 00 0 0 HR 20 3P 0-27 hc1 10YR33 00 5 2 HR 8 Y 10 MDCS8 FM M 27-45 10YR54 00 75YR56 00 C S 0 0 HR С 5 MDCAB FM P 45-80 с 10YR63 64 05YR58 00 C 10YR63 00 Y 0 0 HR Y Y 80-120 c 25Y 63 00 75YR56 00 C Y 0 0 HR 5 WKVCSB FM P Y Y 4P Y 0-27 10YR33 00 6 6 HR 15 hc1 27-60 10YR81 00 0 0 HR 3 Ρ ch 10YR42 00 5 0-30 mzcl 2 3 HR 6 30-70 hc1 10YR43 00 0 0 CH 50 Y 2 0 HR 10YR43 00 6 0~30 hzc] 5 30-50 hc1 10YR54 00 0 0 0 Y 50-80 10YR53 00 0 0 CH 15 mc1 80-95 75YR44 00 0 0 HR 5 hc1 7 0-27 mzc1 10YR43 00 7 4 HR 13 0 0 HR 27-35 mzc1 10YR74 00 15 Y 35-40 10YR82 00 0 0 HR 5 ch 0-23 10YR53 00 5 0 HR 5 8 mzcl 23-35 10YR53 00 0 0 HR 10 mzcl 35-40 ch 10YR82 00 0 0 HR 5 10YR42 00 4 2 HR 9 0-28 8 mcl Ρ 28-100 ch 10YR81 00 0 0 HR 5 10 0-28 hcl 10YR33 00 5 3 HR 9 75YR54 00 00MN00 00 F 8 М 28-45 S 0 O HR С 05YR56 00 00MN00 00 F М 45-67 С S OOHR 10 67-85 10YR81 00 S 0 0 HR 5 P ch

1

1

COMPLETE LIST OF PROFILES 30/07/96 GILLINGHAM, DARLAND FARM

_				MOTTLES-	 PED			-STONE	S	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR									IMP SPL CALC
	0 20	h-1	754043 00				2	0 HR	7			Ŷ
	0-30 30-50	hcl c	75YR43 00	00MN/00 00 F		s		0 HR	8			Ŷ
	50-50 50-90	c hzcl		00MN00 00 F		S		0 HR	5			•
_	30-30	nzu i	731830 00			U	Ū	U III	Ĵ			
12	0-35	hc1	10YR53 00				4	2 HR	9			Y
12	35-60	hc1	10YR55 00				0	0 HR	5			Y
_	60-100	ch	10YR81 00				0	0 HR	5			
.							•	A 1/ D	-			
13	0-30	mc]	10YR43 00					0 HR	5		M	Y Y
—	30-70	hzc1	10YR64 00					0 HR 0 HR	3 3		M	Y
	70-120	hzc1	75YR55 00				U	VIR	3		r)	•
15	0-30	mzcl	10YR53 00				0	0 HR	2			Y
	30-50	zl	10YR65 00				0	0	0			Y
16	0-34	ms l	10YR23 00					0 HR	3			Y
_	34-70	hzc1	75YR44 00					0 HR	8		M	Y
	70-120	mzcl	75YR56 00				0	0 HR	2		M	
19	0-27	mzcl	10YR53 00				5	6 HR	13			Y
_ 13	27-40	ch	10YR82 00					0 HR	5			·
	21 10	GI					-		-			
20	0-30	mzcl	10YR43 00				5	2 HR	8			Y
_	30-35	ch	10YR82 00				0	0 HR	5			
21	0-30	mzcl	10YR53 00					0 HR	10			Ŷ
-	30-40	mzcl	10YR74 00					OHR	10			Ŷ
	40-45	ch	10YR82 00				0	OHR	5			
22	0-25	hcl	10YR33 00				5	6 HR	14			Y
	25-35	ch	10YR81 00					0 HR	10			
-												
23	0-25	hc1	10YR43 00				8	0 HR	10			Y
-	25-60	hc1	75YR45 00				0	0 HR	15			
-	60-70	c	05YR55 00	00MN00 00 F		S	0	0 HR	15			
24	• •••						-	5 118				
24	0-28	hcl	75YR43 00					5 HR	14			
	28-40	yhc]	75YR45 00				U	OHR	20			
25	0-23	с	75YR44 00				9	3 HR	15			Y
	23-50	hzcl	75YR56 00					0 HR	3			
26	0~55	mzc1	10YR53 00				0	O HR	4			¥
	55-120	hzcl	10YR55 00				0	O HR	5		м	Ŷ
	A		100000				r		~			
30	0-28	mzcl	10YR43 00					1 HR	6			Ŷ
_	28-45	mzcl	10YR55 00				0		20			Ŷ
-	45-50	ch	10YR81 00				0	OHR	5			

