A1

West Sussex Minerals Plan Site D: Whitehouse Farm, Chichester. Agricultural Land Classification ALC Map and Report May 1995

.

.

AGRICULTURAL LAND CLASSIFICATION REPORT

WEST SUSSEX MINERALS PLAN SITE D: WHITEHOUSE FARM, CHICHESTER.

1. Summary

- 1.1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in West Sussex. The work forms part of MAFF's statutory input to the West Sussex Minerals Plan.
- 1.2 Site D comprises approximately 50 hectares of land to the west of Chichester in West Sussex. An Agricultural Land Classification (ALC) survey was carried out during May 1995. The survey was undertaken at a detailed level of approximately one boring per hectare. A total of 42 borings and three soil inspection pits were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture.
- 1.3 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS.
- 1.4 The agricultural land at this site was under cereals and recently drilled linseed. Areas marked as Urban includes a hard-core track running across the sight, and a private dwelling in the north. Farm buildings have been mapped towards the south of the site.
- 1.5 The distribution of grades and subgrades is shown on the attached ALC map, the areas and extent are given in the table below. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

Table 1: Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site	% of Agricultural Land
3a	4.4	8.8	9.1
3b	43.8	88.0	<u>90.9</u>
Urban	1.5	3.0	100% (48.2 ha.)
Farm buildings	<u>0.1</u>	<u>0.2</u>	
Total area of site	49.8	100%	

1.6 Appendix I gives a general description of the grades, subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur, the typical cropping range and the expected level and consistency of yield.

1.7 The majority of the agricultural land on the site has been classified as Subgrade 3b, moderate quality land, with soil droughtiness and topsoil stoniness as the main limitations. Soils within this mapping unit typically comprise moderately stony topsoils resting upon very stony subsoils. Consequently, these profiles show a significant restriction upon the amount of profile available water for crop growth. This can affect the level and consistency of crop yields, such that a classification of Subgrade 3b is appropriate. Furthermore, a number of topsoil stone measurements within this mapping unit found the volume of stones greater than 2cm in size to exceed 15%. Excessively stony topsoils can inhibit crop growth and establishment, and can increase production costs due to wear and tear on machinery and tyres. Towards the south of the site, soil wetness becomes the main limitation. Slowly permeable clay horizons at variable depths in the profile impede drainage to the extent that a classification of Subgrade 3a, good quality land, is appropriate given the local climatic regime.

2. Climate

- 2.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe climatic limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall, as a measure of overall wetness, and accumulated temperature (day °C Jan-June), as a measure of the relative warmth of a locality.
- 2.3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met. Office 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site.
- 2.4 However, climatic factors do interact with soil factors to influence soil wetness and droughtiness limitations. The climate at this location is relatively warm and moist in a regional context, therefore the likelihood of a soil wetness limitation may be increased.
- 2.5 No local climatic factors such as exposure or frost risk are believed to affect the site.

Table 2 : Climatic Interpolations

Grid Reference	SU 846 060	SU 846 057
Altitude (m)	30	15
Accumulated Temperature	1516	1533
(Day °C, Jan-June)		
Average Annual Rainfall (mm)	796	779
Field Capacity (days)	162	159
Moisture Deficit, Wheat (mm)	115	118
Moisture Deficit, Potatoes (mm)	111	114
Overall Climatic Grade	1	1

3. Relief

3.1 The site slopes gently from north to south, lying at an altitude of approximately 15-30m AOD. Nowhere on the site do altitude or relief pose any limitation to agricultural use.

