A1 Test Valley Local Plan Review Sites 125 130 Land south east of Romsey Hampshire

Agricultural Land Classification Semi detailed Survey ALC Map and Report

December 1996

Resource Planning Team Eastern Region FRCA Reading
 RPT Job Number
 1512/194/96

 FRCA Reference
 EL 15/00292

 LURET Job Number
 02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITES 125 130 LAND SOUTH EAST OF ROMSEY HAMPSHIRE

SEMI DETAILED SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 61 hectares of land to the to the south east of Romsey south Hampshire The survey was carried out during December 1997

The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review All of this site currently being considered was surveyed in 1983 (ADAS Ref 1512/023/83) at a reconnaissance level of detail prior to the revision of the ALC guidelines in 1988 (MAFF 1988) The results of the more detailed 1996 survey supersede any previous ALC information for this land

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA) Reading The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey all of the agricultural land was in permanent grassland The areas shown as Other Land comprise areas of scrub and agricultural buildings

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	/ surveyed area	/ site area
2	73	12 6	12 0
3a	10 0	17 2	16 5
3Ъ	356	614	58 6
4	51	88	84
Other land	2 7	N/A	4 5
Total surveyed area	58 0	100 0	95 5
Total site area	60 7		100 0

Table 1 Area of grades and other land	Table 1	Area	of	grades	and	other	land
---------------------------------------	---------	------	----	--------	-----	-------	------

7 The fieldwork was conducted at an average density of approximately two borings every three hectares A total of 38 borings and four soil pits were described

8 Much of this site has been classified as Subgrade 3b (moderate quality) land Subgrade 3a (good quality) land has been mapped on the northern mid slopes Grade 2 (very good quality) land has been classified adjacent to the railway line which forms the western site boundary

9 The majority of profiles on the site suffer from wetness problems to varying degrees Soil wetness acts to restrict the flexibility of cropping stocking and cultivations Typically medium textured loamy topsoils overlie similar upper subsoils These profiles pass to poorly structured clay loams or clays which act to impede soil drainage The depth to these poorly structured horizons will determine the final ALC grade Where these poorly structured horizons are shallow the drainage will be poor and the land is classified as Subgrade 3b Elsewhere where they are deeper within the profile the resulting ALC grade will be Grade 2 or Subgrade 3a depending upon local circumstances

10 The higher land around Whitenap Farm comprises gravelly soils derived from river gravel deposits At this locality these soil characteristics act to impart a soil droughtiness limitation such that this land will have lower and less consistent crop yields A classification of Subgrade 3b is appropriate Where the gravelly deposits occur deep within the profile the limitation is much less severe Consequently some of the Grade 2 land is equally limited by soil droughtiness as well as soil wetness

11 The higher land between Keepers Cottage and the Mountbatten School is classified as Grade 4 According to the geology map for this area this land has undergone gravel extraction The re instated soils have significant amounts of larger flints in the topsoil and highly variable subsoils which restricts the flexibility of this land

FACTORS INFLUENCING ALC GRADE

Climate

12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

13 The key climatic variables used for grading this site are given in Table 2 overleaf and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

15 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

Table 2	Climatic	and	altitude dat	a
---------	----------	-----	--------------	---

Factor	Units	Values	
Grid reference	N/A	SU 364 202	SU 369 207
Altıtude	m, AOD	18	35
Accumulated Temperature	day°C (Jan June)	1534	1514
Average Annual Rainfall	mm	814	818
Field Capacity Days	days	174	175
Moisture Deficit, Wheat	mm	110	108
Moisture Deficit, Potatoes	mm	105	102
Overall climatic grade	N/A	Grade 1	Grade 1

16 The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations At this locality the climate is relatively wet in regional terms As a result the likelihood of soil wetness problems may be increased No local climatic factors such as exposure or frost risk are believed to adversely affect the land quality on the site This site is climatically Grade 1

Site

17 The highest land which occurs around Whitenap Farm and to the east of Beggarspath Wood lies at an altitude of approximately 35 m AOD The land gently falls (1 4) typically in a westerly direction The western half of the site is flat and lies at an altitude of approximately 18 m AOD Nowhere on the site do gradient or microrelief adversely affect agricultural land quality