					MOTTLES	S	PED			<u>S</u> T	ONE	S 	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN								CONSIST		R IMP :	SPL CAL	с
-																	
31	0-30	mzc]	10YR33 00							0		5					
	30-90	hzc]	75YR54 00						0	0	HR	11		М			
32	0-28	mzcl	10YR43 00						6	0	HR	8				Y	
	28-45	mzcl	10YR64 00						0	0	HR	5				Y	
	45-50	ch	10YR81 00						0	0	HR	5					
a 33	0-27	mzcl	10YR53 00						3	5	HR	9				Y	
	27-30	ch	10YR81 00						0	0	HR	5					
34	0-30	mzcl	10YR43 00						6	4	HR	11				Y	
	30-50	mzcl	10YR73 00						0	0	СН	40				Y	
	50~55	ch	10YR81 00						0	0	HR	5					
35	0-25	hc]	10YR33 00						8	2	HR	11				Y	
	25-35	c	05YR46 00							0		20				Ŷ	
-	35-70	ch	10YR81 00							0		10					
36	0~30	hcl	10YR33 00						8	0	HR	10					
-	30-50	с	05YR56 00	OOMNOO	0 00 F			S	0	0	HR	15					
37	0-25	с	10YR33 00						10	0	HR	12				Ŷ	
	25-40	с	75YR55 00						0	0	СН	70		Μ		Y	
-	40-75	ch	10YR81 00						0	0	HR	5		Ρ			
38	0-30	hc1	10YR43 00						5	0	ыD	7				Ŷ	
	30-50	c	75YR56 00		0 00 F			s		0		10				Ý	
-		•		- 0,				Ŭ	•	•						-	
39	0-25	ຫcl	10YR52 00						8	2	сн	15				Y	
	25-120	ch	10YR81 00		-				0	0	HR	5		Р			
41	0-28	hzcl	10YR33 00						6	10	HR	20				Ŷ	
	28-50	c	75YR46 00						0	0	HR	10		м		Ŷ	
_	50-120	ch	10YR81 00						0	0	HR	5		Р			
42	0-23	hzc)	10YR43 00						10	2	HR	14				Ŷ	
	23-50	c	75YR56 00						0			8				Ŷ	
-	50-70	hzcl	10YR56 00						0	0	HR	5				Y	
43	0-30	mzcl	10YR44 00						5	2	н₽	8				Ŷ	
	30-85	mzcl	75YR55 00	0000000	00 F					2		3				Ý	
				-0.000					~	~		5				•	
44	0-28	mzcl	75YR43 00						5	1	HR	7				Y	
	28-90	hzcl	75YR56 00						0	0	HR	3				Ŷ	
45	0-28	mzcl	10YR33 00						4	2	HR	7				Ŷ	
	28-85	hzcl	10YR55 00						0	0		8		M		Ý	
	85-120		75YR55 00						-	0		3		M		Ŷ	

.

.

