A1 Test Valley Local Plan Review Site 95 Land south east of Romsey Hampshire

Agricultural Land Classification Semi detailed Survey ALC Map and Report

April 1997

Resource Planning Team Eastern Region FRCA Reading

.....

RPT Job Number1512/178/96FRCA ReferenceEL 15/00292LURET Job Number02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITE 95 LAND SOUTH EAST OF ROMSEY HAMPSHIRE

SEMI DETAILED SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 80 hectares of land at North Baddesley to the south east of Romsey south Hampshire The field survey work was carried out during January 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land Land to the immediate west and south west of the survey area has also been surveyed in connection with the Local Plan (ADAS Ref 1512/177/96 and 1512/068/93 respectively)

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA) Reading The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land on this site was mostly in permanent grass parts of the site were being stripped for turf Land along the southern site boundary was in rough grass The areas shown as Other Land comprise woodland areas of scrub and residential dwellings Land in the south west of the site is mapped as Agricultural land not surveyed permission to survey this land was not obtained within the timescale for the field survey work

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of approximately two borings every three hectares of agricultural land surveyed A total of 32 borings and four soil pits were described

Grade/Other land	Area (hectares)	✓ surveyed area	/ site area
2	22 4	43 3	28 0
3a	69	13 3	86
3b	20 2	390	25 3
4	09	17	11
5	14	27	18
Agricultural land not surveyed	19	N/A	2 4
Other land	26 2	<u>N/A</u>	32.8
Total surveyed area Total site area	51 8 79 9	100 0	64 8 100 0

Table 1 Area of grades and other land

8 The gently sloping higher areas of the site are typically classified as Grade 2 (very good quality) land and Subgrade 3a (good quality) land The lower lying land to the north of the main block of woodland and east of Nutburn Cottage has been classified as Subgrade 3b (moderate quality) land Subgrade 3b land also occurs in the south east of the site together with Grade 4 (poor quality) land and Grade 5 (very poor quality) land

9 The majority of land on the site suffers from soil wetness problems to varying degrees Soil wetness acts to restrict the flexibility of cropping stocking and cultivations and adversely affects yields Across much of the site the topsoils are coarse loamy and light textured These profiles overlie similar upper subsoils and pass into moderately or poorly structured clay loams or clays which act to impede soil drainage In general the depth to these moderately or poorly structured horizons will determine the final ALC grade Where these horizons are relatively deep the land is classified as Grade 2 Elsewhere where they are shallower within the profile the land is classified as Subgrade 3a Profiles similar to the latter but with heavier topsoils give rise to land classified as Subgrade 3b Where the land is waterlogged for much of the year Grade 4 is appropriate

10 Much of the land classified as Grade 2 is also equally limited by soil droughtiness which may lower the level and consistency of crop yields In the extreme north west of the site the profiles pass into gravelly subsoils This land has been classified as Subgrade 3a Land in the south east of the site has been classified as Grade 5 This land has been disturbed in the past and the lack of soil resource means that the agricultural potential of this area is severely restricted

FACTORS INFLUENCING ALC GRADE

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 overleaf and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Values			
Grid reference	N/A	SU 403 201	SU 405 208		
Altitude	m AOD	40	50		
Accumulated Temperature	day ^o C (Jan June)	1509	1497		
Average Annual Rainfall	mm	820	820		
Field Capacity Days	days	174	174		
Moisture Deficit, Wheat	mm	107	106		
Moisture Deficit, Potatoes	mm	102	100		
Overall climatic grade	N/A	Grade 1	Grade 1		

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. At this locality the climate is relatively wet in regional terms. As a result, the likelihood of soil wetness problems may be increased No local climatic factors such as exposure or frost risk are believed to adversely affect the land quality on the site. This site is climatically Grade 1

Site

16 The highest land occurs in the north west corner of the site (at an altitude of 55 m AOD) and also as a slight ridge running east west across the centre of the site (at an altitude of 50 m AOD) The land falls (through gradients of 1 4°) to the lower lying land (about 40 m AOD) The lower land occurs in the south east corner of the site and also proximate to the drain running from Nutburn Cottage to Manor Farm Nowhere on the site do gradient or microrelief adversely affect agricultural land quality