4. Geology and Soils

- 4.1 The published geological map (BGS, 1972) shows the majority of the site to be underlain by Valley Gravel, with a small area of London Clay mapped along the eastern edge.
- 4.2 The published Soil Survey map (SSGB, 1967) shows the soils on the site to comprise four distinct series. The majority of the site is mapped as the extremely flinty phase of the Strettington series. These are described as 'well drained silty brown earths with gleying developed in flinty silty drift, extremely flinty phase soils having more than about 50% of stones by volume.' (SSGB, 1967). Towards the northern boundary of the site extremely flinty phase Charity series soils are mapped, described as 'well drained fine silty and fine silty over clayey soils, some shallow over flint gravel' (SSEW, 1983). Towards the south of the site extremely flinty phase Binsted series soils are mapped, described as 'silty non-calcareous gley soils developed in flinty silty head' (SSGB, 1967). On the lower land towards the southern boundary of the site, soils of the deep phase Park Gate series are mapped, these are described as 'silty gley soils developed in brickearth suffering from imperfect drainage and variably affected by groundwater' (SSGB, 1967).
- 4.3 Detailed field examination found the soils correlated well with the published information. The soils on the plateau area covering the majority of the site tend to be silty soils with moderately flinty topsoils and very flinty subsoils. Slightly stony silty soils showing signs of imperfect drainage were observed on the lower land towards the south of the site.

5. Agricultural Land Classification

5.1 The location of the soil observation points are shown on the attached sample point map.

Subgrade 3a

An area of lowlying land towards the south of the site has been classified as Subgrade 3a, 5.2 good quality land, with soil wetness as the main limitation. Soil profiles typically comprise silt loam topsoils overlying medium silty clay loam upper subsoils, which in turn rest upon clay or silty clay lower subsoils at variable depths. Profiles are less stony than elsewhere on the site, with very slightly stony topsoils and slightly stony subsoils. Furthermore, soils in this mapping unit show signs of imperfect drainage in the form of gleying from either the topsoil or upper subsoil. A subsequent soil inspection pit dug in this mapping unit (pit no. 3) found the clay lower subsoil (commencing at 37cm) to be slowly permeable with low porosity, thereby causing a drainage impedance. The drainage characteristics observed at the location of the pit means that the described profile is assigned to Wetness Class IV, with a resultant classification of Subgrade 3b given the prevailing local climatic conditions. Yet, within this mapping unit additional soil observations found slowly permeable clays commencing at lower depths resulting in soils being assigned to Wetness Classes II and III and subsequent classifications of Grade 2

and Subgrade 3a. Therefore an overall classification of Subgrade 3a is appropriate for the land in this area of the site. Imperfectly drained soils can restrict plant and root development and may be more susceptible to structural damage through poaching by grazing livestock or trafficking by agricultural machinery.

Subgrade 3b

- 5.3 The majority of the agricultural land on the site has been classified as Subgrade 3b, moderate quality land, with soil droughtiness and topsoil stoniness as the main limitations. Soil augerings within this mapping unit commonly proved impenetrable below the topsoil.
- 5.4 Stone measurements at each auger sample point found the volume of flints in the topsoil greater than 2cm in size to exceed 15% across much of this mapping unit. Where such volumes were observed, topsoil stoniness causes a significant limitation. Excessively stony topsoils can act as an impediment to cultivation, harvesting and crop growth and also cause a reduction in the available water capacity of a soil. A high stone content can also increase production costs by causing extra wear and tear to implements and tyres.
- 5.5 Where topsoil stoniness is not the overriding limitation and soil augerings proved impenetrable below the topsoil, soil inspection pits (pits 1 and 2) were dug to investigate the cause of this impenetrability. At the location of the pits, the described soil profiles were found to be relatively similar. A moderately stony (25-30% total flints v/v) silt loam topsoil was found to overly a very stony (50-55% total flints v/v) medium silty clay loam upper subsoil extending to 54 and 55cm in pits 1 and 2 respectively. The lower subsoil was found to comprise a very stony (65% total flints v/v) medium silty clay loam. Profiles were well drained and assigned to Wetness Class I. Pits 1 and 2 became impenetrable to digging at respective depths of 70cm and 68cm. Therefore assumptions have had to be made regarding the nature of the soils below these depths. Given the fact that the soils are all developed from Valley Gravel deposits, it is unlikely that soils will become any less stony with depth. Thus, for the purposes of calculating profile available water, it has been assumed that the described lower subsoil extends to a depth of 120cm, with similar stone contents of 65%; this may be the best scenario as the soils may actually grade into gravel with depth. This droughtiness calculation found that there is a restriction upon the amount of profile available water for plant growth, which will in turn affect the level and consistency of crop yields. This significant droughtiness limitation is due to a combination of soil textures, stone contents, subsoil structures (which are adversely affected by high stone contents) and the local climatic regime such that a classification of Subgrade 3b is appropriate.

