1512-187-96

A1

Test Valley Local Plan Review Site 113 Romsey Hampshire Agricultural Land Classification ALC Map and Report December 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

ADAS Reference 1512/187/96 MAFF Reference EL 15/00292 LUPU Commission 02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITE 113 ROMSEY HAMPSHIRE

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 27 hectares of land at Adanac Farm Nursling to the south of Romsey Hampshire The survey was carried out during December 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land on this site was in grassland The areas of the site shown as Other Land consist of woodland and farm buildings Part of the site in the south west corner was not surveyed as this was only recently restored back to agricultural land use

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Grade/Other land	Area (hectares)	/ Agricultural area	/ Total site area
2	14 9	86 1	56 2
3b	24	13 9	91
Agricultural land not surveyed	4 1	N/A	15 5
Other land	51	N/A	19 2
Total survey area	17 3	100	65 3
Total site area	26 5		100

Table 1 Area of grades and other land

7 The fieldwork was conducted at an average density of 1 boring per hectare A total of 18 borings and 3 soil pits were described

8 The land at this site has been classified as Grade 2 (very good quality) and Subgrade 3b (moderate quality) The key limitation is soil droughtiness with topsoil stoniness being equally restricting in places. Some of the soils on the site are also affected by fluctuating groundwater which may not be adequately controlled due to the flat low lying nature of the site and as such may cause the land to suffer from soil wetness problems

9 Within the Grade 2 area topsoils commonly comprise sandy silt loam, silty clay loam or clay loam textures which overlie similar subsoils The soil profiles comprise two main types Some are deep and well drained with very little stone throughout whilst others become heavier at depth are stonier or impenetrable to the auger As a consequence borings of slightly worse or better quality are found within this unit. The combination of these soil properties and the prevailing climate results in a minor soil droughtiness limitation

10 The area to the south east of this site has been classified as Subgrade 3b (moderate quality) the key limitation again being soil droughtiness The soil profiles comprise similar topsoil and upper subsoil textures to the Grade 2 soils but contain much higher stone contents and overlie gravel at depth As a consequence soil droughtiness restrictions are more severe

Factors Influencing ALC Grade

Climate

11 Climate affects the grading of the land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

	Units	Values
Grid reference	N/A	SU 372 159
Altitude	m AOD	15
Accumulated Temperature	day°C	1539
Average Annual Rainfall	mm	823
Field Capacity Days	days	172
Moisture Deficit Wheat	mm	109
Moisture Deficit Potatoes	mm	104

Table 2 Climatic and altit	ude data
----------------------------	----------

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have a significant adverse effect on the site. The site is climatically Grade 1

Site

16 The agricultural land at this site lies at an altitude of 10 20m AOD The majority of the land at the site is flat or very gently sloping with slight undulations Nowhere does gradient or microrelief affect agricultural land quality

Geology and soils

17 The published geological information for the site (BGS 1973) shows the site to be underlain completely by Valley Gravel

18 The most recently published soil information for the site shows the Hurst association to cover the entire area These soils are described as coarse and fine loamy permeable soils mainly over gravel variably affected by groundwater (SSEW 1983)

19 Upon detailed field examination soils consistent with the above description were found to exist across the site

Agricultural Land Classification

20 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Grade 2

22 The majority of the site in the central and northern areas has been mapped as very good quality agricultural land The land is affected mainly by droughtiness restrictions with topsoil stone limitations being equally restricting in places. Some of the soil profiles within this mapping unit are of excellent quality but these are not mapped separately due to the fact that the whole site may not be adequately drained. The water table was noted at varying depths within each of the pits. The surrounding land is of higher altitude and the occurrence of the road construction to the west as well as an area of disturbed land to the south will disrupt the natural pattern of groundwater. Generally the soil falls into two variants

