TEST VALLEY LOCAL PLAN REVIEW Sites 69 71 Land at Abbotswood Romsey Hampshire Agricultural Land Classification ALC Map and Report Semi Detailed Survey April 1997

A1

Resource Planning Team Eastern Region FRCA Reading
 RPT Job Number
 1512/170/96

 FRCA Reference
 EL 15/00292

 LURET Job Number
 02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY BOROUGH LOCAL PLAN REVIEW SITES 69 71 LAND AT ABBOTSWOOD ROMSEY HAMPSHIRE SEMI DETAILED SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of 49.6 hectares of land located between Sandy Lane Braishfield Road Cupernham Lane and the suburb of Cupernham to the north of Romsey in Hampshire The survey was carried out during January 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Borough Local Plan Review The results of this survey supersede any previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land at this site was unmanaged grassland The majority of this area appears to have been disturbed by gravel workings and restored to a lower level The only area of agricultural land that appears not to have been disturbed is to the north east of the site The areas of Other Land mapped to the north and south west of the site are respectively an area of gorse scrub and some mixed woodland

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of 1 boring per 2 hectares A total of 26 borings and three soil pits were described

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	/ site area	/ surveyed area
3a	29	59	60
3b	45 1	90 9	94 0
Other Land	16	3 2	
Total surveyed area	48 0	96 8	100 0
Total site area	49 6	100 0	

8 The agricultural land on this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality) The limitations to land quality include soil droughtiness and soil wetness

9 Subgrade 3a has been mapped in the north of the site The soils in this area experience a drought limitation They comprise light loam topsoils overlying moderately stony horizons of similar texture passing to very slightly stony sandy and light loamy occasionally medium loamy lower subsoil horizons Soil droughtiness may affect plant growth, as the supply of available water may be deficient especially in drier years

10 Subgrade 3b has been mapped over the majority of the site The soils in this area have been disturbed and are quite variable Commonly they comprise a slightly to moderately stony medium loam topsoil passing to either similarly textured or clay subsoils The subsoils are often very stony and experience a significant drought limitation as a result. In some areas mainly towards the east of the site standing water was observed. In these areas soil wetness may be a further limiting factor. Soil wetness restricts land utilisation by reducing the number of days when trafficking by machinery or grazing by animals may occur without damaging the soil

FACTORS INFLUENCING ALC GRADE

Climate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given in Table 2 overleaf these were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2 Climat	c and altitude data
----------------	---------------------

Factor	Units		Values		
Grid reference	N/A	SU 363 225	SU 366 229	SU 369 234	
Altıtude	m, AOD	35	40	50	
Accumulated Temperature	day°C	1514	1508	1496	
Average Annual Rainfall	mm	812	811	812	
Field Capacity Days	days	175	175	175	
Moisture Deficit, Wheat	mm	108	108	107	
Moisture Deficit Potatoes	mm	102	101	100	

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk, are not believed to significantly affect this area The site is climatically Grade 1

Site

16 The site lies at altitudes in the range 35 50m AOD the highest land being towards the north, gently sloping to the south west The majority of the site has previously been worked and restored to a lower level The exceptions to this occur firstly towards the north east of the site where the land has not been worked and in discrete areas across the site where mounds have been left for electricity pylons. The slopes within the site are generally slight and none are of sufficient gradient to affect agricultural land quality

Geology and soils

17 The published geological information for the site (BGS 1975 and 1987) shows the majority of the site to comprise worked out ground The majority of the remaining area is shown as drift deposits a combination of head gravel plateau gravel and river terrace deposits (terraces 4 and 5 mainly gravel) To the north of the site Bagshot Beds is mapped as a solid deposit

18 The most detailed published soils information for the site (SSEW 1983 and 1984) maps the site as Urban The soils adjacent to the site are mapped as the Shirrell Heath 2 association which are described as Well drained sandy soils with a bleached subsurface horizon, sometimes over soft rock, mainly on heaths and often very acid Well drained sandy and coarse loamy soils on farmland (SSEW 1983) Soils of this type were found in the undisturbed area of the site However because the majority of the site is disturbed this description is not representative of the stony and clayey soils encountered

AGRICULTURAL LAND CLASSIFICATION

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix II

Subgrade 3a

21 Land of good quality has been mapped towards the north of the site in a single mapping unit The principal limitation is soil droughtiness