ADAS Ref: 4203/065/95 MAFF Ref: EL 42/228 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

.

British Geological Survey (1972), Sheet No. 317, Chichester, 1:63,360 Series (drift edition).

MAFF (1988), Agricultural Land Classification of England and Wales : Revised guidelines and criteria for grading the quality of agricultural land.

Meteorological Office (1989), Climatological Data for Agricultural Land Classification.

Soil Survey of Great Britain (1967), Sheet SU70 & SU80, Chichester, 1:25,000 and accompanying bulletin 'Soils of the West Sussex Coastal Plain'.

Soil Survey of England and Wales (1983), Sheet 6, Soils of South East England, 1:250,000 and accompanying legend.

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 : Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 : Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 : Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a : Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b : Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4 : Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

ĺ

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including: housing, industry, commerce, education, transport, religious buildings, cemeteries. Also, hard-surfaced sports facilities, permanent caravan sites and vacant land; all types of derelict land, including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture, including: private parkland, public open spaces, sports fields, allotments and soft-surfaced areas on airports. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply.

Woodland

Includes commercial and non-commercial woodland. A distinction may be made as necessary between farm and non-farm woodland.

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses. Temporary structures (eg. polythene tunnels erected for lambing) may be ignored.

Open Water

(

Includes lakes, ponds and rivers as map scale permits.

Land Not Surveyed

Agricultural land which has not been surveyed.

Where the land use includes more than one of the above, eg. buildings in large grounds, and where map scale permits, the cover types may be shown separately. Otherwise, the most extensive cover type will be shown.

. . .

2

Ļ

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Definition of Soil Wetness Classes

We	tness Class	Duration of Waterlogging ¹
	I	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
	п	The soil profile is wet within 70 cm depth for 31-90 days in most years or , if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
	m	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
	IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or , if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
	V	The soil profile is wet within 40 cm depth for 211-335 days in most years.
(VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics, site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC.

-

•

¹The number of days specified is not necessarily a continuous period.

²'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents :

í

٠

.

Soil Abbreviations - Explanatory Note

.

Soil Pit Descriptions

Database Printout - Boring Level Information

Database Printout - Horizon Level Information

:

•=

•

SOIL PROFILE DESCRIPTIONS : EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF : national 100 km grid square and 8 figure grid reference.
- 2. USE : Land use at the time of survey. The following abbreviations are used.

ARA :	Arable	WHT :	Wheat	BAR : Barley
CER :	Cereals	OAT :	Oats	MZE : Maize
OSR :	Oilseed rape	BEN :	Field Beans	BRA : Brassicae
POT :	Potatoes	SBT :	Sugar Beet	FCD : Fodder Crops
LIN :	Linseed	FRT :	Soft and Top Fruit	FLW : Fallow
PGR :	Permanent Pasture	EEY :	Ley Grass	RGR : Rough Grazing
SCR :	Scrub	CFW :	Coniferous Woodland	DCW : Deciduous Wood
HTH :	Heathland	BOG :	Bog or Marsh	FLW : Failow
PLO :	Ploughed	SAS :	Set aside	OTH : Other
HRT :	Horticultural Crop)S		

- 3. GRDNT : Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL : Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS) : Crop-adjusted available water capacity.
- 6. **MB (WHEAT/POTS)** : Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. **DRT** : Best grade according to soil droughtiness.

ę

8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL : Microrelief limitationFLOOD : Flood riskEROSN : Soil erosion riskEXP : Exposure limitationFROST : Frost proneDIST : Disturbed landCHEM : Chemical limitation

9. LIMIT : The main limitation to land quality. The following abbreviations are used.

OC :	Overall Climate	AE : Aspect	EX :	Exposure
FR :	Frost Risk	GR : Gradient	MR :	Microrelief
FL :	Flood Risk	TX : Topsoil Texture	DP :	Soil Depth
CH :	Chemical	WE : Wetness	WK :	Workability
DR :	Drought	ER : Erosion Risk	WD :	Soil Wetness/Droughtiness
ST :	Topsoil Stonine	5S		

Soil Pits and Auger Borings

í

1. **TEXTURE** : soil texture classes are denoted by the following abbreviations.