Geology and soils

17 The published geology map (BGS 1987) shows the northern two thirds of the site to be underlain by Earnley Sand the southern third is shown as the Wittering Formation, both of which are part of the Bracklesham Group A small area of the site in the north west corner is shown to be overlain by river terrace deposits (undifferentiated) In the south west of the site another small area is shown as made ground the latter comprising areas filled with domestic and industrial refuse and dredged material from Southampton Water (BGS 1987) 18 The most detailed published soil map for this area (SSEW 1983) shows the northern two thirds of the site to comprise soils of the Wickham 3 Association These soils are described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging Some deep coarse loamy soils affected by groundwater (SSEW 1983) The southern third of the site much of which is under woodland is shown as soils of the Holidays Hill Association These soils are described as Naturally very acid sandy over clayey soils locally with humose or peaty surface horizons slowly permeable subsoils and slight seasonal waterlogging Some very acid and well drained sandy soils and some deep sandy soils affected by water with humose surface horizons (SSEW 1983)

Agricultural Land Classification

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2

The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II page 10

Grade 2

21 Most of the gently sloping higher areas of the site have been classified as Grade 2 (very good quality) This land is typically equally limited by minor soil droughtiness and also by minor soil wetness Topsoils comprise non calcareous fine sandy loam topsoils which are slightly stony (0 2% flints > 2 cm and 1 10% total flints) Subsoils have a similar stone content Upper subsoils comprise fine sandy loams or occasionally medium clay loams or These upper subsoils are permeable and moderately structured sandy clay loams At approximately 45 to 60 cm depth, these pass into poorly structured and to a lesser extent moderately structured heavy clay loam and clay lower subsoils These lower subsoils are slowly permeable and act to impede drainage as indicated by gleying within the upper profile Where profiles are gleyed within 40 cm the slowly permeable horizons do not occur until at Consequently all these profiles are assessed as being imperfectly drained least 50 cm (Wetness Class III) These profiles are typified by Pits 2 and 3 (see Appendix II) The interaction between the light topsoils drainage characteristics and the relatively wet prevailing climate means that this land may be subject to minor restrictions on the flexibility of cropping stocking and cultivations

This land is also equally limited by soil droughtiness. The interaction between the soil characteristics and the prevailing climate acts to slightly reduce the amount of soil available water. Consequently this land may be subject to lower and less consistent crop yields. In the extreme north west corner of the site, the key limitation is soil droughtiness. Here, the slowly permeable layers occur much deeper within the profile (Wetness Class II) and the subsoils are moderately stony (20 35% total flints). Such profiles which are typified by Pit 1 give rise to land limited solely by slight soil droughtiness.

Subgrade 3a

Most of the land classified as Subgrade 3a (good quality) is limited by soil wetness land in the north west corner of the site is limited by soil droughtiness. Where soil wetness is limiting profiles comprise non calcareous fine sandy loams which overlie similarly textured medium clay loam or sandy clay loam upper subsoils which are both permeable and moderately structured. At approximately 40 to 45 cm depth, these pass into slowly permeable heavy clay loam and clay lower subsoils which tend to be poorly structured. All of these profiles are gleyed within 40 cm and given the prevailing climate are assessed as poorly drained (Wetness Class IV). Though poorly drained the light topsoils aid workability and mean that at this locality this land is classified as Subgrade 3a. This land may be subject to some restrictions on the flexibility of cropping stocking and cultivations.

Where soil droughtiness is limiting topsoils comprise fine or medium sandy loams which are moderately stony (8% flints > 2 cm 1% flints > 6 cm and 15 18% total flints) These overlie similarly textured upper subsoils which are very stony (40-45% total flints) Such profiles proved impenetrable to a soil auger at about 35 cm depth. The relatively limited extent of such profiles meant that a soil inspection pit was not dug on this site to assess the lower subsoil conditions. However, such profiles are typified by Pit 3 on an adjoining site (RPT Job Number 1512/177/96). From this pit it could be seen that at 60 cm these profiles pass into a very slightly stony (5% total flints) clay which is gleyed poorly structured and slowly permeable. The interaction between these soil characteristics and the local climate makes these soils drought prone. Consequently this land may be subject to lower and less consistent crop yields.