Geology and soils

18 The published geology map (BGS 1987) shows the flatter western half of the site to be underlain by river terrace deposits (mainly loam and clay resting on river terrace gravels) The mid slopes of the site are shown to be underlain by the Wittering Formation (part of the Bracklesham Group) whilst the higher land around Whitenap Farm is mapped as river terrace deposits (mainly gravel) The higher land to the east of Beggarspath Wood is shown on the published geology map for the area as having been extracted for gravel Discrete areas in the centre of the site are shown to be underlain by alluvium and Earnley Sand (the latter also being part of the Bracklesham Group)

19 The most detailed published soil map for this area (SSEW 1983) shows most of the site to comprise soils of the Wickham 3 Association These soils are described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging Some deep coarse loamy soils affected by groundwater (SSEW 1983) A thin strip of land adjacent to the railway line is shown as the Hamble 2 Association These soils are described as Deep stoneless well drained silty soils and similar soils affected by groundwater over gravel locally (SSEW 1983) A small area in the extreme south of the site is mapped as soils of the Hurst Association These soils are described as Coarse and fine loamy permeable soils mainly over gravel variably affected by groundwater (SSEW 1983)

Agricultural Land Classification

The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II page 10

Grade 2

22 Land adjacent to the railway line has been classified as Grade 2 (very good quality) This land is limited by minor soil droughtiness sometimes in conjunction with minor soil wetness This land approximates to the area shown as the Hamble 2 and Hurst soil associations Profiles typically comprise non calcareous medium clay loam topsoils which overlie permeable similarly textured upper subsoils Lower subsoils also comprise medium clay loams and occasionally brownish heavy clay loams both of which are permeable Topsoils are slightly stony containing 0 2% flints > 2 cm and 5 8% total flints Subsoils have a similar stone content though pass into much stonier (32 45% total flints) lower suboils at approximately 85 to 95 cm depth These profiles which are well drained (Wetness Class I) are typified by Pit 2 (see Appendix II) The interaction between the soil characteristics with the prevailing climate acts to reduce the amount of soil available water Consequently this land may be subject to lower and less consistent crop yields

Where soil wetness is also equally limiting the profiles lack the very stony lower horizons and pass into slowly permeable heavy clay loams or clays at between 70 and 75 cm depth. These profiles are moderately well drained (Wetness Class II) as indicated by gleying from between 45 and 70 cm depth. The interaction between the medium textured topsoils drainage characteristics and the relatively wet prevailing climate means that this land may be subject to minor restrictions on the flexibility of cropping stocking and cultivations

Subgrade 3a

Land on the mid slopes in the north of the site has been classified as Subgrade 3a (good quality) because of soil wetness and workability limitations Profiles comprise non calcareous medium clay loam topsoils which pass into permeable similarly textured or slightly heavier (heavy clay loam) upper subsoils At approximately 48 to 55 cm depth, these pass into slowly permeable heavy clay loam and clay lower subsoils These profiles are imperfectly drained (Wetness Class III) and are gleyed from 45 to 55 cm depth In some of the profiles the slowly permeable layers occur deeper within the soil profile(55 to 70 cm depth) however these profiles are gleyed within 40 cm depth Consequently these profiles have also been assessed as imperfectly drained (Wetness Class III) The interaction between the medium textured topsoils imperfect drainage characteristics and the relatively wet prevailing climate means that this land may be subject to some restrictions on the flexibility of cropping stocking and cultivations

Subgrade 3b

The lower lying land on the site has been classified as Subgrade 3b (moderate quality) because of significant soil wetness and workability restrictions Profiles comprise non calcareous medium and heavy clay loam topsoils which in parts overlie narrow permeable heavy clay loam and clay upper subsoils All profiles are slowly permeable (heavy clay loams and clays) from between 22 cm and 45 cm depth All of these profiles are gleyed within 40 cm and as such, are poorly drained (Wetness Class IV) Such profiles are typified by Pits 1 and 3 (see Appendix II) The interaction between the soil drainage characteristics and the relatively wet local climate means that this land is limited by soil wetness. Soil wetness can adversely affect seed germination and survival and can inhibit the development of a good root system. It also influences the sensitivity of soil to structural damage and is therefore a major factor in determining the number of days when cultivation trafficking or grazing can take place

