A1 Tonbridge and Malling District Local Plan Land at Wouldham, Kent

> Agricultural Land Classification ALC Map and Report May 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 2013/016/96 MAFF Reference EL 20/01393 LUPU Commission 02429

AGRICULTURAL LAND CLASSIFICATION REPORT

TONBRIDGE AND MALLING DISTRICT LOCAL PLAN LAND AT WOULDHAM, KENT

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 37.4 hectares of land either side of School Lane to the east of the village of Wouldham in Kent The survey was carried out during February 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Tonbridge and Malling District Local Plan The results of this survey supersede any previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the majority of the site was agricultural land under arable cropping Towards the west and south of the site there are areas under permanent grass The parts of the site shown as Other Land include allotments a recreation ground some scrub and the part of School Lane which falls within the site boundary

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of approximately 1 boring per hectare A total of 34 borings and two soil pits were described

8 The land at this site has been classified as Grade 2 (very good quality) Subgrade 3a (good quality) and Subgrade 3b (moderate quality) on the basis of a soil droughtiness limitation

9 The areas shown as Grade 2 and Subgrade 3a are across the west and south of the site In these areas very slightly stony and occasionally chalky medium loamy topsoils overlie similar upper subsoils passing to well rooted soft chalky drift in the lower subsoil The flint stones and chalk in the profile cause a reduction in available water such that there is a risk of droughtiness which may affect plant growth and yield The relative stone contents and depths of soils determine the degree of droughtiness and therefore the ALC grade 10 Towards the east and north of the site Subgrade 3b is mapped In these areas the soil resource is shallow over blocky slightly weathered chalk, passing to harder chalk at moderate depths The slightly weathered chalk was observed to be moderately well rooted The hard chalk was observed to contain very few roots This restriction in the depth of rooting causes a reduction in the available water capacity of the soil As a result of this soil droughtiness occurs which in the relatively dry local climate in regional terms leads to Subgrade 3b being appropriate

Grade/Other Land	Area (hectares)	% Total Site Area	% Agricultural Land
2	14 2	38 0	44 4
3a	28	75	88
3b	15 0	40 1	46 8
Other Land	54	14 4	N/A
Total Agricultural Area	32 0		100 0
Total Site Area	37 4	100 0	

Table 1 Area of grades and other land

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Values				
Grid reference	N/A	TQ 714 639	TQ 717 645			
Altitude	m, AOD	10	25			
Accumulated Temperature	day°C	1493	1476			
Average Annual Rainfall	mm	66 7	673			
Field Capacity Days	days	137	138			
Moisture Deficit Wheat	mm	121	119			
Moisture Deficit Potatoes	mm	117	115			

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions 14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However the site is believed to be rather frost prone (Met Office 1979) but soil factors are overriding in this area so this factor has no effect on the overall land quality.

Site

16 The site lies at an altitude in the range 6-35 m AOD Overall the site rises steadily from the west to the east with gradients of 5° being recorded as a maximum Slopes of this gradient are insufficient to affect land quality

Geology and soils

17 The published geological information for the site (BGS 1977) shows the majority of the site to be underlain by Pleistocene/Recent head material overlying Cretaceous Upper Chalk The Chalk is exposed at the surface towards the north east of the site To the north west of the site a small area of head brickearth has been mapped

18 The most detailed published soils information for the site (SSEW 1983 and 1984) shows the site to comprise soils of the Coombe 1 association. These are described as well drained calcareous fine silty soils deep in valley bottoms shallow to chalk on valley sides in places. Slight risk of water erosion (SSEW 1983). Soils of this broad type were found across the site.