Soils in this area are of a single type They are characterised by the pit observation, 2P The topsoils commonly comprise a slightly stony (up to 5% v/v total flints) medium sandy loam passing to a stoneless to moderately stony (up to 30% v/v total flints) medium sandy loam or loamy medium sand upper subsoil horizon exhibiting good structural characteristics The lower subsoil comprises horizons which were stoneless to slightly stony (up to 10% v/v total flints) and of loamy medium sand medium sandy loam or sandy clay loam texture all of which exhibit moderate structural characteristics Although the soils in this area were gleyed or slightly gleyed immediately below the topsoil and Wetness Class II has been appropriately applied soil droughtiness is the principal limiting factor. In the local climate this combination of soil textures and stoniness leads to Subgrade 3a being applied as it is likely that plant growth and development will be adversely affected due to a lack of available water especially in drier years

Subgrade 3b

23 Land of moderate quality has been mapped in a single mapping unit covering the majority of the site. The principal limitations are soil droughtiness and topsoil stoniness with soil wetness as a further limiting factor in some areas

The soils in this area are variable although the majority are characterised by the pit observations 1P and 3P. The most common soil type encountered is similar to 1P and comprises a moderately stony (up to 35% v/v total flints including up to 19% > 2cm) occasionally gleyed medium or heavy clay loam topsoil. This overlies a commonly gleyed heavy clay loam or clay subsoil containing up to 50% v/v total flints. This horizon was commonly impenetrable to the soil auger between 20 and 75cm. The pit observation was impenetrable at 55cm over a stonier clay horizon. In the prevalent local climate soils of this nature are assigned to Subgrade 3b on the basis of soil droughtiness as the stone content restricts the water carrying capacity of the soils and hence restricts water availability to plants such that plant growth and yield will be restricted in most years

25 Some of the topsoils encountered (including 1P) contained more than 15% flints by volume greater than 2cm in diameter These profiles cannot be graded higher than Subgrade 3b as the stone content increases production costs and decreases crop quality

Towards the east of the site some areas were wet at the surface at the time of survey Pit observation 3P was in this area. The soils comprise a very slightly stony (2% v/v total flints) gleyed medium clay loam topsoil overlying a narrow slightly stony (5% v/v total flints) gleyed medium silty clay loam upper subsoil. This passes to a very stony (41% v/v total flints) heavy clay loam lower subsoil which was saturated and impenetrable. Roots could not be observed beyond 50cm in the saturated stony horizon. Therefore soil droughtiness is the principal limitation in these areas as in addition to the stoniness of the profile, the restriction in rooting depth further limits the available water to plants. Soil wetness may also be considered as a limiting factor in this area as the site is low lying in respect of its surroundings and the provision of adequate drainage would be difficult. Soil wetness restricts land utilisation by reducing the number of days when the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock as well as adversely affecting crop growth and development

27 Occasional observations over the disturbed parts of the site were of both slightly better and slightly worse quality than Subgrade 3b However these are of insufficient distribution to justify separate mapping

> M Larkın Resource Plannıng Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1975) Sheet 299 Winchester Drift Edition 1 50 000 Scale BGS London

British Geological Survey (1987) Sheet 315 Southampton Solid and Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England. 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	ΟΑΤ	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

Peaty Loam

1

PL.

S LS Loamy Sand SL Sandy Loam Sand SZL Sandy Silt Loam CL Clay Loam ZCL Silty Clay Loam ZL Silt Loam SCL Sandy Clay Loam С Clay OL SC Sandy Clay ZC Silty Clay Organic Loam LP Ρ Peat SP Sandy Peat Loamy Peat

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

MZ

Marine Light Silts

Peaty Sand

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66 % fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

PS

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27 % clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40/ VM very many 40%+

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft, argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	М	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR friable	EM extremely firm	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	e TES	TVALI	LEYLP SI	tes (69 71		Pit Num	nbe	1P					
Grid R f	erence	SU3	6622315	٨v	erage /	A nu	1 Raini	F 11	811 mm					
				Ac	cumulat	ted	Temperat	ture	1508 de	gree	days			
				Fi	eld Car	baci	ty Level	1	175 day	s				
					nd Use		•		Permane		as			
					ope no	i As	pect		degn	ees				
HORIZON	TEXTU	RE	COLOUR	:	STONES	2	TOT STO	NNE LI	гн мот	TLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 21	HCL		10YR42	52	17		25	н	र ।	F				
21 55	С		25Y 72 (00	0		50	н	R 1	M	M	VM	Р	
Wetness (Grade	38		We	tness (las		IV						
				Gle	eying			21 cm						
				SP				21 cm						
Drought (Grade	3B		API	H 51	mn	MBW	50 m	n					
				AP	P 53	តាក	MBP	55 m	n					
FINAL AL	c grade	3	9	AP	P 53	mn	мвр	55 m	n					