Firstly those profiles which comprise slightly to moderately stony (c 6 24% total flints by volume 0 8% flints > 2 cm diameter) medium clay loam or sandy silt loam topsoils over slightly stony to very stony (c 8 41% total flints by volume) medium clay loam in the subsoil Many of the borings become impenetrable (to the auger) between 25 and 50 cm due to the high volume of stone in the upper soil horizons Pit 1 (see Appendix III) indicates that the lower subsoil horizons are less stony (ie 2 5% total flints by volume) and are gleyed at about 45 cm depths and are moderately structured At depth (i e 70cm +) poorly structured slowly permeable clay occurs These soils are imperfectly drained as a result of a combination of surface water and ground water movement Wetness class II (see Appendix II) has been assigned therefore Despite this some profiles were found to be well drained and thus assigned to wetness class I accordingly The combination of soil texture and hard stone restricts the water available to crops such that there is a slight risk of drought stress to the plants in most years Despite this land of this quality is expected to produce very good yields of a wide range of crops but with less consistency than Grade 1 land

Within this unit very occasional observations were equally limited to grade 2 on the basis of topsoil stone content having greater than 5% v/v flints > 2 cm in the top 25 cm of the soil profile. This has the effect of in addition to reducing available water impeding cultivation, harvesting and crop growth and increasing the cost of cropping in terms of machinery wear and tear and yield reduction.

The second group of soils are deep and generally well drained Typically these soils consist mainly of stoneless or very slightly stony (c 0.5% v/v flints) fine and medium sandy silt loams as well as medium clay loam topsoils over similar subsoils. The subsoils are often gleyed at variable depths (30.68 cm) but are porous. In the majority of cases the lower subsoils become heavier at depth comprising heavy silty clay loam or heavy clay loam textures. Soil pit 2 is typical of these soils. The depth to gleying is evidence of seasonal waterlogging. These soils are therefore assigned to wetness class I and II depending on depth to gleying. The combination of soil textures together with local climate leads to Grade 1 being applicable to this land but it was felt that Grade 2 was more appropriate given that the watertable obviously fluctuates and may not be adequately controlled due to the low lying nature of the site

Subgrade 3b

To the south east corner of the site a small area of moderate quality agricultural land has been mapped This land is limited by soil droughtiness

Soils typically comprise slightly to moderately stony (6 18% total flints by volume 2 8% >2 cm 0.4% > 6 cm diameter) medium sandy silt loam or medium silty clay loam topsoils. These lie over slightly up to very stony (10 60% v/v flints) fine or medium sandy silt loam upper subsoils. These are impenetrable to the auger between 32 and 45 cm depth. In the pit (3P see Appendix III) the lower subsoil was found to consist of gravel with a medium sand matrix that was mottled from 55cm. The occurrence of the water table was noted at a depth of 55 cm in the profile at the time of survey which was equal to the depth of rooting observed. Despite the slight wetness limitation which this implies the high stone volumes in the soil combined with restricted rooting act to significantly reduce water availability to crops such that within the local climatic regime. Subgrade 3b is appropriate on the basis of a soil droughtiness limitation.

A small area to the southwest of the site was not surveyed as it had been disturbed during the construction of the adjacent motorway Here the land has been in aftercare for less than 5 years. As a result it has not been surveyed

> Sharron Cauldwell Resource Planning Team, Guildford Statutory Centre ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1973) Sheet No 315 Southampton 1 63 360 scale (Drift Edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) *Sheet 6 Soils of South East England* SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass that can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations that restricts use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent	LEY	Ley grass	RGR	Rough grazing
	pasture				
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous	BOG	Bog or marsh	SAS	Set Aside
	woodland				
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient is estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clav	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marme Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66 / fine sand and less than 33 % coarse sand)
- C Coarse (more than 33 / of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27 / clay) H Heavy (27 35 / clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2/ C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5 % biopores >0.5 mm a 'Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	ne ROM	SEY	SITE 113			P	it Numbe	٩	P				
Grid Ref	ference	SU3	7201610	Ave a	age An	inu 1	Rainfal	1 82	23 mm				
				Accur	nulate	d Te	mperatur	e 153	39 degree	days			
				Field	d Capa	city	Level	172	2 days				
				Land	Use			Per	manent G	ass			
				Slope	a and	Aspe	ct		degrees				
HORIZON	TEXTU	RE	COLOUR	STO	DNES	2 Т	ot stone	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	MSZ	L	10YR42 00	D	8		24	HR					
29- 45	MCL.		10YR43 00	0	0		41	HŔ				м	
45- 55	MCL		10YR63 64	4	0		5	HR	С	WKCSAB	FR	м	
55- 70	HCL		10YR63 00	0	0		2	HR	С	WKCSAB	FR	м	
70 120	С		10YR71 0	D	0		2	HR	M	MDCOPL	FM	Ρ	
Wetness	Grade	1		Wetne	ess Cl	55	II						
				Gleyf	ing		045	cm					
				SPL			070	cm					
Drought	Grade	2		APW	118m	n I	MBW	18 mm					
				APP	096m	~	MBP	1 mm					