Subgrade 3b

All of the land classified as Subgrade 3b (moderate quality) is limited by significant soil wetness and workability restrictions Topsoils comprise non calcareous medium clay loams and medium silty clay loams These overlie similarly textured moderately structured upper subsoils The lower subsoils are heavier (heavy clay loam heavy silty clay loam or clay) The clay horizons are all poorly structured the heavy (silty) clay loam horizons are either moderately or poorly structured These profiles which have very pale soil matrix colours are all gleyed within 40 cm and generally become slowly permeable between 15 and 30 cm depth These profiles which are typified by Pit 4 are poorly drained (Wetness Class IV) The interaction between the medium textured topsoils poor soil drainage and relatively wet local climate means that this land is limited by soil wetness. Soil wetness can adversely affect seed germination and survival and can inhibit the development of a good root system. It also influences the sensitivity of soil to structural damage and is therefore a major factor in determining the number of days when cultivation trafficking or grazing can take place

Grade 4

A small area of land in the south of the site has been classified as Grade 4 (poor quality) this land is severely limited by soil wetness and workability. Here medium clay loam topsoils directly overlie slowly permeable plastic clay subsoils. The wet surface conditions at the time of survey and the abundance of marshy species in the grassland in this area indicates that this land is waterlogged for prolonged periods of time. Consequently this land has been assigned to Wetness Class V. The interaction between the soil drainage characteristics.

topsoil textures and relatively wet local climate means that this land can be classified no higher than Grade 4 Such land is mainly suited to grass Restrictions on land use are more severe than land assigned to Subgrade 3b with the land mainly being suited to seasonal grazing use

Grade 5

A small area of land in the south east of the site has been classified as Grade 5 (very poor quality) This land has been disturbed in the past and the lack of soil resource (and in particular the lack of topsoil) means that the agricultural potential of this area is severely restricted With remedial work, the agricultural potential of this land may be increased

> Gillian Iles Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1987) Sheet No 315 Southampton 1 50 000 (solid and drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map Soil abbreviations explanatory note Soil pit descriptions Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Sılt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27 % clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20/ M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5 % biopores >0.5 mm a 'Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

Site Nam	e TEST V	ALLEYLP SI	TE 95	Pit N	mbe r 1	P				
Gr d Ref	erence SU	40102080	Average A	nnual Rai	fall	0 mm				
			Accumul t	ed Tempe a	iture	0 degree	days			
			Field Cap	acity Leve	el 0	days				
			L nd Use		Per	manent Gr	ass			
			Slope and	Aspect		degrees				
HORIZON	TEXTURE	COLOUR	STONES	2 TOT ST	ONE LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 26	FSL	10YR42 0		5	HR					
26 40	FSL	10YR42 0		20	HR		MDCSAB	FR	м	
40 64	FSL	10YR42 0	0 0	25	HR		MDCSAB	FR	м	
64 78	HCL	25Y 53 0	0 0	35	HR	м	WKCSAB	FM	м	
78 120	С	05Y 52 0	0 0	25	HR	M	WKCSAB	FM	Ρ	
Wetne s	Grade 1		Wetness C	`laec	II					
Methe S	uraue i		Gleying		064 cm					
			SPL		078 cm					
Drought (Grade 2		APW 125	imm MBW	19 mm					
			APP 104	mm MBP	4 mm					
FINAL AL	C GRADE	2								
MAIN LIM	ITATION	Drought ne	ss							

MAIN LIMITATION Drought ness

S te Name TESI	T VALLEYLP SI	TE 95	PtNmbe	2	P				
Grid Reference	SU40342076	Accumulated	n al Ra nfall d Tempe ature		0 mm 0 degree	days			
		Field Capac	city Level		days				
		Land Use		Per	manent Gr	ass			
		Slope and A	Aspect	02	degrees S	E			
HORIZON TEXTUR	RE COLOUR	STONES 2	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 24 FSL	10YR42 0	0 2	10	HR					
24 52 MCL	10YR41 0	0 0	4	HR	С	MDCSAB	FR	м	
52 70 HCL	25Y 63 0	0 0	0		м	MDCAB	FR	м	
70 120 HCL	25Y 62 0	0 0	0		M	MDCAB	FM	Р	
Wetness Grade	2	Wetness Cla	ass III						
		Gleying	024	cm					
		SPL	052	cm					
Drought Grade	2	APW 134mm	n MBW 2	8 mm 8					
		APP 111mm	n MBP 1	1 mm					
FINAL ALC GRADE MAIN LIMITATION	2 So 1 Wet e	ss/Drought	e						