26 The higher land on the site around Whitenap Farm has been classified as Subgrade 3b because of significant soil droughtiness limitations arising from soils developed in gravelly deposits Topsoils comprise non calcareous medium clay loams and occasionally medium silty clay loams which are moderately stony (13 15% flints > 2 cm, 2 6% flints > 6 cm and 20 32% total flints) Upper subsoils typically comprise medium clay loams which are very stony (35 50% total flints) At approximately 40 to 48 cm depth these profiles proved impenetrable to a soil auger Consequently Pit 4 was dug to assess the lower subsoil conditions From Pit 4 it could be seen that the lower subsoils are extremely stony containing well over 70% total flints by volume In comparison to soil flints retain much less water available for uptake by crop roots Consequently the interaction between the soil characteristics (but in particular the high flint content) and the prevailing climate leads to a restriction in water availability for Consequently Subgrade 3b is appropriate on the basis of soil plants in most years droughtiness This land will be subject to low and inconsistent crop yields

Grade 4

27 Land classified as Grade 4 (poor quality) occurs on the restored area on the higher land between Keepers Cottage and the Mountbatten School According to the geology map for this area, gravel was extracted from this land The re-instated land is limited by severe soil droughtiness arising from very shallow and flinty soils Topsoils typically comprise non calcareous medium clay loams which are moderately stony (18 20% flints > 2 cm, 5 7% flints > 6 cm and 30 35% total flints by volume) Where penetrable to a soil auger these were found to overlie very shallow upper subsoils which are of variable texture (medium clay loams loamy medium sands) and slightly stonier (approximately 40% total flints by volume) Due to very compact and stony underlying horizons these profiles generally proved impenetrable to both soil auger and spade at 30 to 40 cm depth Although no soil inspection pit was dug in this area the underlying horizon is likely to be hard and consolidated and thus impenetrable to implements and plant roots The resulting restricted rooting means that the amount of profile available water is likely to be severely reduced This land is therefore likely to suffer from severe soil droughtiness In addition, this land is also likely to suffer from both soil wetness and workability limitations The hard and consolidated horizon is likely to be of low permeability thus acting as a very slowly permeable layer at a shallow depth within the soil profile Such poor drainage characteristics means that this land may suffer from restricted flexibility of cropping stocking and cultivations

Gillian Iles Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1987) Sheet No 315 Southampton 1 50 000 (solid and drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend. SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

B

Sample location map Soil abbreviations explanatory note Soil pit descriptions Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1	TEXTURE	soil texture classes a	are denoted by the	following abbreviations
---	---------	------------------------	--------------------	-------------------------

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Ρ	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33 / coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20 / M many 20-40% VM very many 40 / +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extrem	ely firm	EH extremely	hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5 / biopores >0.5 mm a 'Y will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations
 - **APW** available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

Site M	lame	TEST V	ALLEY LP	SIT	ES 125		Pit	Numbe	1	P				
Grid R	Refer	ence Sl	135402040	¢	lve age	Ann	al R	ainfal	1	0 mm				
				A	Ccumu 1	ted	Temp	e turi	B	0 degree	days			
				F	1e1d Ca	pact	lty L	evel	174	days				
				L	and Use	1			Per	manent Gr	ass			
				S	Slope an	d As	spect			degrees				
HORIZO	N	TEXTURE	COLOUR	2	STONES	2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 2	22	HCL	10YR43	00	0			2	HR					
22 3	38	С	25Y 62	00	0			2	HR	м	WKCSAB	FM	Р	
38- 4	18	c	25Y 62		0			0		M	STCAB	FM	P	
48- 5		c	25Y 51		ō			0		M	STCAB	FM	P	
58- 8		HCL	10YR62		0 0			5	HR	M	MDCSAB	FR	M	
•• ·	_													
Wetnes	is Gr	ade 38	3			C1 s	6	I۷						
					ileying			022						
				S	SPL			022	CM					
Drough	nt G	de		A	NPW	mm	MBI	4	0 mm					
				A	PP	m	MBI	2	0 mm					
FINAL	ALC	GRADE	3B											
MAIN L	IMIT	ATION	Wetness											