MAIN LIMITATION Droughtiness

l

SOIL PIT DESCRIPTION

Site	Name	ROMSE	Y SITE 113				Pit	Numbe	2	2P				
G 1d	Ref	rence Sl	U37201590	Aver	age A	ึกกน	al Ra	ai fal	1 82	23 mm				
				Accu	nul t	ad	Temp	eratur	e 153	39 degree	days			
				Field	d Cap	aci	ty Le	avel	172	2 days				
				Land	Use				Per	manent G	a			
				Slop	e and	As	pect			degrees				
HORIZ	ZON	TEXTURE	COLOUR	\$T(DNES	2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0-	30	FSZL	10YR43 5		0			3	HR					
30	38	MZCL	10YR52 0	D	0			2	HR	С	MDCSAB	FR	м	
38-1	110	MZCL	10yr54 6	3	0			2	HR	н	MDCSAB	FR	M	
Wetne	ess (ade 1		Wetn	ess C	las	s	11						
				Gley	ing			030	cm					
				SPL	2				cm					
Droug	ght G	ade 1		APN	156	ണ	MB		47 mm					
				APP	131	mm	MBI	> ;	27 mm					
FINA	L ALC	GRADE	1					·						

MAIN LIMITATION

SOIL PIT DESCRIPTION

Site Nam	ie ROM	SEY	SITE 113	•			Pit I	lumber	•	3P				
Grid Ref	erence	SU3	7391560	Accun	ult Cap Use	ed T acii	Tempen ty Lev	infall rature /el	n 153 172 Per	23 mm 39 degree 2 days manent Gr degrees	-			
HORIZON 0 28 28- 55	textu Msz Fsz	L	COLOUR 10yr32 0 10yr42 0	0	nes 8 0	2	TOT : 18 60	3	LITH HR HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
Wetness	Grade	1		Wetne Gleyi SPL		las	5	I 055	cm cm					
Drought	G ade	3B		APW APP	070 071		mbw Mbp		i9 mm i3 mm					
FINAL AL	c grade	3	В											