MAIN LIMITATION Soil Wetness/Droughtiness

SOIL PIT DESCRIPTION

St	ite	Name	TESTVA	LLEYLP SIT	ES 69 71		Pit Numbe	2	P				
G	ાન	Refe	rence SU	36902330	Ave age	Алп	ual Rainfall	81	1 ศณ				
					Accumula	ted	Tempe ture	150	8 degree	d ys			
					Field Ca	pac	ity Level	175	days				
					Land Use	1		Rou	gh Grazin	9			
					Slope r	d A	spect	1	degrees S	;			
н) RI	ZON	TEXTURE	COLOUR	STONES	; 2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
	0	33	MSL.	10YR43 0	0 Z		5	HR					
1	33-	54	MSL	10YR54 C	0 13		30	HR	С	WKCSAB	VF	G	
	54	75	LMS	10YR74 6	6 0		3	HR	M	MDCPL.	FR	м	
-	75-	85	MSL	10YR74 0	0 0		0		H	MDCSAB	FR	м	
1	35-1	120	MSL	10YR73 0	0 0		0		н	MDCPL	FR	м	

Watness Grade	1	Wetnes Clas Gleying SPL	s I 33 cm cm
Drought Grade	34	APW 137mm APP 90mm	MBW 36 mm MBP 18 mm

FINAL ALC GRADE 3A MAIN LIMITATION Droughtine

SOIL PIT DESCRIPTION

Site Name TESTVALLEYLP SIT	TES 69 71 Pit Number	3P	
Grid Reference SU37002303	Average Annual Rai fall Accumulated Temperature Field Capacity Level Land Use Slope and Aspect	811 mm 1508 degree d ys 175 days Rough G azing degrees	
HORIZON TEXTURE COLOUR	STONES 2 TOT STONE		ONSIST SUBSTRUCTURE CALC
0- 25 MCL 10YR42 (HR M	P
25- 35 MZCL 10YR32 (HR M	P
35- 50 HCL 10YR56 0		HR	۲
Wetness Grade 38	Wetness Class IV		
	Gleying 0		
Drought Grade 38		cm 4. ann	
		- an 1 an	
	74 7 V7 Hall 110F -4	• **==	
FINAL ALC GRADE 38			

MAIN LIMITATION Soil Wetness/Droughtiness

prog am ALC012

	SAMPI	LE	A	SPECT				WET	TNESS -HHEAT POTS-		DTS-	м	REL	EROSN	FROST	CHEM	ALC			
	NO	GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP DIST	LIMIT		COMMENTS
		SU36602340		S	1	20	20	4	3A	99	2	98	10	3A			Y	HD	34	IMP FLINTS 90
-		SU36622315				21	21	4	38	51		53	55	38			Ŷ	WD	38	PIT IMP 55
		SU36902330		S	1	33		1	1	137	36	90	18	3A				DR	34	PIT100 AUG120
		SU36702330		S	1	33		1	1	105		81	27	3A				DR	3A	
	3P	SU37002303	RGR			0		4	3B	67	34	67	-41	38			Ŷ	WD	3B	PIT WATER 50
	-		-	•										•					~	000 00
	5	SU36902330		S	1	30		1	1	136		98	10	2			.,	DR	2	SEE 2P
	6	SU36402320						1	1	62	-	62	-46	3B			Y	DR	38 20	IMP FLINTS 50
	8	SU36602320				25	25	4	3B	52	-49		56	4			Y Y	WE	38 29	IMP FLINTS 40
	10	SU36802320				5	5	4	38	72		79 60	29	38			Y	WE DR	38 38	IMP FLINTS 65
	13	SU36502310	РЬК					1	1	60	-41	60	-48	38			Y	UK	38	IMP INFILL 40
-	15	SU36702310	DCD			0	30	4	38	57	-44	60	-48	38			Y	WS	38	IMP FLINTS 55
-	17	SU36862310				Ŭ		1	1	96		106	2	3A			Ŷ	DR	3A	IMP INFILL 70
	19	SU37102310				0	25	4	38	80	21		19	38			Ŷ	WE	38	IMP FLINTS 70
-		SU36402300				50		1	1	98		103	5	3A			Ŷ	DR	3A	IMP FLINTS 75
		SU36602300				0	35	4	38	82		88	20	3A			Ý	WE	38	IMP 60 DRY
						•		•				~								
5	24	SU36802300	PGR			0		2	3A	53	-48	53	55	3B			Y	DB	4	NO TOPSOIL
	26	SU37002300	RGR			0	45	4	3B	89	12	94	14	3A			Y	WE	3B	
	29	SU36502290	PGR			5	5	4	3B	73	28	79	29	38			Y	WE	3B	
	31	SU36702290	PGR			0		1	1	48	53	48	60	4			Y	DR	38	IMP 35 SEE 1P
	33	SU36902290	RGR			15		1	1	45	56	45	63	4			Y	WD	38	IMP 30 SEE 1P
	34	SU37002290	RGR			0	40	4	38	80	21	80	28	38			Y	WD	38	IMP FLINTS 50
-	35	SU36402280	PGR			10		2	2	34	67	34	74	4			Y	DR	38	IMP 35 SEE 1P
-	37	SU36602280	PGR			25	25	4	38	57	44	57	51	38			Y	DR	38	IMP 40 SEE 1P
	39	SU36802280	PGR			20		1	1	42	59	42	66	4			Y	DR	38	IMP FLS/GRAV25
	41	SU37002280	RGR			0		2	38	29	72	29	79	4			Y	MD	38	IMP 20 SEE 1P
_																				
	44	SU36502270				25	25	4	38	112	11		21	3A			Y	TS	3B	DISTURBED
	46	SU36702270		W	1	35	55	3	3A	118		110	2	2			Y	WE	3A	
	49	SU36402260						1	1	43		43	65	4			Y	DR	4	IMP INFILL 35
	51	SU36302250	PGR					1	1	47	54	47	61	4			Y	DR	3B	IMP 40 SEE 1P