MAIN LIMITATION So 1 Wet ess/Drought e

Site Name	• TEST V	ALLEYLP SIT	re 95	Pit Number	38	2				
Grid Refe	arence SU	40202030	Average A	nn al Rainfall	c	mm (
			Accumulat	ed Tempe at re	C) degree	days			
			Field Cap	acity Level	0	d ys				
			Land Use							
			Slope and	Aspect	01 d	legrees N	1			
HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 24	FSL	10YR43 00		4	HR					
24 43	FSL	10YR44 00) 0	5	HR		MDCSAB	FR	м	
43- 52	С	25Y 53 00	0 0	12	HR	м	WKCPR	FR	м	
52 75	С	25Y 63 00) 0	15	HR	м	MDCAB	FM	P	
75–120	С	25Y 63 00	0 0	25	HR	м		FM	P	
Wetness (Grade 2		Wetness C	lass III						
110011033 V			Gleying	043 0						
			SPL	043 (
Drought (Gide 2		APW 124	mm MBW 11	8 mm					
			APP 107	mm MBP	7 mm					
FINAL ALC		2 Sail Watao								

MAIN LIMITATION Soil Wetne s/Drought ne

Site Name	TEST VA	LLEYLP SI	TE 95		Pit Num	nber	4	P								
Grid Refere	ence SU4	0502060	Accumul	ated apaci e	al Rai 1 Temperat ty Level pect	ture	0 Ley	0 mm 0 degree days degrees	a days							
HORIZON T	EXTURE	COLOUR	STONE	S >2	TOT STO	ONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC				
0 20	MZCL	10YR42 0	0 0		2		HR	С								
20 38	MCL	25Y 52 0	0 0		0			С	MDCAB	FR	м					
38- 62	MCL	25Y 61 5	3 0		0			M	WKVCPR	FR	м					
62 80	HZCL	25Y 61 0			0			м	MDCAB	FR	М					
Wetness Gra	ide 38		Wetnes Gleying SPL			IV 020 020										
Drought Gra	de		APW APP	mm mm	MBW MBP		0mm 0mm									
FINAL ALC GRADE 3B																