S :	Sand	LS :	Loamy Sand	SL :	Sandy Loam
SZL :	Sandy Silt Loam	CL :	Clay Loam	ZCL :	Silty Clay Loam
ZL :	Silt Loam	SCL :	Sandy Clay Loam	C :	Clay
SC :	Sandy Clay	ZC :	Silty Clay	OL :	Organic Loam
P :	Peat	SP :	Sandy Peat	LP :	Loamy Peat
PL :	Peaty Loam	PS :	Peaty Sand	MZ :	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- **F**: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL : Mottle colour using Munsell notation.
- 3. MOTTLE ABUN : Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. **MOTTLE CONT** : Mottle contrast
 - **F**: faint indistinct mottles, evident only on close inspection
 - **D**: distinct mottles are readily seen
 - **P**: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL** : Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. **STONE LITH** : Stone Lithology One of the following is used.

HR :	all hard rocks and stones	SLST :	soft oolitic or dolimitic limestone
СН :	chalk	FSST :	soft, fine grained sandstone
ZR :	soft, argillaceous, or silty rocks	GH :	gravel with non-porous (hard) stones

MSST : soft, medium grained sandstone GS : gravel with porous (soft) stones

SI: soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

05.94

8. **STRUCT** : the degree of development, size and shape of soil peds are described using the following notation:

degree of development	WK : weakly developed ST : strongly developed	MD : moderately developed
ped size	F : fine C : coarse	M : medium VC : very coarse
<u>ped shape</u>	S : single grain GR : granular SAB : sub-angular blocky PL : platy	M : massive AB : angular blocky PR : prismatic

9. **CONSIST** : Soil consistence is described using the following notation:

L : loose VF : very friable FR : friable FM : firm VM : very firm EM : extremely firm EH : extremely hard

- 10. SUBS STR : Subsoil structural condition recorded for the purpose of calculating profile droughtiness : G : good M : moderate P : poor
- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP : If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL : Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.

;

14. CALC : If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

•

- APW: available water capacity (in mm) adjusted for wheat
- **APP**: available water capacity (in mm) adjusted for potatoes
- MBW : moisture balance, wheat

MBP : moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name	e : W SUSSI	EX MINS SI	TE D	Pit Number	: 1	Р					
Grid Refe	erence: SU	84800620	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ty Level	: 1516 degree days						
HORIZON 0- 30 30- 54 54-120	TEXTURE ZL MZCL MZCL	COLOUR 10YR42 (10YR56 (10YR66 (0 00	TOT.STONE 30 50 65	LITH HR HR HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE M P	CALC	
Wetness (Grade : 1		Wetness Clas Gleying SPL	:	cm cm						
-	Grade : 3B C GRADE :		APW : 85 mm APP : 79 mm		80 mm 82 mm						

MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Name : W SUSSEX MINS SI	ITE D Pit Number	: 2P						
Grid Reference: SU84600600	Average Annual Rainfall Accumulated Temperature Field Capacity Level Land Use Slope and Aspect	: 1516 degree days						
HORIZON TEXTURE COLOUR 0-30 ZL 10YR42 (30-55 MZCL 10YR54 (55-120 MZCL 10YR56 (00 0 55	LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC HR HR P HR P						
Wetness Grade : 1		cm cm						
Drought Grade : 3B		13 mm 16 mm						
FINAL ALC GRADE : 3B								

MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Name	: W SUSS	EX MINS SI	TE D	Pit Number	• : 3	3P					
Grid Refe	erence: SU	84600570	Average Annu Accumulated Field Capac Land Use Slope and A	Temperature ity Level	e : 151 : 162 : Lir	: 796 mm : 1516 degree days : 162 days : Linseed : 2 degrees S					
HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC	
0- 28	ZL	10YR42 5	52 4	6	HR						
28- 37	MZCL	10YR53 6	53 0	5	HR	м	MDCSAB	FR	м		
37- 57	С	10YR53 5	52 0	5	HR	M WKCPL FR P					
57-120	С	10YR53 (0 0	10	HR	м	WKCSAB	FR	м		
Wetness G	Grade : 38		Wetness Cla Gleying SPL	ss : IV : 28 : 37							
Drought 6	Grade : 2		APW : 142mm APP : 119mm		27 mm 8 mm						
FINAL ALC	C GRADE :	3B									

MAIN LIMITATION : Wetness

SAMPL	.E	A	SPECT				WETN	ESS	-WHI	EAT-	-P0	TS-	۲	1. REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EXF	DIST	LIMIT		COMMENTS
							4		0 F	20	70	22	20				00	20	
	SU84800620						1	1	85 000	-30	79 000	-32	3B				DR ST	3B 3B	DR120 PITI70 TOPSOIL STONE
	SU84668649						1					0 26	20						
	SU84600600						1	1	82	-33		-36	3B				DR	3B	DR120 PITI68
	SU84800650		~	~	20	27	1	1	000		000	0	•				DR	3B 20	I35 SEE1P
36	SU84600570	LIN	5	2	28	37	4	3B	142	21	119	8	2				WE	3B	P100 AUG120
4	SU84900650	LIN					1	1	38	-77	38	-73	4				ST	3B	TOPSOIL STONE
7	SU84800640				32		2	2	61	-54	61	-50	4				DR	38	145 SEE 1P
8	SU84900640	LIN					1	1	47	-68	47	-64	4				ST	3B	TOPSOIL STONE
9	SU85000640	LIN			30		2	2	75	-40	78	-33	3B				ST	3A	160
10	SU84600630						1	1	000	0	000	0					DR	3B	3B TS STONE
12	SU84800630	LIN			31		2	2	58	-57	58	-53	4				DR	3B	I45 SEE1P
13	SU84900630	LIN					1	1	61	-54		-50					ST	3B	TOPSOIL STONE
14	SU85000630	LIN	E	2			1	1	57	-58		-54	4				ST	3B	TOPSOIL STONE
15	SU84500620	CER					1	1	000		000	0					DR	3B	3B TS STONE
17	SU84700620	CER					1	1	000	0	000	٥					DR	38	I32 SEE 1P
18	SU84800620	I TN			29		2	2	60	-55	60	-51	4				DR	3B	I38 SEE 1P
19	SU84900620						1	1	70	-45		-41					DR	3B	141 SEE 1P
20	SU85000620		F	4			1	1	48	-67		-63					ST	38	TOPSOIL STONE
21	SUB3000020		+	•			1	1	000		000	0	•				DR	3B	I32 SEE 2P
23	SU84600610						1	1	000		000	0					DR	38	132 SEE 2P
20		Ç 214					•			-		•					2		
24	SU84700610	CER					1	1	73	-42	73	-38	3B				DR	3B	I40 SEE 2P
25	SU84800610	OSR					1	1	53	-62	53	-58	4				DR	3B	I30 SEE 1P
26	SU84900610	LIN					1	1	82	-33	82	-29	3B				DR	3B	147 SEE 1P
27	SU85000610	LIN	E	4			1	1	63	-52	63	-48	4				ST	3B	TOPSOIL STONE
28	SU84400600	LIN					1	1	74	-41	74	-37	ЗB				DR	3B	3B T\$ STONE
, 20	SUD4500600	1 741					1	1	E 2	-63	52	-59					00	20	
29	SU84500600						1 1	1	52 65	-50							DR	3B 20	135 SEE 2P
30	SU84600600							1	53				38				ST	3B 20	TOPSOIL STONE
31	SU84700600						1		55 57	-62 -58		-58 -54					ST	3B	TOPSOIL STONE
	SU84800600		ĉ.	2			1	1 1	57 36	-58 -79		-54 -75					DR		I40 SEE 2P
33	SU84900600	WHI	ЭС	3			1	,	30	-/9	30	-75	4				ST	38	TOPSOIL STONE
34	SU85000600	WHT			25		2	2	43	-72	43	-68	4				DR	3B	130
36	SU84400590	LIN					1	1	59	-56	59	-52	4				ST	38	TOPSOIL STONE
37	SU84500590	LIN					1	1	61	-54	61	-50	4				DR	3B	I42 SEE 2P
38	SU84600590	LIN					1	1	53	-62	53	-58	4				DR	3B	135 SEE 2P
39	SU84700590	WHT					1	1	60	-55	60	-51	4				ST	3B	TOPSOIL STONE
40	0104000500	1 711					1	1	£0	r-	60	51	^					-	140 055 00
40	SU84800590		c	°	25		1	1	60 94	-55		-51					DR	3B 20	140 SEE 2P
41	SU84900590			3	25		2	2 1	84 52	-31		-24 50					DR	3B 20	155 135 655 20
45	SU84600580			1 2			1	1	52 62	-63		-59					DR	3B	I35 SEE 2P
46	SU84700580		3	2	S25	061	2		62 000	-53		-49	4				DR	3B	I40 SEE 2P
47	SU84300570	SAS			323	001	۲	2	000	U	000	0					WE	2	180 HR
48	SU84400570	SAS			30	30	4	3B	132	17	113	2	2				WE	3B	
49	SU84500570		s	3	45		1	1	115		128		- 3A				DR		170 HR
-													-						