Agricultural Land Classification

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III

Grade 2

Land of very good quality has been mapped towards the west of the site in a single unit The principal limitation is slight soil droughtiness

22 Soils in this area are characterised by the pit observation 2p and commonly comprise a calcareous very slightly to slightly stony and chalky (up to 5% v/v total flints and 5% v/v total chalk fragments) medium silty clay loam or medium clay loam topsoil This passes to slightly stonier (up to 15% v/v total chalk fragments and 5% flints) calcareous medium silty clay loam medium clay loam or occasionally heavy clay loam upper subsoil horizons These overlie a soft chalky drift which comprises a calcareous medium silty clay loam soil material containing up to 65% v/v chalk fragments and up to 3% v/v total flints This commonly

overlies blocky hard chalk between 80 and 100cm On occasion the pure chalk does not appear in the profile and the chalky drift extends to depth (120cm) The combination of the chalk content and flints in the profile in association with the local climatic regime causes profile available water to be slightly restricted such that a slight soil droughtiness limitation exists Soil droughtiness can affect plant growth and yield especially in drier years

Subgrade 3a

Land of good quality has been mapped in a single unit towards the south of the site The principal limitation is soil droughtiness

24 Soils in this area commonly comprise a slightly stony (up to 8% v/v total flints including 4%>2cm) calcareous medium clay loam topsoil passing to a similarly stony medium clay loam upper subsoil horizon. These profiles are then impenetrable over large flints located at the top of impenetrable chalk. This causes the available water in the profile to be more limited than in the profiles above (Grade 2 see para 22) to the extent that Subgrade 3a is appropriate given the local climate. The soil droughtiness which results may affect plant growth and yield to a greater extent than for land classified as Grade 2 especially in drier years

Subgrade 3b

Land of moderate quality has been mapped towards the east of the site in a single mapping unit The principal limitation to land quality is soil droughtiness

Soils in this area are characterised by the soil pit 1p and commonly comprise a calcareous slightly chalky (up to 15% v/v total chalk fragments) and occasionally very slightly stony (up to 3% v/v total flints) medium silty clay loam or medium clay loam topsoil commonly passing to a similar narrow thin subsoil horizon. These overlie weathered blocky chalk at between 30 and 45cm. In the pit observation roots were observed to extend 35cm into the chalk. At this point the chalk became harder and less blocky. In combination with the stoniness of the soil this rooting restriction causes available water to be limited to plants to the extent that given the local climate Subgrade 3b is appropriate to this land. Soil droughtiness will affect plant growth and yield more severely than elsewhere on the site

M Larkin Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1977) Sheet 272 Chatham Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1979) Unpublished Climate data relating to Ordnance Survey Sheet 172 1 63 360 scale Met Office Bracknell

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England. 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
III	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

I

Sample location map

Soil abbreviations - Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR		Scrub	CFW	Conife	rous Woodland
DCW	Deciduous Wood				
НТН	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed SAS		Set aside	ОТН	Other
HRT	Horticultural Cro	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			_

Soil Pits and Auger Borings

S LS Loamy Sand Sandy Loam Sand SL SZL Sandy Silt Loam CL Clay Loam ZCL Silty Clay Loam ZL Silt Loam SCL Sandy Clay Loam C Clay SC Sandy Clay ZC Silty Clay OL Organic Loam LP Loamy Peat P Peat SP Sandy Peat PL Peaty Loam PS Peaty Sand MZ Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH grave	l with non-porous (hard) stones
MSST	soft medium grained sandston	GS grave	l with porous (soft) stones
SI	soft weathered igneous/metamor	phic rock	

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

I TEXTURE soil texture classes are denoted by the following abbreviations

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
ped shape	S single grain GR granular SAB sub-angular blocky PL platy	M massive AB angular blocky PR prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extre	mely firm	EH extremely	y hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column

15 Other notations

ļ

- APW available water capacity (in mm) adjusted for wheat
- APP available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