				~~_ _ ł	OTTLES	S	PED			-ST	ONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6 I	LITH	тот	CONSIST	STR POR	R IMP SPL	CALC
46	0-33	mcl	10YR42 00						6	0 1	HR	8				Y
	33-50	mzcl	10YR53 00						0	0 (СН	15				Y
-	50-70	chalk	10YR82 00						0	0		0				
47	0-25	mzcl	10YR43 00						6	3 (HR	12				Y
	25-35	chalk	10YR83 00						0	01	ΗR	15				
48	0-28	hcl	10YR33 00						3	21	HR	5				Y
	2870	ch	10YR81 00						0	0 1	HR	5		Ρ		
49	0-30	hc1	10YR33 00						6	0 1	HR	10				Y
ļ	30-70	с	75YR54 00	05YR56	500C			Y	0	0	HR	10				
50	0~28	hcl	75YR43 00						8	2	HR	11				
	28-50	hcl	75YR56 00		,				0	0	HR	13				
53	0-25	mzc]	10YR43 00						2	2 (сн	15				Y
	25-120	ch	10YR81 00						0	01	HR	5		Ρ		
54	0-27	hc1	10YR33 00						8	4 1	HR	14				Y
	27-70	hzcl	75YR55 00						0	0	HR	2				Y
55	0-27	mzcl	10YR43 00						8	0 1	HR	10				Y
	27-90	hzcl	75YR55 00	000000) 00 F				0	0 1	HR	2		м		Y
	90-120	mzcl	75YR65 00						0	0 1	HR	2		M		
56	0-30	mzcl	10YR33 00						4	01	HR	5				Y
•	3085	hzc1	75YR55 00						0	0		0		м		Y
	85-120	mzcl	75YR65 00						0	01	⊦R	2		M		Y
57	0-30	mzc]	10YR43 00						5	0 1	HR	8				¥
	30-120	mzcl	75YR55 00						0	01	HR	4		м		Y
- 58	0-30	mzc]	10YR42 00						5	0 1	HR	7				Y
	30-120	hzcl	75YR55 00						0	0	HR	3		м		Y
59	0-32	mzc]	10YR43 00						4	21	IR	7				Y
	32-80	mzc]	10YR64 00						0	0 (ЭН	4		м		Y
ļ	80-120	mzc]	10YR72 00		·				0	0 (CH	5		M		Y
60	0-30	mzcl	10YR53 00						5	6 I	HR	12				Y
	30-40	ch	10YR83 00						0	01	HR	5				Y
61	0-30	hc1	10YR33 00						5	01	⊦R	6				Ŷ
	30-50	с	10YR46 00						0	0 (СН	30		м		Y
l	5080	ch	10YR81 00						0	0 1	HR	5		Ρ		
62	025	hc1	10YR33 00						6	11	łR	8				Y
	25-40	с	10YR54 00					S	0	01		8		M		
•	40-80	c	10YR64 00					Y	0	01		5		P	Y	
•	80-120	с	25Y 63 00	75YR56	5 00 C			Y	0	01	łR	2		Р	Y	

.

COMPLETE LIST OF PROFILES 30/07/96 GILLINGHAM, DARLAND FARM

-				MOTTLES	PED			-STONES		STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR								STR POR IMP SP	L CALC
63	0-27	с	10YR33 00			•		5 HR	10			
	27-45	c		00MN00 00 C		S		0 HR	11			
	45-70	с		00MIN00 00 M		Y		0 HR	13			
_	70-75	с	75YR64 00	00MN00 00 M		Ŷ	U	<u>ó</u> hr	20			
65	0.25	_	753042 00					E UD	15			Y
60	0-25 25-50	c	75YR43 00	00MN00 00 C		Y		5 HR 0 HR	15 15			Y
	23-30	c	USTR40 UU	UUMAGO OU C		T	U	U NK	15			,
67	0-28	mzcl	10YR33 00				12	2 HR	15			Y
	28-50	hzcl	75YR55 00					0 HR	5			Ŷ
	50-70	zc	75YR55 00					0 HR	18			
68	0-30	mzcl	10YR33 00				10	OHR	14			Y
-	30-60	hzcl	75YR55 00				0	0 HR	15			Y
	60-70	с	05YR46 00	00MN00 00 C		S	0	0 HR	15			
69	0-28	mzcl	10YR33 00				6	4 HR	12			Y
_	28-70	hzcl	75YR55 00	00MN00 00 F			0	O HR	12			Y
- 70	0-28	mzcl	10YR43 00				6	2 HR	8			Y
	28-80	hzc1	75YR55 00				0	0 HR	8			Y
Ĩ				•								
71	0-28	hzcl	10YR44 00					OHR	9			Y
	28-75	hzcl	75YR56 00					OHR	8			Y
	75-85	hzcl	10YR64 00				0	0 HR	10			Y
		_					-		~			
72	0-28	mzcl	10YR43 00					0 HR	8			Ŷ
	28-90	hzcl	10YR55 00	00MIN00 00 F			0	0 HR	10			Y
73	0-28	a na 1	10YR33 00				5	1 HR	8			Y
• /3	28-60	mzcl mzcl	101R55 00					0 HR	17			Ŷ
-	20-00		101835 00				Č	V the				,
74	0-28	mzc1	10YR43 00				5	5 HR	10			Y
	28-70	hzcl	10YR55 00					OHR	10			Ŷ
_							-	• • • • •				
75	0-27	hc1	10YR33 00				2	0 HR	3			Y
	27-75	hc1		75YR56 00 C		Y	0	0	0		м	
	75-120	scl	10YR55 00	10YR56 00 C		Y	0	0	0		м	
76	0-27	hc1	10YR33 00				4	0 HR	6			
	27-50	с	75YR56 00	00MN00 00 F			0	O HR	10			
	50-70	c	75YR54 00	75YR56 00 C		Y	0	O HR	9			
- 77	0-27	hc1	75YR33 00				6	6 HR	14			
-	27-60	c	05YR56 00	00MN00 00 C		Ŷ	0	0 HR	13			
								• ··-				
7 8	0-30	hcl	75YR43 00				-	3 HR	15			Y
-	30-50	mcl	10YR65 00				Q	0 HR	18			Y