Site Name	• TEST V	ALLEY LP SIT	ES 125	Pit Numbe	r a	2P				
Grid Refe	erence SU	A F L	ccumulate	n al Rainfal ad Temperatur acity Level Aspect	ne 174 Per	0 mm 0 degree 4 days manent Gr degrees	-			
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 21	MCL	10YR43 00	0	5	HR					
21 42	MCL	10YR46 00	0	2	HR		MDCSAB	FR	м	
42 72	HCL	10YR44 00	0	1	HR	С	MDCSAB	С	м	
72 85	C	10YR46 00	0	32	HR	С			M	
85- 95	HCL	10YR46 00	0	45	HR	С			м	
Wetness (ade 1		letness C	lass I						
			ileying SPL	No	cm SPL					
Drought (Grade 2	A	NPW 116r	nm MBW	6 mm					
		A	NPP 113r	nm MBP	8 mm					
FINAL ALC	GRADE	2								
MAIN LIMI	TATION	Droughtiness	5							

MAIN LIMITATION Droughtiness

S te Name	TEST V	ALLEY LP S	ITES 125		PtNu	mbe 3	3P				
G id Refe	rence SU:	36632037	Ave age Accumula Field Ca Land Use Slope an	nted npaci e	Tempera ty Leve	tre 1 174 Per	0 mm 0 degree days manent G degrees	-			
HORIZON	TEXTURE	COLOUR	STONES	52	TOT ST		MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 25	MZCL	10YR43 0	0 0		2	HR					
25- 42	HCL	10YR62 6	30		2	HR	M	MDCAB	FM	Р	
42 60	HCL.	10YR64 0	0 0		2	HR	M	MDCAB	FM	P	
60 75	С	10YR72 0	0 0		0		м	WKCSAB	FM	Ρ	
Wetne G	de 3B		Wetness	Cla		IV					
			Gley ng			025 cm					
			SPL		(025 cm					
Drought G	rade		APW	mm	MBW	0 mm					
			APP		MBP	0 mm					

MAIN LIMITATION Wetne

Site Name	TEST VALLEY LP S	SITES 125 Pi	Pit Number 4P	
Grid Refere	ence SU36702073	Average Ann al Accumulated Tem Field Capacity Land Use Slope and Aspec	emperature 0 degree days y Level 174 days Permane t Gr	
HORIZON T 0 26	IEXTURE COLOUR		TOT STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CA	LC
26 47	MCL 10YR44 (45 HR FR M	
47 120	GH 10YR56 C		0 P	
Wetness G a	ade 1	Wetness Class Gleying SPL	I cm No SPL	
Drought G a	ade 3B		MBH 49 mm MBP 47 mm	
FINAL ALC G	GRADE 3B			