I

Casa Bafa	T A	71606400	۰.	.		C. 3.1 4	67				
Grid Refer	ence IQ	71606430		-	ia] Raini Temperat	-	i67 mm 193 degree	davs			
					ity Level		17 days				
			Land		-		able				
			Slope	e and As	pect	2	degrees l	н			
HORIZON	TEXTURE	COLOUR	STO	nes >2	TOT STO	NE LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MZCL	10YR52		3	15	СН					Y
30- 65	сн	10YR81 (0	0				FM	Р	Y
65- 80	СН	10YR81 (00	0	0					Р	Ŷ
	.					_					
Wetness Gra	ade 1			ss Clas	S	I					
			Gleyi	ng		cm					
			SPL			Cīī					
Drought Gra	ade 38		APW	94 mm	MBW	-27 mm					
	00		APP	93 mm	MBP	-24 mm					
FINAL ALC (GRADE	38									
MAIN LIMITA	ATION	Droughtine	ess								
		-									
		-									
		-									
		-									
		SOII		ESCRIPT	ION						
			- PIT D								
Site Name	ton & I	SOII	- PIT D		ION Pit Num	ıber	2P				
		MALLING (- PIT D WOULDHA Avera	M ige Annu	Pit Num Nal Rainf	fall f	67 mm				
		MALLING (- PIT D WOULDHA Avera Accum	M ige Annu wlated	Pit Num Nal Rainf Temperat	fall f	67 mm 93 degree	days			
		MALLING (- PIT D NOULDHA Avera Accum Field	M nge Annu nulated I Capaci	Pit Num Nal Rainf	fall 6 ture 14	67 mm 93 deg ree 17 days	days			
Site Name Grid Refere		MALLING (- PIT D OULDHA Avera Accum Field Land	M nge Annu nulated I Capaci Use	Pit Num nal Rainf Temperat ty Level	fall f ture 14 I 11 Ar	67 mm 93 degræe 17 days able				
		MALLING (- PIT D OULDHA Avera Accum Field Land	M nge Annu nulated I Capaci	Pit Num nal Rainf Temperat ty Level	fall f ture 14 I 11 Ar	67 mm 93 deg ree 17 days				
Grid Refer	ence TQ	MALLING	- PIT D WOULDHA Avera Accum Field Land Slope	M age Annu aulated I Capaci Use and As	Pit Num nal Rainf Temperat ty Level	fall f ture 14 I 13 An	67 mm 193 degree 17 days Table 2 degrees 1	W	MARIET		CAL
Grid Referen	ence TQ TEXTURE	MALLING (71506410 COLOUR	- PIT D NOULDHA Avera Accum Field Land Slope STC	M nge Annu nulated I Capact Use e and As NNES >2	Pit Num nal Rainf Temperat ty Level spect	fall 6 ture 14 I 11 An 2 DNE LITH	67 mm 193 degree 17 days Table 2 degrees 1	W	CONSIST	SUBSTRUCTURE	
Grid Refer HORIZON 0- 28	ence TQ TEXTURE MZCL	MALLING F 71506410 COLOUR 10YR42	- PIT D NOULDHA Avera Accum Field Land Slope STO 52	M nge Annu nulated I Capaci Use and As NES >2 1	Pit Num al Rainf Temperat ty Level spect TOT STC 2	fall 6 ture 14 i 11 An 2 DNE LITH HR	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE			Y
Grid Refere HORIZON 0- 28 28- 64	ence TQ TEXTURE MZCL MZCL	MALLING 4 71506410 COLOUR 10YR42 9 10YR54 0	PIT D OULDHA Avera Accum Field Land Slope STO 52 00	M uge Annu ulated I Capaci Use and As NES >2 1 0	Pit Num al Rainf Temperat ty Level spect TOT STC 2 15	fall 6 ture 14 I 13 An 2 DNE LITH HR CH	67 mm 193 degree 17 days Table 2 degrees 1	W	FR	м	Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100	ence TQ TEXTURE MZCL MZCL MZCL	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D OULDHA Avera Accum Field Land Slope STO 52 00 74	M uge Annu ulated I Capaci Use a and As WES >2 1 0 0	Pit Num nal Rainf Temperat ty Level spect TOT STC 2 15 60	fall 6 cure 14 I 1: An An An An An An An An An An An An An	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE		M M	Y Y Y