COMPLETE LIST OF PROFILES 30/07/96 GILLINGHAM, DARLAND FARM

				M	DTTI ES	j	PED			-ST	ONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL 4									CONSIST		imp sp	L CALC
- 79	0-30	hc1	75YR43 00						6	0	HR	10				
	30-70	с	75YR56 00	00mn00	00 C			S	0	0	HR	8				
81	0-27	hc1	10YR33 00						11	2	HR	34				Y
	27-45	hcl	75YR45 00						0	0	HR	15				Y
82	0-20	hc1	10YR43 00						8	7	HR	18				Y
-	2030	hcl	75YR56 00							0		30				Ŷ
83	0-30	mzcl	10YR43 00						6	0	HR	8				Y
_	30-40	hcl	75YR56 00						0	0	HR	15				
84	0-30	mzcl	10YR33 00						6	2	HR	10				Y
-	30-48	hc1	10YR64 00						0	0	HR	10				Y
85	0-30	mzcl	10YR33 00						5	0	HR	8				Y
-	30-60	hzcl	75YR55 00						0	0	HR	10				Y
86	0-30	mzcl	10YR33 00						3	0	HR	5				Y
	30-45	hc1	75YR55 00						0	0	HR	10				Y
-	45-50	c	75YR55 00	00mn00	00 C			S	0	0	HR	15				
87	0-28	mzcl	10YR43 00						6	0	HR	8				Y
-	28-70	hzcl	10YR55 00						0	0	HR	5				Y
88	0-27	mzcl	10YR53 00						8	3	HR	11				Y
•	27-30	ch	10YR83 00						0	0	HR	5				
89	0-28	hc1	10YR33 00						0	0	HR	5				¥
	28-65	с	10YR54 00	10YR56	00 Ç			S	0	0	HR	5				
_	65-70	ch	10YR81 00					S	0	0		0				
90	0-28	hcl	10YR43 00							2		7				
-	28-65	с	10YR65 00							0		2				
a .	65-80	с	10YR64 00	10YR66	00 C			Ŷ	0	0	HR	5			Ŷ	
91	0-28	hc1	10YR33 00						4	2	HR	7				
	28-60	с	10YR54 00					S	0	0		5		м		
	60 -120	с	25Y 54 00	05YR56	00 C			Y	0	0	HR	5		Р	Y	
92	0-25	hc1	10YR33 00						5	10	HR	15				Y
	25-40	с	75YR76 00						0	0	HR	15		м		Y
	40-80	ch	10YR81 00						0	0	HR	5		Ρ		
93	0-26	c	75YR44 00						8	10	HR	20				Y
	26-120	ch	10YR81 00						0	0	HR	5		P		
99	0-30	mzc]	75YR43 00						5	7	HR	15				Y
•	30-45	hzc1	75YR56 00	00MN/00	00 F				0	0	HR	10				Y
	45-70	с	05YR46 00					Y	0	0		15				

COMPLETE LIST OF PROFILES 30/07/96 GILLINGHAM, DARLAND FARM

.