ł

MAIN LIMITATION Droughtiness

-

page 1

	ampi	LE	A	SPECT				WETI	NESS-	-WHE	ат	P0	TS-	м	I REL	EROSN	FRO	IST	CHEM	ALC	
	10	GRID REF	USE			GLEY	(SPL	CLASS		AP	MB	AP	MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
	1	SU36582088	PGR	W	04			1	1	123	13	111	6	2					DR	2	Imp95gravelly
	1P	SU36402040	PGR			022	022	4	38		0		0						WE	38	Sto ier 80+
_	2	SU36682084	PGR	NM	01			1	1	50	60	50	55	4					DR	3B	Imp40 see 4P
-	2P	SU36502010	PGR					1	1	116	6	113	8	2					DR	2	S1 gleyed 42
	3	SU36402080	PGR			038	038	4	3B		0		0						WE	3B	Plastic 38
-																					
-	3P	SU36632037				025	025	4	3B		0		0						WE	38	Pit to 75
	4	SU36602080		SM	05			1	1	83	27	91	14	3B					DR	ЗА	Imp68g velly
		SU36702073					_	1	1	61	49	58	-47	38					DR	3B	Pit to 85
	5	SU36302070				028		4	3B		0		0						WE	3B	Imp65gravelly
	6	SU36502070	PGR			0	045	4	3B		0		0						WE	38	
	-	000000000000000000000000000000000000000	~~~~		<u></u>															~~	T (0 (0
	7	SU36702070		W	03			1	1	59	51		46	4					DR	38	Imp48 see 4P
	8 9	SU36902070 SU36402060		E.	03	035	0.95	1	1	49	61	49	56	4					DR	38	Imp42 see 4P
	9 10	SU36602060		W	03	055	-	4	3B	116	0	106	0	2					WE WE	38 3A	May MN 35-55
	11	SU36802060		-	02	055	000	3 1	3A 1	116 52	58	106	53						DR	3B	Imp45 see 4P
	••	303002000	r un	**	νz				1	52	30	52	55	4						50	Imp45 See 4r
	12	SU36302050	PGR			045	085	1	2	140	30	111	6	2					WD	2	S1 gleyed 35
-	13	SU36502050				030		4	3B	1.0	0	•••	0	-					WE	- 38	er glejes oo
	14	SU36702050	PGR	W	02		058	3	3A	121		112	7	2					WE		Q 3B we
	15	SU36402040				025		4	38		0		0	_					WE	3B	
-	16	SU36502040				025		4	38		0		0						WE	38	
_																					
	17	SU36602040	PGR			025	048	3	3A	133	23	110	5	2					WE	за	Nea 32(38 we)
	18	SU36802040	PGR	\$	04	055		1	1	91	19	99	6	3A					DR	3A	Imp65 g velly
	19	SU36302030	PGR			070	070	2	2	132	22	103	2	2					WD	2	Sl gleyed 40
	20	SU36502030	PGR			025	025	4	3B		0		0						WE	3B	Clay topsoil
	21	SU36702030	PGR			0	030	4	3B		0		0						WE	3B	May MN 50
	22	SU37002030				025		1	1	82	28		42	3B				Y	DR	3B	Prev worked
	23	SU37162030					•-•	1	1	46	64		59	4				Y	DR	4	140 worked
	24	SU36402020				045		3	3A	120		110	5	2					WE		Gr 2 we see 2P
-		SU36602020				U	025	4	3B	~~	0	~~	0					••	WE		Plast c 25
	20	SU37102020	ruit					1	1	39	71	39	66	4				Ŷ	DR	4	I30 woked
	27	SU36502010	DCP			040	040	3	3A	103	7	106	1	3A					WE	34	Im-00
_		SU36662013					025	3 4	3A 3B	103	0	100	0	ын					WE		Imp80 g avelly Plast c 25
		SU37002010		NW	02	045		3	36 3A		0		0					Y	ST		Edge of worked
-		SU36402000			VL	040		3	3A	108	-	106	ĩ	3A				1	WE		Border 3B we
							025	4	3B		0	100	0						WE		Plastic 25
	-					•					•		·								
	32	SU36702000	PGR			018		2	2	56	54	56	-49	4					DR	3B	135Q WCIV/d
		SU36802000		NW	02	025	075	3	- 3A	147		115		1					WE		Clay lens 75
		SU36902000			04		-	1	1	44	66			4				Y	DR		Imp35 worked
		SU36501990				0	050	3	3A	112		102	3	3A					WE		Imp100 Prob2d
-	36	SU36701990	PGR			025	042	4	3B		0		0						WE	3B	
	37	SU36431983	PGR			055	075	2	2	113	3	113	8	3A					WD	2	Imp85 Prob2d
	38	SU36601980	PGR			025	025	4	3B		0		0						WE	3B	Q clay topso l