MAIN LIMITATION Wetness

page	1
------	---

SAMPI	F		SPECT				_115"	TNESS-		TAT	PO	TS-		м	REL	EROSN	ED	OST	CHEM	ALC	
NO	GRID REF		OFECI	GRDNT	GLEY	(SPL		S GRADE	AP	MB	AP	MB	DI	RT	FL000		KP .	DIST	LIMIT	ALC	COMMENTS
1	SU40102080	PGR			060	078	2	1	138	32	112	12	1							1	Stonier see 1P
1P	SU40102080	PGR			064	078	2	1	125	19	104	4	2						DR	2	psd fsl t/soil
2	SU40402080	PGR	SE	02	035	045	4	3A		0		0							WE	3A	psd fsl t/soil
2P	\$U40342076	PGR	SE	02	024	052	3	2	134	28	111	11	2						WD	2	psd fsl t/so i
3	SU40502080	PGR	SE	01	035	045	4	3A		0		0							WE	ЗА	See psd 2 & 2P
ЗP	SU40202030	отн	N	01	043	043	3	2	124	18	107	7	2						WD	2	psd fsl t/soil
4	SU40002070	PGR	SE	03			1	1	52	54	52	-48	4						DR	3A	See 3P 177/96
4P	SU40502060	LEY			020	020	4	38		0		0							WE	38	V pale /soils
5	SU40302070	PGR	S	01	025	025	4	3B		0		0							WE	38	Brick f agme t
6	SU40402070	PGR	SE	01	030	055	3	2	136	30	113	13	1						WE	2	See psd 2 & 2P
7	SU40602070	PGR	SE	01	010	037	4	38		0		0							WE	38	V pale see 4P
8	SU40102060	PGR	SE	02	030	060	3	2	119	13	113	13	2						WD	2	Imp 95 flinty
9	SU40302060	PGR	SE	02	0	042	4	38		0		0							WE	38	V pale see 4P
10	SU40502060	PGR			032	032	4	38		0		0							WE	38	V pale see 4P
11	SU40002050	PGR			0	073	2	1	133	27	106	6	2						ĐR	2	
12	SU40102050	FAL	N	01	0	030	4	38		0		0							WE	38	V pale see 4P
13	SU40202050	PGR	S	01	0	025	4	38		0		0							WE	38	V pale see 4P
14	SU40402050	PGR	N	02	0	028	4	3B		0		0							WE	38	V pale see 4P
15	SU39902040	FAL	N	02	050	050	3	2	135	29	119	19	2						WD	2	
16	SU40102040	FAL	N	02	045	060	3	2	127	21	118	18	2						WD	2	Much fine and
17	SU40302040	PGR	N	01	030	030	4	38		0		0							WE	38	
18	SU40502040	PGR	N	01	0	055	3	2	132	26	108	0	2						WD	2	psd f l t/so l
19	SU39902030	LEY	W	03	0	045	4	3A		0		0							WE	3A	Much fine nd
20	SU40002030	PGR	SE	03	0	060	3	2	158	52	111	11	1						WE	2	
21	SU40202030	LEY	N	01	050	050	3	2	106	0	110	10	3A						WD	2	Imp 80 fli ty
22	SU40402030	ŁEY			0	070	2	1	136	30	120	20	1							1	See psd 18& 3P
23	SU40102020	PGR	S	04	030	040	4	3A		0		0							WE	3A	
24	SU40302020	LEY	S	01	050	050	3	2	140	34	116	6	2						WD	2	
25	SU40202010	ОТН	S	04	0	095	1	1	171	65	124	24	1							1	Coarse texture
26	SU40402010	TUR	S	04	0	055	3	2	120	14	117	7	2						WD	2	psd see 3P
27	SU39902000	PGR	N	03	055	055	3	2	139	33	115	5	2						WD	2	In 3a map t
28	SU40302000	RGR			023	023	5	4		0		0							WE	4	ℝshy G de 4
29	SU40401990	PGR			0	015	4	38		0		0							WE	38	Vwetn G4
30	SU39901990	PGR			022	033	4	3A		0		0							WE	3A	