page 1

LIST OF BORINGS HEADERS 15/05/95 W SUSSEX MINS SITE D

SAMPLE ASPECT --WETNESS- -WHEAT -POTS M. REL EROSN FROST CHEM ALC NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS 50 SU84600570 LIN S 3 30 40 4 3B 124 9 114 3 2 WE 3B 51 SU84700570 LIN S 3 26 46 3 3A 111 -4 114 3 3A WE 3A I80 HR 52 SU84600560 LIN 30 43 4 3B 133 18 108 -3 2 WE 3A I80 HR 53 SU84700560 LIN 30 52 3 3A 148 33 124 13 1 WE 3A

page 1

					OTTLES	5	PED			5	STONES-		STRUCT/	SUE	3S				
SAMPLE	DEPTH	TEXTURE	COLOUR					GLE					CONSIST			IMP	SPL CAL	C	
1P	0-30	zl	10YR42 00						12	. (OHR.	30							
	30-54	mzc1	10YR56 00						C) (D HR	50		М				Ρ	IT DUG TO
	54-120	mzcl	10YR66 00						C) (D HR	65		Ρ				7	70 CM
1S	0-25	zl	10YR42 00						18	3 (0 HR	28							
										_	.								
2P	0-30	z	10YR42 00								O HR	25		_				_	
	30-55	mzcl	10YR54 00								O HR	55		P					PIT DUG TO
	55-120	mzcl	10YR56 00						(ונ	0 HR	65		Ρ				C	58 CM
· ·	0.25	-1	100042 00						1:	, ,	0 HR	22							
3	0-25 25-35	zl l	10YR42 00								0 HR	20		м				1	IMP FLINTS
	20-30	mzcl	10YR54 00						Ì	, .	U TIK	20		1.1					
3P	0-28	zl	10YR42 52							1	0 HR	6							
0.	28-37	mzcl	10YR53 63	10YR5	8 00 M		OOMNOO	00 Y			OHR		MDCSAB F	RM	Y				
	37-57	c	10YR53 52				000000	00 Y	()	O HR	5	WKCPL F	R P	Y		Y		
	57-120	с	10YR53 00	10YR5	B 00 M		00MN00	00 Y	(()	0 HR	10	WKCSAB F	RM	Y		Y		
4	0-25	mzcl	10YR41 42								3 HR	35							
	25-3 0	zl	10YR46 56						()	0 HR	45		M]	IMP FLINTS
										_									
7	0-32	mzcl	10YR41 42		~ ~~ ~						3 HR	25							
	32-45	mzcl	10YR53 43	10YR5	6 UU C			1	(J	0 HR	35		M					IMP FLINTS
8	0-30		100041 40						1	5	4 HR	35							
o	30-38	mzcl mzcl	10YR41 42 10YR43 00								O HR	40		м					IMP FLINTS
	JU-JU		1011240 00							-									
9	0-30	mzcl	10YR41 00						1	1	3 HR	20							
	30-45	с	25Y 51 00	10YR5	8 00 M	I		١	Y I	0	0 HR	30		м	1				
	45-60	msl	25Y 51 61	10YR5	8 00 C			١	/ 1	0	0 HR	40		Μ	l				IMP FLINTS
10	0-30	zl	10YR42 00						1	B	0 HR	28							IMP FLINTS
										_	.								
12		mzcl	10YR42 41	_				•• •			3 HR			_	_				
	31-45	mzcl	10YR53 54	10YR5	6 00 0		00MN00	00 '	Y	0	U HR	35		۲	1				IMP FLINTS
17	0.00	,	100042-00						1	7	0 HR	23							
13	0-26 26-35	z]	10YR42 00								0 HR	23 30		۲					IMP FLINTS
	20-35	zl	10YR44 00							0	U TIK	50		1-	1				
14	0-30	zl	10YR41 00						1	6	5 HR	35							
••	30-40	zl	25Y 61 00								0 HR	50		м	1			:	IMP FLINTS
15	0-30	zl	10YR42 00						1	8	0 HR	28							IMP FLINTS
17	0-32	zl	10YR42 00						1	2	0 HR	22							IMP FLINTS
										_									
18	0-29	zl	10YR41 00		c						0 HR	30							
	29-38	zl	10YR53 00	10YR5	6 UD C	•		`	Ŷ	V	0 HR	40		۲	1				IMP FLINTS