page 1

				-MOTTLES		PED		s	TONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN			Y 2					STR POR	IMP	SPL CALC	
1	0 20	msz]	10YR42 00				0		HR	10					
	20 60	hc1		10YR58 00 C		Ŷ			HR	20		M		Y	
	60 85	c		10YR58 00 C		Ŷ		-	HR	15		P		Y	
	85-90	hc1	05Y 41 00	10YR46 00 C		Ŷ	0	0	i HR	35		P		Y	IMP FLINTS 90
1P	0 21	mcl	100042 52	10YR46 00 F			17		HR	25					PIT IMP 55
Ir	21 55			75YR56 00 M		v	0	-) HR	2.J 50	м	VM P		Y	GRASS ROOTS VIS 50
	21 33	c	251 72 00	751K50 UU M		,	U			50	"	*11 F		•	GRASS ROUTS VIS 50
2P	0 33	നടി	10YR43 00)			2	2 0	HR	5					PIT @ BOR 5
	33-54	msl		10YR56 00 C		Y	13		HR		WKCSAB	VF G			
	54 75	ากร		75YR58 00 M		Ŷ		-	HR		MDCPL				
	75-85	ms]		10YR66 58 M		Ŷ	-			0	MDCSAB				
	85-120	สรไ		05YR58 00 M		Ŷ				0	MDCPL				
															_
3	0 33	നടി	10YR41 00	1			0	0	HR	3					
	33 60	lms	10YR44 54	10YR66 00 C		S	0	0)	0		м			l l
	60 75	lms	10YR64 00	10YR68 00 C		Ŷ	0	0) HR	10		M			
	75-85	scl	25Y 52 00	75YR58 00 M		Y	0	0	HR	3		M			1
	85-120	Jms	75YR58 00	25Y 63 00 C		Ŷ	0	0)	0		м			
3P	0 25	mcl		10YR46 00 M		Ŷ) HR	2					V WET ON SURFACE
	25-35	ന്മവി		05YR56 00 M		Y			HR	5		P -			
	35 50	hcl	10YR56 00)		Ŷ	0	0) HR	41		P			STONES SAMPLED
5	0 30	msl	10YR42 00				O		HR	2					SEE 2P
5	30 50	msi msi		10YR58 00 C		Ŷ	_	-		0		G			JLL Zr
	50 65	lms		10YR58 00 C		Ý	_	-		o		M			•
	65-85	lms.		10YR58 00 C		Y	_	-		ō		M			
	85-120	scl		75YR58 00 M		Y		-		ō		M			
	05 120	301	001 71 00	737K30 00 11		•			•	Ū					4
6	0 30	ന്നി	10YR42 00)			5	5 0	HR	15					
	30 50	hc1	10YR43 42	2 10YR46 00 F	(00mn00 00	C) (HR	4D		Р			IMP FLINTS 50
8	0 25	mcl	10YR42 00	1			C) () HR	15					
	25 40	с	25Y 61 00	10YR68 00 M		Ŷ	٥) (HR	35		Р		Y	IMP FLINTS 40
10	05	mcl	10YR42 00	1			٥) () HR	5					
	5 25	с	10YR52 53	3 10YR56 00 C		Y	C) () HR	10		P		Y	SLIGHTLY SANDY
	25 55	с	25Y 61 00	05YR58 00 M		Y	0) () HR	5		Р		Y	SLIGHTLY SANDY
	55 65	с	25Y 62 72	2 75YR58 00 M		Ŷ	C) HR	25		Р		Y	IMP FLINTS 65
	0 95		100040 00						N 1177	٩F					1
13	0 25	mcl	10YR42 00) HR) CH	15 25		м		Y	IMP CHALKY FILL 40
	25-40	hc1	101842 52	10YR58 00 F			ų	, (20		R		۲	THE CHARKE FILL 40
15	0 30	mc]	10YR41 51	10YR56 00 C		Y	20) (HR	35					SEE 1P
	30 55	c		10YR58 00 M) HR	30		Р		Y	IMP FLINTS 55
		-				•								-	
17	0 20	mcl	10YR43 53	3			C) (HR	5					
	20 50	mc)		10YR56 00 F			C) () HR	5		м			
	50 65	hc1		10YR56 00 F	1	00MN00 00) HR	10		м			l
	65 70	mc]	10YR21 00				C) () HR	30		P			IMP INFILL 70
															(