Grid Refere HORIZON 0- 28 28- 64	ence TQ TEXTURE MZCL MZCL	MALLING 4 71506410 COLOUR 10YR42 9 10YR54 0	- PIT D OULDHA Avera Accum Field Land Slope STO 52 00 74	M uge Annu ulated I Capaci Use and As NES >2 1 0	Pit Num al Rainf Temperat ty Level spect TOT STC 2 15	fall 6 ture 14 I 13 An 2 DNE LITH HR CH	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	м	Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100 100-120	ence TQ TEXTURE MZCL MZCL MZCL CH	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D NOULDHA Avera Accum Field Land Slope STO 52 00 74 00	M uge Annul ulated I Capaci Use and As NNES >2 1 0 0 0	Pit Num nal Rainf Temperat ty Level spect TOT STC 2 15 60 5	fall 6 cure 14 i 13 An An An An An CH CH HR	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100 100-120	ence TQ TEXTURE MZCL MZCL MZCL CH	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	PIT D NOULDHA Avera Accum Field Land Slope STO 52 00 74 00 Wetne	M lige Annu- sulated I Capaci Use a and As NES >2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pit Num nal Rainf Temperat ty Level spect TOT STC 2 15 60 5	fall 6 cure 14 I 13 An 20NE LITH HR CH CH HR CH HR	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100 100-120	ence TQ TEXTURE MZCL MZCL MZCL CH	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D NOULDHA Avera Accum Field Land Slope STO 52 00 74 00	M lige Annu- sulated I Capaci Use a and As NES >2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pit Num nal Rainf Temperat ty Level spect TOT STC 2 15 60 5	fall 6 cure 14 i 13 An An An An An CH CH HR	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100 100-120 Wetness Gra	ence TQ TEXTURE MZCL MZCL CH ade 1	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D HOULDHA Avera Accum Field Land Slope STO 52 00 74 00 Wetne Gleyi SPL	M uge Annu- ulated I Capaci Use and As WES >2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pit Num al Rainf Temperat ty Level spect TOT STC 2 15 60 5	fall f ture 14 I 1: An An An An An CH CH HR CH HR I cm	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100 100-120 Wetness Gra	ence TQ TEXTURE MZCL MZCL CH ade 1	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D HOULDHA Avera Accum Field Land Slope STO 52 00 74 00 Wetne Gleyi SPL APW	M age Annu- ulated I Capaci Use and As NES >2 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Pit Num al Rainf Temperat ty Level spect TOT STC 2 15 60 5 ss	fall 6 ture 14 I 11 An An An An An CH HR CH HR CH HR CH HR 23 mm	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y
Grid Refere HORIZON 0- 28 28- 64 64-100	ence TQ TEXTURE MZCL MZCL CH ade 1	MALLING (71506410 COLOUR 10YR42 (10YR54 (10YR64)	- PIT D HOULDHA Avera Accum Field Land Slope STO 52 00 74 00 Wetne Gleyi SPL	M uge Annu- ulated I Capaci Use and As WES >2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pit Num al Rainf Temperat ty Level spect TOT STC 2 15 60 5	fall 6 ture 14 I 11 An An An An An CH HR CH HR CH HR I cm cm cm	67 mm 193 degree 17 days Table 2 degrees 1	N STRUCTURE	FR	M M	Y Y Y