pa	ige	-2

					MOTTLES	S	PÉD			-STONE	S	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN		COL.	GLEY					STR POR IMP SPL CALC	
19	0-30	zl	10YR42 00						12	0 HR	19			
	30-41	mzc1	10YR43 44						0	0 HR	30		Μ	IMP FLINTS
20	0.00	_1	10/041 00						22	0.00	40			
20	0-30 30-35	zl zl	10YR41 00							8 HR 0 HR	40 50		м	
	30-35	Zì	25Y 61 00						U	Unk	50		r)	IMP FLINTS
21	0-32	zl	10YR42 00						12	0 HR	22			IMP FLINTS
23	0-32	zl	10YR42 00						12	0 HR	22			IMP FLINTS
24	0-30	zl	10YR42 00							0 HR	18			-
	30-40	zl	10YR54 00						U	0 HR	30		М	IMP FLINTS
25	0-30	zl	10YR41 42						12	3 HR	25			IMP FLINTS
20	0.00	£ '								5 110	25			INF (LINIS
26	0-30	zl	10YR42 00						13	0 HR	18			
	30-40	zl	10YR44 00						0	0 HR	25		M	
	40-47	mzcl	10YR56 00						0	0 HR	35		м	IMP FLINTS
27	0-30	zl	10YR41 42							8 HR	30			_
	30-40	zl	10YR42 00						0	0 HR	40		м	IMP FLINTS
28	0-26	zl	10YR42 00						16	0 HR	22			
	26-40	mzcl	10YR44 00							0 HR	25		м	
	40-47	mzcl	10YR56 00							0 HR	30		M	IMP FLINTS
29	0-26	mzcl	10YR42 00							0 HR	18			
	26-35	mzcl	10YR54 00						0	0 HR	30		м	IMP FLINTS
30	0-30	zl	10YR42 00						10	OHR	25			
20	30-40	mzcl	10YR56 00							0 HR	25 30		м	IMP FLINTS
									v	• m	50		,,	
31	0-27	zl	10YR41 00						18	7 HR	30			
	27-35	zl	10YR56 00						0	0 HR	50		м	IMP FLINTS
32	0-28	mzcl	10YR41 00							0 HR	20			
	28-40	mzcl	10YR42 00						U	0 HR	35		М	IMP FLINTS
33	0-25	mzcl	10YR42 00						17	5 HR	25			IMP FLINTS
34	0-25	mzcl	10YR42 00						8	0 HR	20			
	25-30	c	25Y 51 00	10YR5	68 00 M			Y	0	0 HR	30		М	IMP FLINTS
20	0.04	- 1	10/040 00						••	0.110				
36	0-24 24-35	z]	10YR42 00							2 HR	25		м	
	24-33	zl	10YR56 00						U	0 HR	30		м	IMP FLINTS
37	0-27	mzcl	10YR42 00						14	0 HR	20			
	27-42	mzcl	10YR56 00							0 HR	25		м	IMP FLINTS