MAIN LIMITATION Droughtiness

SAMP	LE	ASPECT				-WET!	NESS	-WHE	AT	PC	TS-	м	REL	EROSN	FROST	c c	HEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000	Ð	(PD	IST	LIMIT		COMMENTS
	0					_				• • •								•	
	SU37001620			•		1	1	049		049		4						2	IMP30 SEEPIT 1
1P	SU37201610			045	070	2	1	118	-	096	1	2					DR	2	TOPSOIL STONES
2	SU37101620					1	1	125	16	113	9	2					DR	2	IMP95 SEEPIT 2
2P	SU37201590	PGR		030		2	1	156	47	131	27	1						1	
3	SU37101610	PGR				1	1	082	27	082	22	38					DR	2	IMP50 SEEPIT 1
3P	SU37391560	PGR		055		1	1	070	39	071	33	38					DR	3B	ROOTS TO 55 CM
4	SU37201610	PGR				1	1	055	54	055	-49	4					DR	2	IMP33 SEEPIT 1
5	SU37101600	PGR				1	1	052	57	052	52	4					DR	2	IMP30 SEEPIT 1
6	SU37201600	PGR				1	1	050	59	050	54	4					DR	2	IMP30 SEEPIT 1
7	SU37301600	PGR				1	1	050	59	050	54	4					DR	2	IMP30 SEEPIT 1
8	SU37101590	PGR		045		1	1	163	54	128	24	1						1	SL GLEY 35
9	SU37201590	PGR		040		1	1	165	56	130	26	1						1	SEE PIT 2
10	SU37301590	PGR		040		1	1	150	41	134	30	1						1	SEE PIT 2
11	SU37201580	PGR		028		2	1	168	59	133	29	1						1	SEE PIT 2
12	SU37301580			068		1	1	159	50	123	19	1						1	
13	SU37201570	PGR		045		1	1	161	52	125	21	1						1	SEE PIT 2
14	SU37321585	PGR		065		1	1	151	42	126	22	1						1	SL GLEY 50
15	SU37423769	PGR		025		2	1	074		074	30	3B					DR	3B	IMP30 SEEPIT 3
16	SU37201560					1	1	161	• •	125	21	1					- · ·	1	SEE PIT 2
17	SU37391560					1	1	069		069	35	38					DR	3B	IMP40 SEEPIT 3
						•													
18	SU37401550	PGR		030		2	2	057	52	057	47	4					DR	3B	IMP32 SEEPIT 3

prog am ALCO11

_					-1	OTTLES-		PED			STO	NES		STRUCT/	SUBS					
SA	MPLE	DEPTH	TEXTURE	COLOUR				COL	GLEY	2			от	CONSIST			IMP	SPL	CALC	
-																				
	1	0 28	mcl	10YR42 00						2	0 н	R (8							
		28-30	mcl	10YR44 00						0	0 H	R 20	0		M					Imp-flint
										_	.		_							
_	1P	0 29	ms]	10YR42 00						8	0 H									
		29-45	mc]	10YR43 00						0	0 H				M					
		45-55	mc]	10YR63 64			10	IYR72		0	0 H		_	WKCSAB FR						
		55-70	hc1	10YR63 00					Ŷ	0	0 H		2	WKCSAB FR						
		70 120	c	10YR71 00	/5160	5 UU M			Ŷ	0	0 H	K 4	2	MDCOPL FM	1 P	Y		Y		
	2	0 30	mcl	10YR42 00						2	он	D	5							
	2	30 60	mcl	10YR43 44						0	он		4		м					
		60 75	mc]	10YR54 00	107256	5 58 F	00	MN00	00	ō	он		3		M					
		75-95	hcl	10YR54 00				MN00		0	0 н		3		M					Imp-flint
-				••••						-										
	2P	0 30	fszl	10YR43 53						0	0 н	R :	3							
		30 38	mzcl	10YR52 00	10YR56	5 00 C	10)YR44	54 Y	0	0 н			MDCSAB FR	M					
		38 110	mzc]	10YR54 63	10YR58	3 00 M	00	MN00	00 Y	0	0 н	R 2	2	MDCSAB FR	E M					
	3	0 32	ണടി	10YR43 00						0	0 H	R (6							
		32 50	mcl	10YR44 00						0	0 н	R Í	8		м					Imp-fli t
_																				
	3P	0 28	nns 1	10YR32 00						8	4 H	R 18	8							
		28 55	fszl	10YR42 00						0	0 н	R 60	0		M					Imp-g avel
			_							_		_	_							
	4	0 33	ncl	10YR43 00						0	0 H	R 8	8							Imp-fli t
	-	0.05	6- 1							~	<u> </u>	~ 1	r							T 614 4
	5	0 25	fs 1	10YR42 00						0	0 н	ĸ	5							Imp-fli t
	6	0 27	mcl	10YR42 00						3	ОН	D 4	6							
	v	27 30	ണംവ	10YR44 00						0	он				M					Imp-flint
-		27 55								•	Ψ.ι.		-		••					
•	7	0 25	mcl	10YR42 00	10YR36	5 00 F				2	0 н	R 6	5							
	-	25 30	mc]	10YR53 42						0	0 н				м					Imp-fli t
-																				
	8	0 27	fszl	10YR43 00						0	0 н	R 2	2							
		27 35	mzcl	10YR44 54	10YR58	3 00 F	00	MN00	00	0	0 н	R 2	5		Μ					
-		35-45	mzcl	10YR54 00	10YR58	300 C	00	MN00	00 S	0	0	C	מ		М					
_		45-55	hzc1	75YR64 00	75YR58	3 00 C	00	MN00	00 Y	0	0	C	נ		M					
		55-75	hzcl	75YR64 00				MN00		0	0	C	D		м					
•		75–120	hzcl	75YR64 00	75YR58	3 00 C	00	MN00	00 Y	0	0	(D		M					
										_										
	9	0 32	fszl	10YR43 00	1000000		~~		~ ~		0		2							
		32 40	mzcl	10YR54 00				MNOO			0 11		2		M					
		40 50	mzcl	75YR64 00				MN00		-			2		M					
		50 70 70 120	mzc)	75YR64 00 75YR64 00				MN00 MN00		0 0	0 Н 0 Н		2 2		M M					
		70 120	mzcl	751R04 UU	757630	5 UU M	00		UU T	J	υn	n (-		i"					
	10	0 28	fs 1	10YR42 00	10YR54	5 00 F				Ð	он	2	3							
		28 40	fszl	10YR42 53		** 1					0 11		3		м					
		40 57	mzcl	10YR53 62	10YR56	58 C	00	MN00	00 Y	0	0 н				M					
		57 100	hzcl	10YR53 62				MNOO		0	0 н		2		M					Imp-fli t
				-																