	SAMP	LE	A	SPECT			WETH	VESS	-144	EAT-	-P0	TS-	м	REL	EROSN	FROST	CHEM	ALC	
	NO	GRID REF			GRDNT	GLEY SPL							DRT	FLOOD	EXP		LIMIT		COMMENTS
	1	TQ71326459	CER	н	1		1	1	133	12	115	-2	2				DR	2	SEE 2P
	1P	TQ71606430	ARA	W	2		1	1	94	-27	93	-24	3B				DR	38	ROOTING TO 65
	2	TQ71406460	CER	W	1		1	1	102	-19	112	-5	3A				DR	2	IMP 70 SEE 2P
	2P	TQ71506410	ARA	W	2		1	1	144	23	117	0	2				DR	2	PIT100 AUG120
	3	TQ71306450	CER	W	2		1	1	120	-1	117	0	3A				DR	2	IMP 85 SEE 2P
Ι-	4	TQ71406450	CER	W	2		1	1	125	4	116	-1	3A				DR	2	IMP 80 SEE 2P
	5	TQ71506450	CER	W	4		1	1	92	-29	96	-21	38				DR	38	IMP 40 SEE 1P
	6	TQ71606450	CER	W	3		1	1	76	-45	76	-41	38				DR	38	IMP 45 SEE 1P
	7	TQ71706450	CER	W	2		1	1	68	-53	68	-49	4				DR	38	IMP 40 SEE 1P
	8	TQ71806450	CER	W	3		1	1	158	37	122	5	2				DR	2	SEE 2P
	9	TQ71906450	CER	N	3		1	1	100	-21	99	-18	3B				DR	3B	IMP 50 BDR 3A
	10	TQ71406440	CER	W	2		1	1	155	34	117	0	2				DR	2	SEE 2P
	11	TQ71606440	CER	W	2		1	1	143	22	115	-2	2				DR	2	IMP 110 SEE 2P
	12	TQ71706440	CER	W	3		1	1	154	33	117	0	2				DR	2	SEE 2P
-	13	TQ71806440	CER	W	3		1	1	53	-68	53	-64	4				DR	3B	IMP 30 SEE 1P
	14	TQ71906440	CER	Ν	2		1	1	68	-53	68	-49	4				DR	3B	IMP 40 SEE 1P
	15	TQ71506430	ARA	W	2		1	1	150	29	118	1	2				DR	2	SEE 2P
	16	TQ71606430	ARA	W	5		1	1	89	-32	94	-23	38				DR	38	IMP 50 SEE 1P
	17	TQ71436420	PGR	W	1		1	1	156	35	122	5	2				DR	2	SEE 2P
	18	TQ71506420	ARA	W	2		1	1	116	5	119	2	3A				DR	2	IMP 80 SEE 2P
		TQ71606420			5		1	1	96	-25		-18	3B				DR	3B	IMP 45 SEE 1P
		TQ71406410			1		1	1	127		123	6	2				ĎR	2	IMP 90 SEE 2P
	21	TQ71506410			1		1	1	139		120	3	2				DR	2	IMP 100 SEE 2P
	22	-			5		1	1	96	-25		-18	38				DR	3B	IMP 45 SEE 1P
	23	TQ71706410	ARA	S	2		1	1	96	-25	98	-19	38				DR	3B	IMP 50 SEE 1P
				-	~														
	24	T071806410			2		1	1	96	-25		-19					DR	38	IMP 50 SEE 1P
	25	TQ71406399			1		1	1	117		121	4	3A					2	IMP 80 SEE 2P
	26	TQ71506400			1		1	1	106	-15		0	34				DR	2	IMP 70 SEE 2P
	27	TQ71606400			2		1	1	127		112	-5					DR	2	IMP 100 SEE 2P
	28	TQ71706400	ARA	W	2		1	1	131	10	115	-2	2				DR	2	IMP 100 SEE 2P
	20	T071006400		ы	2		1	•	100	- 11	110	F	20				00	20	THO TO DOD 24
	29	TQ71806400			2		1	1	100	-21		-5					DR	-	IMP 70 BDR 3A
	31 32	TQ71506390 TQ71606390			2 1		1 1	1 1	116 80	-5 -41	119 20	2					DR DR	2 3A	IMP 80 SEE 2P IMP 50
												-37							
	33 34	TQ71706390 TQ71806390			2 2		1	1 1	84 80	-37 -41		-30 -37					DR DR		IMP 55 IMP 50
	بىن.	0660001401	АКА	n	۲.			1	00	-41	00	-37	50				UK	, ML	1117 JU
	36	TQ71506380		ы	1		1	1	95	_26	100	-17	38				DR	AF	IMP 60
	50	10/100000	NUK	~	ı		r	1	5.5	-20	100	-17	50				UR	مر	