-					-MOTTLE	S	PED			-sto	ONES	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN									IMP SPL CALC
_									-					
100	0-28	hc1	10YR56 00						_	51				Ŷ
	28-60	hc1	75YR56 00	000010					0	01				Y Y
_	60-90 90-120	hzc1	10YR56 00 75YR46 00						0	01				T
	90-120	c	731840 00	UUMNU	0 00 1				0	0,		,		
101	0-28	hzcl	75YR43 00						3	0 F	IR !	5		Y
-	28-108	hzcl	75YR55 00	OOMNO	00 00 F	:			0	0	HR :	3	м	
										•				
102	0-30	mzcl	10YR43 00						6	01				Y Y
	30-70	hzc1	75YR55 00						U	01	HR 1			Ť
103	0-28	mzcl	10YR43 00						12	01	HR 1	5		Y
	28-45	mzcl	10YR84 54						0	0 0	СН 54)		Y
									_			_		
105	0-30	hc1	10YR43 00	_						11				
	30-65	C	75YR55 00					S	0	01		5	M	
	65-120	hcl	10YR64 00	75YR5	x6 00 C	,		Y	0	01	1K 2	5	Р	Y
106	0-28	hc1	10YR43 00						4	2 1	HR 8	3		
	28-40	hc1	10YR55 00						0	01	HR 14	3		
107	0-25	hc1	10YR43 00						8	3	HR 1:	2		Y
	25-50	hc1	10YR54 64						0	0	HR	5	M	
	50-70	с	75YR55 00		00 00 0	3		S	0	0 1		5	M	
	70-90	ch	10YR81 00					S	0	0	HR	5	Р	
108	0-30	hcl	10YR33 00						8	0 1	HR 1	1		
100	30-50	c	05YR56 00		00 00 0			s		01				
	30-30	C	00100000	00110		-		U	·	•		-		
114	0-30	mzcl	10YR33 00						2	0 1	HR 4	1		Y
	30-45	mzcl	75YR56 00						0	0 1	HR 1	5		Y
115	0-28	mzc]	10YR43 00						5	01		7		Ŷ
	28-50	hzc1	10YR54 00						0			5	M M	Ŷ
	50-120	hzcl	10YR55 00						Ų	01	HK .	5	m	Ŷ
117	0-28	hc1	10YR43 00						5	0 1	HR	7		Y
	28-60	c	75YR55 54		56 00 C	2		s		0 1		5		Y
	60-80	с	75YR54 00				OOMNOO	00 S	0	01	HR I	3		
118	0-27	С	10YR43 00							6				Y
	27-50	с	05YR56 00	OOMNO	00 00 0	2		S	0	0	HR 1	2		
	0 20	b	100043 00						10	0 1	HR 1	5		Y
119	0-28 28-45	hzcl hzcl	10YR43 00 10YR73 00							0 (м	Y
Î	45-70	ch	10YR82 00							01		5	P	·
									-					
120	0-28	с	10YR33 00						5	21	HR	9		Y
	28-50	с	05YR56 00	OOMNO	00 00 F	.		S	0	0 1	HR 1	5		

					M	OTTL	ES		PED		_		-ST	ONES		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	00	L.	ABUN	C	CONT	ΩL.	GLE	Y >	2 >	6	LITH	тот	CONSIST	STR 1	POR I	mp si	۶L	CALC
121	0-25	hzcl	10YR43 (00								4	5	HR	10						Y
	25-33	hzc1	10YR44 (сн	30		м				Y
	33-70	ch	10YR81 0											HR	3		P				•
	33-70	CI1	101101									Ū	Ŭ	***	5		•				
122	0-30	mzcl	10YR53 (00								3	0	HR	5						Y
	30-50	ch	10YR81 (00								0	0	HR	5						
123	0-30	hzc1	10YR43 (າດ								2	2	HR	5						Y
,20	30-40	ch	10YR81 (0		0						•
124	0-30	c	10YR43 (00							1	0	5	HR	15						
	30-75	c	25Y 63 (00 10Y	R66	56 (Ċ	0	OMN00	00 N	1	0	0	HR	2		Р		•	Y	
	75-120	hzc1	25Y 64 (00 10Y	R68	00 1	M			١	'	0	0	HR	2		м		1	Y	
125	0-28	hzc1	10YR43 (0								2	٥	HP	4						Y
125	28-45	hzc1	10YR54 (СН	18						Ŷ
•	45-50	ch	10YR81 (-	õ	G 1	0						•
	49-50	ĢI										Č	Č		Ť						
126	0-30	c	75YR43 (00								4	4	HR	10						Y
	30-50	ch	10YR81 (00								0	0	HR	5						
						,						_			_						
127	0-30	hzc1	10YR43 (-	-	HR	5						Y
	30-95	hzc1	10YR64 (00								0	0	СН	5						Y
128	0-27	mzc]	10YR52 (00								2	0	HR	4						Y
	27-70	ch	10YR81 (00								0	0	HR	5		Ρ				
-																					
129	0-25	mzc)	10YR34 (2			4						Y
	25-55	mzcl	75YR65 (сн	18						Y
-	55-60	ch	10YR81 (00								0	0	HR	5						
130	0-28	azc1	10YR43 (00								2	0	HR	3						Y
	28-100	hzcl	10YR55 (HR	3		м				
-																					