page 1

				-M	OTTLES		PED			STO	NES		STRUCT/	s	JBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL /		CONT	COL	GLEY	2	6 L	ITH	тот	CONSIST	ST	rr po	R IMP	SPL	CALC	
	0 30	mcl	10YR43 00						2	0 H		8							
	30-45	mcl	10YR54 00						0	0 H		8		1					T 05
	45–95	wcj	10YR58 54						0	0 н	ĸ	4			4				Imp 95 gravelly
1 P	0 22	hc1	10YR43 00			o	OMNOO	00	0	ОН	P	2							
	22 38	c	25Y 62 00	10YR66	00 M		00000		ō	0 H		2	WKCSAB	FM 6	P Y		Y		
	38-48	c	25Y 62 00				25Y 61		0	0	••	0		FM 1			Ŷ		
	48 58	c	25Y 51 00				25Y 41		0	0		Ō		FM I			Ŷ		
	58-80	- hcl	10YR62 72				0YR52		0	0 н	R	5	MDCSAB I						Stonier 80cm +
-												-							
2	0 30	mzcl	10YR43 00						14	2 H	R	30							
	30 40	hc1	10YR43 00	10YR58	00 C			S	0	0 н	IR	45		1	М				S1 gleyed
2P	0 21	mcl	10YR43 00						0	0 H	IR	5							
	21 42	mcl	10YR46 00						0	0 H		2	MDCSAB		м				
•	42 72	hcl	10YR44 00	-				S	0	ОН		۱	MDCSAB (C 1	м				S1 gleyed
	72-85	с	10YR46 00					S	0	0 H		32			4				S1 gleyed
	85-95	hcl	10YR46 00	10YR66	00 C			S	0	0 H	IR	45		1	M				S1 gleyed
	0.00	. 1	10/040.00	10/050	00 F				•	•		~							
3	030	mcl	10YR42 00						0 0	0 H 0	IR	2 0							
	30 38 38 70	c	10YR53 00 25Y 51 52			0	OMNOO	00 V	0	0		0			4 P		Ŷ		Plastic
	36 /0	с		101830	00 H	Ŭ	011100	00 1	Ň	Ŭ		v		•	F		ſ		riastic
ЗP	0 25	mzcl	10YR43 00						0	0 н	R	2							
	25 42	hc1	10YR62 63	10YR68	00 M			Ŷ	0	0 н		2	MDCAB 1	FM I	ΡY		Y		
	42 60	hc]	10YR64 00					Ŷ	0	0 H		2		FM I			Y		Border c
	60 75	с	10YR72 00	75YR56	00 M			Y	0	0		0	WKCSAB	FM 1	ΡY		Y		Border hcl
4	0 30	mcl	10YR43 00						6	2 H		20							
_	30 60	mcl	10YR44 00						0	0 H		20			м				
	60 68	mc}	10YR44 00						0	0 H	IR	40		1	М				Imp 68 gravelly
	~ ~ ~								• •	<u> </u>		~~							
■ 4P	0 26	mcl	10YR43 00							6 H		30							
-	26 47	mcl	10YR44 00							0 H	IK	45		FRI					
	47 120	gn	10YR56 00						U	0		0			Ρ				
5	0 28	hc1	10YR43 00						۵	ОН	IR	2							
	28 65	c	25Y 51 52	10YR58	00 M	C	OMNOO	00 Y		ОН		2		I	P		Y		Imp 65 gravelly
	20 00	•	201 01 02			-			-			-					•		
6	0 25	mcl	10YR53 00	10YR58	00 C			Y	0	0 н	IR	2							
-	25-45	hc]	10YR53 54			C	004400	00 Y	0	0		0		1	M				Border mcl not spl
	45-70	с	10YR52 00	10YR58	00 M	C	OMNOO	00 Y	0	0		0		I	Р		Y		
_ 7	0 30	mcl	10YR43 00							6 H		30							
	30 48	ແລງ	10YR54 00						0	0 н	R	35		ļ	M				Imp 48 gravelly
8	0 25	mcl	10YR43 00							6 H		25							
	25-42	mcl	10YR43 00						0	0 F	IK	50		I	M				Imp 42 gravelly