program ALCO11

COMPLETE LIST OF PROFILES 17/05/96 TON & MALLING WOULDHAM

page 1

-						MOTTLES	5	PFD			-51	ONES		STRUCT/	SUBS				
	SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT									OR IMP	SPL CALC		
-	1																		
_	1	0 35	mzcl	10YR42 00						1	0	HR	5				Y	SEE 2F	3
		35–65	hc]	10YR54 00						0	0	HR	5		м		Y	+17 Cł	ALK FRAGS
	İ	6580	mcl	10YR81 00						0	0	СН	65		м		Y	+5 % FL	.INTS
		80-110	ch	10YR81 00						0	0	HR	5		Р		Y	IMP CH	IALK 80
	Ì																		
	1P	0-30	mzcl	10YR52 00						3	0	СН	15				Y		
_		30-65	ch	10YR81 00						0	0		0	£	мр		Y	MAX RO	OTING DEPTH
-	1	65-80	ch	10YR81 00						0	0		0		Ρ	Y	Y	PIT IN	1P 80
	2	0-30	mzcl	10YR43 00						0	0	HR	3				Y	SEE 2F	>
		30-50	നറി	10YR54 00						0	0	HR	10		м		Y	+57 0	IALK FRAGS
		50-70	mcl	10YR54 00						0	0	СН	15		м		Y	IMPCH	DRIFT70 +5% HR
	2P	0-28	mzcl	10YR42 52						1	0	HR	2				Y	+37 0	IALK FRAGS
	1	28-64	mzcl	10YR54 00						0	0	СН	15	MDCSAB I	RM		Y		
		64-100	mzcl	10YR64 74						0	0	СН	60	F	мм		Y	+5 % FL	INTS
-	f	100-120		10YR81 00						0	0	HR	5		Р		Y	SOFT C	H ROOTSVIS100
_																			
	3	0-35	mzcl	10YR42 00						1	0	HR	5				Y	SEE 2F	+2% CHALK
) -	35-70	ກຕີ	10YR54 00						0		HR	5		м		Y	+5% C	IALK FRAGS
		70-85	hc1	10YR54 00						0		СН	10		м		Y	IMPCH	DRIFT85 +57 HR
	4	0-30	mcl	10YR43 00						0	0	HR	3				Y	SEE 2F	P +1% CHALK
_		30-75	hc1	75YR44 54	75YR5	6 00 C			s	0		СН	1		м		Y	SLIGH	ILY GLEYED
-		75-105		10YR81 00						0		HR	3		Р		Y		ALK 80
										•	•								
	5	0-38	mcl	10YR52 00						0	0	СН	10				Y	SEE 1	+37 FLINTS
		38-73	ch	10YR81 00						0		HR	5		Р		Y	IMP C	HALK 40
	6	0-30	mcl	10YR52 00						0	0	СН	5				Y	SEE 1	>
		30-45	നലി	10YR53 00						0	0	СН	5		м		Y	IMP C	ALK 45
	1																		
	7	0-30	നലി	10YR52 00						0	0	сн	5				Y	SEE 1	5
-		30-40		10YR53 00								СН	5		м		Y	IMP C	HALK 40
_																			
	8	0-30	mzcl	10YR52 00						0	0	сн	5				Y	SEE 2F	2
	J.	30-120	mzcl	10YR62 00						0	0	сн	5		м		Y		
_																			
	9	0-30	mcl	10YR52 00						0	0	сн	5				Y	SEE 1F	2
		30-45	mcl	10YR62 00						0	0	сн	5		Μ		Y		
		45-80	ch	10YR71 00						0	0		0		Ρ		Y	IMP C	HALK 50
)																		
	10	0-35	mzcl	10YR42 00						0	0	HR	3				Y	SEE 2F	3
-		35-50	mcl	10YR43 00						0	0	HR	10		м		Y		
_		50-105	mcl	10YR54 00								СН	15		м		Y		
	[105-120		10YR64 00							0		5		М		Y		
)																		
	11	0 30	mcl	10YR52 00						0	0	HR	3				Y	SEE 2F	>
		30-110	mcl	10YR53 00						0	0	HR	2		M		Y	IMP CH	ALKYDRIFT 110