. .

.

.

-

,

Grid Refe	erence: TQ7	/87 653	-	-	: 143 : 136 : 011					
HORIZON	TEXTURE	COLOUR	STONES >2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 27	MZCL	10YR33 0	0 10	12	HR					Y
27- 70	HZCL	75YR55 0	0 0	25	HR		MDCSB	FM	м	Y
70- 90	С	05YR46 0	0 0	12	HR	С	MDMAB	VM	м	
90-110	СН	10YR81 0	0 0	5	HR				Ρ	Y
Wetness (Grade : 1		Wetness Cla	ss : I						
			Gleying	:070	cm					
			SPL	: No	SPL					
Drought (Grade : 3A		APW : 105mm	MBW : -1	0 mm					
			APP : 101mm	MBP : -	8 mm					

MAIN LIMITATION : Droughtiness

· .

.

Site Nar	me : GILLINO	SHAM, DARL	ND FARM	Pit Number	: 2	2P				
Grid Rei	ference: TQI	787 655	Accumulate Field Cap Land Use	nnual Rainfall ed Temperature acity Level Aspect	: 143 : 136 : 011		•			
HORIZON 0- 28 28- 80 80-120	TEXTURE MZCL HZCL MZCL	COLOUR 10YR33 00 10YR55 00 75YR55 00	0	>2 TOT.STONE 7 10 5	LITH HR HR HR	MOTTLES	Structure MDCS8 WKCSB	CONSIST FR FR	SUBSTRUCTURE M M	CALC Y Y Y
Wetness	Grade : 1		Wetness Ç Gleying SPL	lass : I :000 : No						
Drought	Grade : 2		APW : 149 APP : 114		і4 mm 5 mm					

FINAL ALC GRADE : 2 MAIN LIMITATION : Droughtiness

.

Site Nam	e : GILLIN	GHAM, DARL	AND FARM .	Pit Number	: 3	3P				
Grid Ref	erence: TQ	775 653	Average Annu Accumulated Field Capac Land Use Slope and As	Temperature ity Level	: 143 : 136 : 011		•			
HORIZON 0- 27	TEXTURE	COLOUR	STONES >2	TOT.STONE 8	LITH HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
27-45	C	10YR54 0		10	HR	с	MDCSB	FM	м	•
45-80	č	10YR63 6		5	HR	č	MDCAB	FM	P	
80-120	c	25Y 63 0		5	HR	c	WKVCSB	FM	P	
Wetness (Grade : 3A		Wetness Clas Gleying SPL	s : II :027 :045						
Drought (Grade : 2		APW : 124mm APP : 102mm		9 mm 7 mm					
FINAL ALC	C GRADE :	3A	•							

MAIN LIMITATION : Wetness

.

.

Grid Refe	rence: TQ7	75 656	Accumulated Field Capac Land Use	ual Rainfall Temperature ity Level spect	: 143 : 130 : Whe	34 degree 5 days				
IORIZON	TEXTURE	COLOUR	STONES >2		-	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	
0- 27 27- 60	HCL CH	10YR33 00 10YR81 00		15 3	HR HR				Ρ	Ŷ
letness G	rade : 1		Wetness Cla Gleying SPL	ss : I :000 : No						
)rought G	rade : 38		APW : 071mm APP : 074mm		4 mm 5 mm					

.

MAIN LIMITATION : Droughtiness

.