prog am ALCO11

|--|

						MOTTLES		PED			STONES		STRUCT/	SUBS			
	SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH	тот	CONSIST	STR POR	IMP SPL	CALC	
	11	0-28	fszl	10YR43 00						0	0	0					
		28-75	mzcl	10YR64 00	10YR5	8 00 C		00MN00	00 Y	0	0	0		M			
		75-120	hzcl	75YR64 72	75YR5	8 00 M		OOMNOO	00 Y	0	0 HR	2		М			
	12	0 30	mzcl	10YR42 00						0	0 HR	2					
		30 60	mzcl	10YR44 00						0	0 HR	2		M			
		60–68	hzc1	10YR44 00						0	0	0		M			
		68-120	hzcl	10YR52 62	10YR5	658M			Y	0	0	0		M			
	13	0 32	mzcl	10YR43 00						0	0	0					
		32-45	mzcl	10YR54 00				00MN00	00	0	0	0		M			
		45-60	hzcl	10YR63 73	75YR5	8 00 C		00MN00	00 Y	0	0	0		M			
		60 90	hzcl	75YR64 00	75YR5	8 00 M		00MN00	00 Y	0	0	0		M			
		90 120	hzcl	75YR64 00	75YR5	8 00 M		00MN00	00 Y	0	0	0		M			
	14	0 20	fs 1	10YR43 00						0	OHR	2					
		20 50	mzcl	10YR44 00						0	0 HR	2		M			
		50 65	mzc]	10YR54 00	10YR5	8 00 C			S	0	0 HR	2		M			
		65-120	hzc1	10YR62 63	10YR5	658M			Y	0	0 HR	2		M			
	15	0 25	mszl	10YR32 00	10YR4	6 00 F				2	0 HR	6					
		25-45	fs 1	10YR51 52	10YR5	600 C			Y	0	0 HR	15		м			Imp-flint
-	16	0 30	f z]	10YR43 00						0	0	0					
		30 120	mzcl	10YR44 00						0	0	0		м			
	17	0 30	ms 1	10YR32 00						2	0 HR	6					
		30 40	fs 1	10YR42 00						0	OHR	10		M			Imp-flint
	18	0 30	mzcl	10YR42 00						2	0 HR	6					
_		30 32	mzcl	10YR42 00	75YR5	8 00 C			Y	0	0 HR	10		м			Imp-fli t