program ALCO11

page 2

I

				-MOTTLES	5	PED			STON	IES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN		COL	GLEY	2			CONSIST		IMP SPL CALC	
_								-	_	. –				
9	0 25	hc1	10YR42 00					0	0 HR			м		Border mcl
	2535 35-55	c	10YR44 00	10YR58 00 C			<u> </u>	0	OHR			M	v	Border hcl
	35-55 55-70	c		75YR56 00 M		MN00		0	0	0		P	Y Y	
	55-70	C	237 01 03	751850 UU M	00	MN00	UU T	0	0	0		Ρ	¥	
10	0 30	mcl	10YR43 00	ŧ				6	0 HR	10				
	30 55	നവി		10YR58 00 C			S	0	0 HR			м		S1 gleyed
	55-100	hc1		75YR58 00 M			Ŷ	0	0 HR			P	Y	Borde c spl
11	0 25	mzcl	10YR43 00	i				14	4 HR	32				
	25-45	mcl	10YR43 00)				0	0 HR	45		м		Imp 45 gravelly
								-		_				
12	0 25	hc1	10YR42 00					0	OHR			- 4		
	25 35	с	10YR44 00				-	0	OHR			M		1
	35-45	с		10YR58 51 C			S	0	0	0		M		S1 gleyed
	45 55	с ,		10YR58 00 M			Y	0	0	0		P		10cm wide not spl •
	55 85	scl		10YR58 00 M			Ŷ	0	0	0		M P	v	Tending msl
	85 120	С	231 31 00	10YR58 00 M			Ŷ	0	0	0		Р	Y	
13	0 30	hc1	10YR43 00					0	0 HR	2				•
	30 40	hc1		10YR58 00 C			Y	0	0 HR			м		F iable not spl
	40 120	с	10YR64 62	75YR58 00 M	00	MNOO	00 Y	0	0 HR	2		Р	Y	
14	0 28	mcl	10YR42 52	10YR58 00 C			Y	0	O HR	2				•
	28 48	mcl	10YR63 64	10YR58 00 C	00	MNOO	00 Y	0	0 HR	2		M		
	48 58	hc1		75YR58 00 C			Y	0	0 HR			M		Border mcl not spl
	58-100	с	10YR64 00	75YR58 00 M	00	mnoo	00 Y	0	0	0		Р	Y	
15	0 25	hzc1	10YR44 00					0	0 HR	: 5				
15	25 70	c		10YR68 00 M	00	MNOO	00 V	ō	0 HR			Р	Y	
	70 85	hcl	10YR68 00		00		00 1	ō	0			M	ŗ	
	85 120	hc1	10YR64 66					ō	OHR	-		M		
								-						l
16	0 25	mcl	10YR42 00					0	0 HR	2				
	25-55	с	10YR51 53	10YR58 00 M			Y	0	0	0		Р	Y	
	55 80	ç	10YR51 00	75YR58 00 M	00	MN00	00 Y	0	0	0		Ρ	Y	ł
-	- -	-						-		. <u>-</u>				
17	0 25	mcl	10YR42 00				••		OHR					1
	25-48	mcl		10YR58 00 C			Y	-	0	0		M	v	1
	48-120	с	251 51 53	75YR58 00 M			Ŷ	0	0	0		Р	Y	
18	0 30	mzcl	10YR43 00					6	0 HR	10				1
.0	30 55	mcl	10YR54 00						0 HR			м		
	55-65	mcl		10YR68 00 C	00	MNOO	00 Y		OHR			M		Imp 65 gravelly
								-						
19	0 30	mcl	10YR42 52	75YR56 00 C				0	0 HR	5				
	30 40	mcl	10YR54 00					0	0	0		м		
	40 70	hc1		10YR68 00 C			S	0	0	0		M		fscl le ses
	70 95	hc1		10YR68 00 C			Y	0				Ρ	Y	
	95-120	hc1	10YR64 00	10YR66 00 C			Ŷ	0	OHR	15		м	Y	

prog am ALCO11

page 3

				-M	OTTLES	PED				STO	DNES-		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT COL	GL	EY.	2				CONSIST	STR POR IMP	SPL CALC	
-									_	_	_	_				
20	0 25	с	10YR42 00			COMINOO			0	01		5		•		
-	25-70	c	25Y 51 00	IUYK58	00 M	00MN00	UC	Y	0	01	1K	5		P	Y	
a 21	0 30	mc1	10YR53 00	10YR58	00 C			Y	0	0 1	HR	2				
	30 50	с	25Y 61 63					Y	0	0		0		Р	Y	Many MN concs
	50 70	с	25Y 61 53	75yr58	68 M	001100	00	Y	0	0		0		Р	Y	
•		-										•				-
22	0 25	mcl	10YR43 00	751050	60 M					7 1	1R	35		м		Prev worked
	25-70	lms l	25Y 63 00					Y Y	0	0		0		M		
•	70 120	lms	25Y 63 00	IUIKOO	00 M			T	0	0		0		м		
23	0 30	mc1	10YR43 00						18	6 H	IR	35				Prev wo ked
-	30 40	mcl	10YR54 00						0	0 F	I R	40		M		Imp 40 gravelly
•									-	_		_				
24	0 30	mc]	10YR43 00						0	0 1		5				
-	30 45	mc]	10YR43 00	100050	~ ~	0000100	~~		0	0 }		2		M		
	45-58 58 102	hcl c	10YR53 00 10YR64 00			00MINOO 00MINOO			0 0	01		2 5		M P	Y	Friable not spl Imp 102 g avelly
	36 102	C			00 19	UUPINUU	00	T	U	0 7	אר	3		r	T	Till Ios g averig
25	0 25	mc]	25Y 51 00	75YR56	00 M			Y	0	0 1	IR	2				
	25-50	с	05Y 51 41	75YR58	00 M			Y	0	0		0		Р	Y	Plastic
	50 70	с	05Y 61 00	10YR58	00 M			Y	0	0		0		Ρ	Y	Wet v plastic
26	0 30	mcl	10YR43 00						20	5 ł	a	30				Prev wo ked I30
	0.30		101843 00						20	Э r	ТК	30				Frev wo ked 130
27	0 30	mcl	10YR42 00						0	0 1	IR	5				
	30 40	hc1	10YR54 00						0	0 1	IR	1		м		
	40 70	с	10YR64 00	75YR68	00 C	COMNOO	00	Y	0	0		0		Р	Y	
	70 80	hcl	10YR64 00	10YR58	00 C			Y	0	0 1	IR	15		М	Y	Imp 80 g avelly
— 28	0 25	hcl	75YR41 42	107858	00 M			Y	0	0		0				
	25-45	c	25Y 51 52					Ŷ	õ	ŏ		õ		Р	Y	Plastic
	45 70	c	05Y 41 00					Ŷ	0	Ō		0		P	Ŷ	Plastic
_																
29	0 30	mcl	10YR43 00							6)		35				
	30 45	mcl	10YR43 00						0	0 1	IR	25		M		
_	45 70	c	25Y 52 00	75YR56	00 M	001100		Y	0	0		0		Р	Y	Plastic
30	0 30	mcl	10YR42 52						0	0 +	IR	5				
-	30 40	hc1	10YR54 00						Ō	0		0		м		
	40 78	с	10YR64 00	75YR58	00 C	COMINOO	00	Y	Ō	0 1	IR	2		Ρ	Y	
	78-88	hc1	10YR64 00					Y	0	0 1	IR	15		М		Imp 88 gra elly
31	0 25	mcl	10YR52 42					Y	0	0 1	łR	2		_		
	25-70	с	05Y 61 00	75YR78	58 M	00MN00	00	Y	0	0		0		Р	Y	Plastic
32	0 18	mcl	10YR42 00						0	0 +	IR	2				
•	18 28	mc)	10YR42 41	10YR58	00 C			Y	õ	01		2		м		
	28 35	c	10YR51 00					Ŷ	0	0 1		10		P		Imp 35 gravelly
-																· - ·