31	SU40301980	PGR			023	035	5	4		0		0							WE	4	Diff to d
32	SU40601970	RGR			028	028	4	3B		0		0							WE	38	Rough 1 nd

prog am ALCO11

page 1

				-MOTTLI	s .	- PED			ST	ONES		STRUCT/	S	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN		TCOL	GLEY	2				CONSIST			R IMP	SPL	CALC	
·																		
1	0 30	fsl	10YR43 00					1	0	HR	5							
	30-60	fsl	10YR42 00					0	0	HR	15			М				
	60-78	hc1	25Y 52 00	10YR58 00	2	OOMNOO	00 Y	0	0		10			M				Not spl see 1P
	78-120	c	05Y 62 00	75YR68 00 1	1		Ŷ	0	0	HR	5			Ρ		Y		
								-	-		_							
1P	0 26	fsl	10YR42 00						-		5		~~					hand=msz1
	26-40	fsl	10YR42 00					0	0		_	MDCSAB						hand=msz]
	40 64	fsl	10YR42 00	100050 00 1			v	0	0		25	MDCSAB						Prob fsl psd 1P
	64 78	hc1		10YR58 00 I			Y Y	0 0	0 0		35 25	WKCSAB WKCSAB				Y		
	78-120	с	051 52 00	25YR58 00	1		т	v	Ŭ	DK.	25	HKUSHD	641	r 1		•		
2	0-35	fsl	10YR42 00					0	0	HR	10							hand=mc1
-	35-45	fsl		10YR66 54			Y	0			5			м				Prob fsl psd 2&2P
	45-57	hcl		10YR56 00			Y	0			2			P		Y		
	57 120			05YR56 00			γ	0	0	HR	2			Ρ		Y		
		-																
2P	0 24	fsl	10YR42 00					2	0	HR	10							hand=mc1
	24 52	fom	10YR41 00	10YR56 00	2		Y	0	0	HR	4	MDCSAB	FR	M				
	52 70	hcl	25Y 63 00	75YR56 58 1	1		Y	0	0		0	MDCAB	FR	M)	I	Y		
	70 120	hc1	25Y 62 00	75YR56 58	1		Y	0	0		0	MDCAB	FM	P١	,	Y		
																		_
3	0 35	fsl	10YR42 00					0	-		2							Prob fsl psd 2&2P
	35-45	mcl		10YR66 00			Ŷ	0		HR	2			M				
	45-60	hc1		10YR66 00			Y	0	0		2			M		Y		
	60 120	c	05Y 73 00	05YR56 00 I	1		Ŷ	0	0	нк	2			Ρ		Y		
3P	0 24	fsl	10YR43 00					2	0	HD	4							hand=ms1
38	24-43	fsl	10YR44 00					0		HR		MDCSAB	FR	м				hand=ms1
	43 52	с С		05YR58 00	4	25Y 52	00 Y	0		HR	12	WKCPR			,	Y		
	52 75	c		05YR58 00		05Y 62		0		HR	15		FM			Ŷ		
	75-120	-		05YR58 00		05Y 62			0		25		FM		,	Y		
		•					Ŧ											
4	0 30	fsl	10YR43 00					8	1	HR	15							
	30 35	fsl	10YR43 00					0	0	HR	40			М				I35 see3P 177/96
4P	0 20	mzcl	10YR42 00	75YR46 00	2			0	0	HR	2							
	20 38	mcl	25Y 52 00	10YR58 00	2		Y	0	0		0	MDCAB			r	Y		
	38-62	mcl		10YR58 68			Y	0	0		0	WKVCPR			ļ.	Y		hand=mzcl/mcl
	62 80	hzc1	25Y 61 00	75YR58 00	1		Ŷ	0	0		0	MDCAB	FR	M		Y		hand hcl
_		_						~	•		•							
5	0 25	mzcl	10YR42 00					0	0		0			_		v		Detail & compate
	25~80	c	10YR66 71				Y	0	0		0			Р		Y		Brick f agment
e	0.30	£~1	10YR43 00					0	n	HR	2							Prob fs1 psd 3P
6	030 3055	fsl		10YR56 00 (-		Y	0		HR	2			м				
	30 55 55 65	mzcl hcl		107R56 00 (Ý	0		HR	2			P		Y		
	55 65 65-120			10YR56 00 1			Ý	ō		HR	2			P		Ŷ		
	00-120	υ υ	10, 72 UL		-		•	-	-		-			•		•		