program ALCO11

page 2

_						MOTTLE	S	PED	<u>-</u>	STO	WES-	9	STRUCT/	SUBS		
	SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT								IMP SPL CALC	
)															
_	12	0-30	mcl	10YR42 00					0	0 0	ж	3			Y	SEE 2P
		30-120	mcl	10YR53 00					0	0 (ж	3		м	Y	
	13	0-30	տշլ	10YR52 00					0	0 0	ж	5			Y	SEE 1P / IMP CH 30
	14	0-30	mcl	10YR52 00					0	0 0	ж	5			Y	SEE 1P
		30-40	mcl	10YR62 00					0	0 0	ж	5		м	Y	IMP CHALK 40
)															
	15	0-25	mzc]	25Y 42 00					0	0 (5			Y	SEE 2P
-		25-35	mzcl	10YR43 00					0	01		2		M	Ŷ	
		35-55	mzcl	10YR53 00					0	0 (10		M	Ŷ	
		55-90	mzc]	10YR54 81					0	0 (30		M	Y	
	1	90-120	mzcl	10YR54 81					0	0 (ж	50		M	Y	SOFT CHALKY DRIFT
_			-	0.514 40 00					-	~ ~	.					000 40
	16	0 33	mzcl	25Y 42 00					3	00		10			Ŷ	SEE 1P
	i i	33-68	ch	10YR81 00					0	01	٩ĸ	3		P	Ŷ	IMP CHALK 50
	. 17	0.00		100042 00					0	0 0	~ U	E			V	SEC 20
		028 28-45	mzcl mzcl	10YR42 00 10YR54 00					0	00		5 5		м	Y Y	SEE 2P
		45 90	mzc]	10YR54 00					0	00		3		M M	Y	
		90 120	mzcl	10YR64 00					0	00		30		M	Ý	SOFT CHALKY DRIFT
		30 120		101104 00					J					••	ľ	SOLE GIRERI DATI I
	18	0 30	mzcl	10YR41 42					0	0 1	-IR	3			Y	SEE 2P
-	,	30 65	mzcl	10YR54 64					0	0 (15		м	Ŷ	
-		65-80	mzcl	10YR64 00					0	0 (20		M	Ŷ	IMP CHALKY DRIFT 80
	19	0 30	mcl	10YR42 00					0	0 0	ж	5			Y	SEE 1P
_		30 40	mc1	10YR53 00					0	0 0	ж	3		M	Y	
		40 75	ch	10YR71 00					0	0		0		Р	Y	IMP CHALK 45
	20	0-30	mzcl	10YR41 00					0	0 (ЭН	2			Y	SEE 2P
		30 65	mzcl	10YR54 00	10YR5	6 00 F			0	0 0	ж	2		M	Y	
)	65-90	mzcl	10YR64 81					0	0 (ж	40		M	Y	IMP CHALKY DRIFT 90
	21	0-28	mzcl	10YR42 00					0	0 (5			Ŷ	SEE 2P
		28-65	mzcl	10YR54 64					0	0 0		10		M	Y	
-		65-75	mzcl	10YR54 64					0	0 0		20		M	Y	
	1	75-95	mzcl	10YR64 81					0	00		50		M	Y	SOFT CHALKY DRIFT
		95-100	ch	10YR81 00					0	01	1K	3		Р	Ŷ	IMP 100/10% SOIL
	22	0 30	1	10YR42 00					~	00	าบ	5			Y	SEE 1P
_	22	0 30 30-40	mcl mcl	107R53 00						00		5 3		M	Y	
		30-40 40-75	ch	10YR53 00						0	A 1	0		n P	Y	IMP CHALK 45
	I	7 0-73							v	J		v		F.	2	THE MINER AN
_	23	0-30	mcl	10YR42 00					Û	0 0	ж	5			Y	SEE 1P
		30-40	mcl	10YR53 00						0 0		5		м	Ŷ	
)	40-75	ch	10YR71 00						0	-	0		P	Ŷ	IMP CHALK 50
		-							-							