				-	MOTTLES		PED			ST	TONES		STRUCT/	SUB	s			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	ΩL	GLEY	2	6	LITH	тот	CONSIST	STR	POR	IMP	SPL CALC	
		_																
33	0 25	mzcl	10YR43 00						0	0	HR	4						
	25-55	mzcl	25Y 62 63					Y	0	0	HR	4		М				
	55-75	mcl	25Y 63 00					Y	0		HR	15		M				
	75–120	hc1	25Y 63 00	75YR5	6 00 M			Y	0	0	HR	15		Р			Y	Clay lenses
24	0 00																	
34	0 30	ຕຕີ	10YR43 00						12		HR	30						
	30 35	mcl	10YR44 00)					0	0	HR	40		M				Imp 35 gravelly
35	0 30	നടി	100040 57	10005	a			~	•	~		F						
35	30 50	hc1	10YR42 52				0.000	Ŷ	_		HR	5						
	50 50 50 65		10YR53 00				OMNOO		0	-	HR	10		M				
		hc1	10YR53 63				OMNOO		0		HR	15		P			Y	
	65–100	¢	10YR64 00	/5YR5	5 CU M	0	OMNOO	UU Y	0	0	HR	10		Р			Y	
36	0 25	ന്നി	10YR52 42		9 00 E				o	•	HR	5						
	25-42	hcl	107R52 42					Y	0 0		HR	5		м				Friable not spl
	42-80	c	25Y 53 52			•	OMNOO	-	0	-	HR	5		P			Y	rriable not spi
	72-00	C	201 00 02	. 75165	00 14	U		00 1	v	v	пк	5		٣			Ŧ	
37	0 30	mcl	10YR43 00	10YR5	9 00 C			s	Ó	0	HR	5						S1 gleyed
	30 55	നറി	10YR43 00	10YR5	8 00 C	0	OMNOO		0		HR	5		м				Si gleyed
	55 75	สติโ	10YR63 00			•		 Y	0	-	HR	2		M				0. 9.0900
	75 85	hc]	10YR63 73			Ó	OMNOO	•	Ō		HR	5		P			Y	Imp 85 prob spl
						Ų		-* •	-	•		-		•			r	00 p. 00 3p1
38	0 25	hc1	10YR42 00						0	0	HR	5						Border c
	25 60	c	10YR42 00	75YR5	5 00 M	0	OMNOO	00 Y	0	0	HR	5		Ρ			Y	Plastic

page 4