prog am ALCO11

page	2
------	---

	- M OTTLES											CLIPE			
SAMPLE		TENTING	COLOUR				PED		2	STONES		STRUCT/	SUBS	IMP SPL CALC	
SAMPLE	ULFIN	TEXTURE	CULUUK	ωL	ABUN	CONT	ωL	GLEY	2	O LIIF		CUNSISI	SIK FUR	IMP SPL GALC	
7	0 10	mzcl	10YR42 00						0	0 HR	1				
	10 37	mcl	10YR61 00	75YR4	6 00 M			Y	0	OHR	1		M	Ŷ	Prob spl v pale
	37 50	hc1	25Y 72 00	10YR5	6 00 C			Y	0	0	0		P	Y	V pale
	50 120	c	25Y 62 00	10YR6	8 00 M			Y	0	0	0		Ρ	Y	V pale
8	0 30	fsl	10YR43 00						6	1 HR	10				Prob fsl psd 1P&2P
Ť	30 60	fsl	10YR62 00	75185	2 00 A			Y	0	OHR	5		м		Prob fs1 psd 1P&2P
	60 95	c	05Y 62 00					Ŷ	0	OHR	5		P	Y	Imp 95 flinty
9	0-32	mcl	10YR53 00					Y	1	O HR	5				
	32-42	mcl	25Y 63 00				DOMN00		0	OHR	5		M		
	42-80	hc1	10YR63 00			C	00MIN00		0	OHR	1		M	Y	Prob spl 2P&4P
	80 120	hc1	25Y 72 00	75YR5	6 00 M			Ŷ	0	OHR	1		М	¥	Prob spl 2P&4P
10	0 32	mzc]	10YR43 00						0	0	0				
	32 55	hzc1	25Y 72 00	10YR5	6 00 C			Y	0	0	0		Ρ	Y	V pale
	55-85	c	25Y 62 00	10YR5	8 00 M			Y	0	0	0		Р	Y	V pale
	0.35		10/01/0	10/05					~	A 115	10				
11	0 35 35-50	fs] fs]	10YR42 00 10YR72 00					Ŷ	3 0	O HR O HR	10 15				Prob fsl psd 1P&2P Prob fsl psd 1P&2P
	50 60	fs1 hc1	25Y 62 00					Y Y	0	0 HR	15		M P		Prou isi psa iraze
	60 73	nci msl	05Y 62 00					Ŷ	0	OHR	5		M		V pale
	73 120	ntsi C	05Y 61 00					Ŷ	0	0	0		P	Y	V pale
		-		79110	0 00 11			•	Ĵ	°.	-		•	•	t paro
12	0 30	mzcl	10YR51 00	75YR5	6 00 C			Y	0	0	0				V pale
	30 40	hc1	10YR51 00	75YR5	600C			Y	0	0	0		P	Y	V pale
	40 70	с	25Y 62 00	10YR5	6 00 C			Y	0	0	0		P	Y	
13	0 25		100050 40	10005	o oo o			v	•	0.00	E				
13	0 25 25-45	mc] 1	10YR52 42 10YR52 00				OMNCO	Y M V	1 0	OHR OHR	5 5			v	V
	25-45 45-58	mc1 mc1	25Y 62 72			U	JUMINUU	υυ τ Υ	0	OHR	2		M M	Y Y	V pale Prob spl see 4P
	40-00 58 95	nci hc1	05Y 62 00			0	OMNOO		0	OHR	2		P	Ŷ	Prou spi see 4P
	95-110	c	05Y 61 00				000000		Ō		2		P	Ŷ	
		0		10,110		•			•	•	-		•	·	
14	0 28	mcl	10YR52 53	10YR4	6 00 C			Y	0	0	0				
	28 70	с	25Y 71 62	10YR5	8 00 M			Y	0	O HR	2		Ρ	Y	V pale
15	0 32	fsl	10YR43 00						0	O HR	1				Prob fsl psd 3P
	32 50	fsl	10YR44 00							OHR	1		M		Prob fsl psd 3P
	50 65	hcl	10YR53 54	10YR5	8 00 C			Y		OHR	1		M		Prob spl rel pale
	65-110		10YR52 53					Y		0 HR	1		P	Y	•
16	0 30	fsl	10YR43 00							0	0				Prob fsl psd 3P
	30-45	fsl	10YR44 00						0	-	0		M		Prob fs1 psd 3P
	45-60	hc1	10YR53 54					Ŷ		0	0		M	Y	Prob spl rel pale
	60 100	c	10YR52 53	10YR5	8 00 C			Ŷ	0	0	0		Ρ	¥	
17	0 30	mcl	10YR43 00						0	0	0				
	30 70	с	10YR53 00	75YR5	8 00 C			Y		0 HR	2		Ρ	Y	
	70 75	с	10YR53 00					Y	0	O HR	25		Р	Y	