		MOTTLES		S	PED	PEDSTONES STRUCT,					SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR									-			IMP SPL CALC	
38	0-29	mzcl	10YR42 00						11	0 Н	R 18					
	29-35	mzcl	10YR56 00						0	0 H	R 30		М			IMP FLINTS
39	0-32	zl	10YR41 00						17	3 H	R 25					
	32-35	zl	10YR56 00						0	0 Н	r 40		М			IMP FLINTS
40	0-26	zl	10YR41 00							ОН						
	26-37	mzcl	10YR54 00						0	0 Н	R 40		м			IMP FLINTS
41	0.25	1	100043 63						2	<u> </u>	D F					
41	0-25 25-55	mzcl	10YR43 53 10YR53 54					Ŷ		0 Н 0 Н			м			
	23-33	mzcl	101833-54	TOTKO	5 00 C			Ť	U	0 1	R 20		(1			IMP FLINTS
45	0-30	mzcl	10YR42 00						13	ОН	R 20					
	30-35	mzcl	10YR43 00							0 н			м			IMP FLINTS
									•	•						1
46	0-30	mzcl	10YR41 00						11	0 н	R 17					
	30-40	mzcl	10YR42 00						0	0 н	R 20		М			IMP FLINTS
47	0-25	mzc]	10YR43 00	00000	0 00 F				2	0 Н	R 5					
	25-42	zc	10YR54 00	00000	0 00 C			S	0	0	0		Μ			
	42-60	zc	75YR53 00					Y		0	0		Μ			
	60-80	zc	75YR53 00	00000	0 00 C			Y	0	0	0		Ρ	Y	Y	
40	0.00		100050 00						-	.						
48	0-30 30-70	zl	10YR52 00 75YR52 00	1000	0.00.0			v		0 H						
	30-70 70-100	zc hzc]	75YR52 00				000000	Y 00 V		он он			P M		Y Y	
	10 100	11201	731102 00	/ J I KJ			001 #100	00 1	U	0.1	~ 2		10		Ť	
49	0-30	zl	10YR42 00						4	0 н	R 8					
	30-45	mzcl	10YR43 00						0				м			
	45-55	mzcl	10YR52 43	10YR5	8 00 C			Y	0	0 н			м			
	55-70	mzcl	10YR64 00	10YR6	8 71 C			Ŷ	0	ΟН	R 10		м			IMP FLINTS
50	0-30	zl	10YR52 42	10YR5	8 00 F				2	0 Н	R 6					
	30-40	mzcl	10YR52 00					Y	0	ΟН	R 5		м			
	40-100	zc	75YR52 00	75YR6	8 72 C			Ŷ	0	0 Н	R 10		Ρ		Y	
		_	10.010 50													
51	0-26	z]	10YR42 52	10000	o oo o					0 H						
	26-46 46-80	hzc]	10YR62 00							0 H			M			
	40-00	zc	10YR52 00	IUTRO	6 /I C			Ŷ	Ų	0 Н	R 10		Ρ		Y	
52	0-30	mzcl	10YR52 00						2	ОН	R 4					
	30-43	mzcl	10YR71 62	10YR6	8 00 C			Ŷ		0 н			м			
	43-120		75YR62 00				00MN00						P		Y	
									-		-					
53	0-30	zl	10YR42 00						2	0 н	R 4					
	30-52	mzc]	10YR64 00	10YR5	8 61 C			Ŷ	0	0 н	R 2		м			
	52-120	zc	10YR64 00	10YR6	8 71 C			Ŷ	0	0 н	R 2		Р		Y	

page 3