program ALCO11

COMPLETE LIST OF PROFILES 17/05/96 TON & MALLING WOULDHAM

page 3

-					MOTTLES	S	PED			-sto	NES-	STRUCT	/ SUBS		
SAMPL	E DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2 :	>6 L	ITH .	TOT CONSIS	T STR POR	IMP SPL CALC	
-															
– ²⁴	-	mcl	10YR42 00							0 a		5		Y	SEE 1P
	30-40	mcl	10YR53 00						0	0 a	н	5	M	Y	
	40-75	ch	10YR71 00						0	0		0	P	Ŷ	IMP CHALK 50
25	0.20		10YR42 00						^	• •	u	2		v	CCC 20
2	0-28 28-65	mzcl	107R42 00		6 00 F					0 0 0 0		3 5	м	Y Y	SEE 2P
	28-03 65-80	mzcl mzcl	101R44 54	IUTKO	10 UU F					0 0		50	M	Y	IMP CHALKY DRIFT 80
_	05-00								Ŭ	U G	n .		FI	T	THE CHALKE DETENDO
26	0-28	mzcl	10YR42 00						0	0 н	R	3		Y	SEE 2P
•	28-55	mzcl	10YR44 54	10YR5	6 00 F				0	0 a	н	5	м	Y	
	55~70	mzcl	10YR64 81						0	0 a	H I	50	М	Y	IMP CHALKY DRIFT 70
27	0-30	mcl	10YR41 00						0	0 н	R	5		Y	SEE 2P +27 CHALK
	30-90	mcl	10YR44 54						0	0 a	н	5	М	Y	+37 FLINTS
	90-100	mzcl	10YR64 81						0	0 a	H (65	м	Y	IMPCHDRIFT100 +5% HR
28		mcl	10YR34 00							0 н		5		Y	SEE 2P
	30-70	mcl	10YR53 00							0 a		2	M	Y	
	70-100	mcl	10YR56 00						0	0 a	H a	20	M	Y	IMP CHALKYDRIFT 100
-		_							_						
29		mc]	10YR33 00							0 H		5		Y	
	30-70	mcl	10YR54 00						Q	0 H	R	5	M	Y	IMP FLINT 70
31	0-30	mzc]	10YR41 00						^	0 н		2		Y	SEC 20
	30 75	mcl	10YR54 44							0 0		5	м	Y	SEE 2P
	30 73 75-80	mzc]	10YR64 81							00		50	M	Ý	IMP CHALKY DRIFT 80
	75-00								Č	0.0			••	1	THE GREEKE DRIFT OF
32	0-28	mcl	10YR41 00						4	он	R	8		Y	SEE 2P +2% CHALK
	28-40	mzc]	10YR44 54						0	o a	4	3	м	Y	
	40-50	mzcl	10YR64 81						0	0 a	н (50	м	Y	IMP CHALKY DRIFT 50
33	0-30	mcl	10YR53 00						4	0 H	R	8		Y	
	30-55	acl	10YR54 00						0	0 a	н ;	20	м	Y	IMP FLINT 55
-															
a 34	0-25	mcl	10YR43 00						4	0 H	R	8		Y	
E.	25-50	mcl	10YR54 00						0	0 H	ર	5	м	Y	IMP FLINT 50
-									_	_		_			
36		mzcl	10YR42 00							0 G		3		Y	SEE 2P +2% FLINT
	25-45	mzcl	10YR54 00	10YR5	600F					0 G		10	м	Y	
-	45-60	mzcl	10YR64 81						0	0 a	-	50	м	Y	IMP CHALKY DRIFT 60