prog am ALCO11

					OTTLES	<u> </u>	PED				STO	NES-	STRUC	π 7	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL		CONT		GL F	Y	2			DT CONSE	-		IP SPL CALC	
	DEI III	I CATORE	002000	002		00.07			••	-	• -						
18	0 28	fsì	10YR61 00	75YT44	00 C			Y	1	0	0 н	R !	5				Prob fs1 psd 3P
	28-55	scl	25Y 63 00	75YR56	5 00 C			Y	1	0	0	(0		м		Sandy not spl
	55120	с	25Y 62 63	10YR56	00 M			Y	1	0	0	(2		Р	Y	
19	0-30	f 1	10YR42 00	10YR44	00 C			Y	,	0	0	(2				Prob fs1 psd 3P
	3045	mcl	10YR53 43					Y	(0	0	(0		M		
	45-70	hc1	25Y 61 54	-				Y	1	-	0	(D		P	Y	
	70-80	hc1	25Y 61 54					Y		-	0		0		P	Y	
	80 120	с	25Y 61 54	10YR46	5 56 M			Y		0	0	(0		Р	Y	
		• -							_		.		_				
20	0-30	fsl	10YR52 00					Y			0 H						Prob fs1 psd 3P
	30 60	fsl	25Y 62 00					Y			0 H				M		Prob fs1 psd 3P
	60-85	scl	25Y 53 00			,	OOMNOO				0 H		1		P	Y	Duck foll and 2D
	85-120	fsl	05Y 53 63	TUYKS	5 00 C			Y		0	0 H	IK	1		M	Y	Prob fs1 psd 3P
21	0 30	fsl	10YR43 00							0	0 н		3				Prob f 1 psd 3P
21	30 50	fsl	101R43 00								он		5		м		Prob fs1 psd 3P
	50-80	C	25Y 51 52	757858	. 00 м			Y			0 н				P	Y	Impen 80 fli ty
	30-00	C	201 01 02	7511100				•		•	• •		-		•	•	
22	0 35	fsl	10YR52 00	10YR58	3 00 C			Y	,	0	0 н	R	2				Prob fs1 psd 3P
	35-50	fsl	10YR63 64			(0011100				0 H		2		M		Prob fs1 psd 3P
	50 70	สตวไ	25Y 53 00				001100				0		5		M		Q fs1
	70 90	с	05Y 62 00	75YR68	3 00 M			Y	,	0	0 н	R	2		ρ	Y	
	90 120	las	05Y 62 00					Y	,	0	0	()		м	Y	Q 1fs
23	0 30	f 1	10YR43 00							0	0 н	R !	5				hand=ms1
	30-40	fsl	25Y 53 00	10YR58	00 C			Y	,	0	0 н	R !	5		M		Prob fs1 psd 41
	40-80	с	05Y 42 00	75YR68	00 M			Y	•	0	0	()		Р	Y	
24	0-25	fsl	10YR43 00								0 H		2				Prob f 1 psd 41&3P
	25-50	fsl	10YR44 00								0 H		2		M		Prob fs1 psd 41&3P
	50 60	hc1	05Y 62 00					Y			0	(M	Y	Prob sp1 v pale
	60 120	hcl	05Y 52 00	754868	00 M			Y		0	0	(J		Ρ	Y	
25	0.00	6.3	100052 00	10/046	. 00 C				,		• •						Deale (13 and (1820
25	0 35		10YR52 00								0 н 0 н				м		Prob fs1 psd 41&3P
	35-95 95-120	fsl	25Y 52 00 25Y 62 00					Y			0 H				M M	Y	Prob fs1 psd 41&3P
	33-120	SCI	251 02 00	TUTKUC	00 11			T		U	0 1	ĸ			n	T	
26	0 35	fsl	05Y 42 32	107858	00 C			Y	,	ი	он	R 1	1				Prob fs1 psd 41&3P
20		fsl	05Y 52 63								ОН				м		Prob fs1 psd 41&3P
		c	05Y 52 00								он				P	Ŷ	
		-								-	,						
27	0 30	fs1	10YR42 43							0	он	R 2	2				Prob fs1 psd 41&3P
	30-45		10YR42 00								он		3		м		Prob fs1 psd 41&3P
		fsl	10YR42 00							0	0 н	R 8	3		м		Prob fs1 psd 41&3P
	55-120	с	05Y 52 61	10YR68	58 M			Y		0	0	C)		P	Y	
28		mcl	10YR32 00							0		C					V wet & ru hy
	23-60	с	05Y 72 00	10YR68	00 M			Y		0	0 н	R 5	5		Ρ	Y	

page 3

~

-

					MOTTLES		PED	-		STONES		STRUCT/ SUBS							
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH	тот	CONSIST	STR F	POR I	MP :	SPL CALC			
29	0-15	omcl	10YR21 00					Y	0	٥	0								
23		c	05Y 41 00	10YR6	8 00 M			Ŷ	ō	-	0		Ρ			Y			
30	0 22	fs]	10YR31 00						0	0 HR	2						Prob	fslo	osd 41
	22 33	scl	25Y 53 00	10YR5	600 C			Y		0	0		м						
	33-70	hc1	05G 62 00	10YR5	8 00 M			Y	0	0	0		м			Y	Prob	p٦	pal
	70 120	scl	05G 62 00	10YR5	8 00 M			Y	0	0	0		M			Y	Prob	spl	v pale
31	0 23	ofsl	10YR21 00						0	0	0								
	23-35	fsl	10YR42 00	10YR5	800 C			Y	0	0 HR	2		Μ						
	35-120	C	05G 52 00	10YR6	8 00 M			Y	0	0	0		Ρ			Y			
32	0 28	mcl	10YR32 00						0	0	0								
	28-55	с	05G 51 00	10YR5	8 00 M			Y	0	0	0		Ρ			Y			
	55-70	c	05B 71 00	10YR5	8 00 M			Y	0	0	0		Р			Y			

page 4