rog am ALCO11

				-MOTTLES	PED			STONE	s	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN CO		GLEY	2						SPL CALC	
-							-							
19	0 25	mc]	10YR42 00	10YR56 00 C		Y	0	0 HR	15					
	25-50	¢	25Y 61 00	10YR68 00 M		Y	0	0 HR	10		Ρ		Y	
_	50 70	с	25Y 53 00	10YR58 00 M		Y	0	0 HR	20		Р		Ŷ	IMP FLINTS 70
							_		_					
20	0 30	nc]	10YR42 00					0 HR	8					
	30 50	hc1	10YR43 31	10/015 00 0		_		0 HR	10		M			
	50 75	hcì	10YR43 00	10YR46 00 C		5	U	0 HR	25		M			IMP FLINTS 75
22	0 35	mcl	10VP52 00	75YR56 00 C	0011100	00 V	1	0 HR	10					
66	35-50	ш с т С		75YR56 00 M	00100	Ŷ		0 HR	5		P		Y	
	50 60	c		75YR56 00 M		Ý		OHR	3		P		Ŷ	IMP 60 DRY
		-					-		-					
24	0 40	hc1	10YR63 00	75YR56 00 M	000000	00 Y	9	0 HR	18		Μ			WATER ON SURFACE
1														
26	0 20	mzcl	10YR42 00	000C00 00 C		Y	0	0 HR	2					
	20 45	hc1		000C00 00 C		Y	0	0 HR	2		M			
	45-60	c	10YR42 00	000C00 00 M		Y	0	0 HR	10		Ρ	Y	Ŷ	
			100012 00				•	0 UD	-					
29	05 5-60	mcl	10YR42 00	75YR68 00 M		Y		0 HR 0 HR	5 1		Р		Y	
	5-00	с	101802 00	757K08 00 M		т	U	URK	•		r		T	
31	0 35	mcl	10YR42 00				12	0 HR	25					IMP FLINTS 35
-							-							
33	0 15	mcl	10YR42 00				0	0 HR	10					WATER ON SURFACE
	15 30	hc1	10YR42 00	75YR46 00 M	001100	00 Y	0	0 HR	15		М			IMP FLS/GRAVEL 30
_														
3 4	0-40	hc1		10YR58 00 M		Y		OHR	5		-			
	40-50	c	10YR42 00	10YR58 00 M	0011100	00 Y	0	U HR	15		Р	Y	¥	IMP FLINTS 50
35	0 10	mcì	10YR42 00				19	5 HR	35					
	10 35	c		75YR58 00 M	OOMNOO	00 Y			35		P			IMP FLINTS 35
1		•					-	• • • • • •						
37	0 25	mcl	10YR53 00				6	0 HR	10					AREAS OF RUSHES
	25-40	c	05Y 72 00	75YR68 00 M		Y	0	0 HR	20		Ρ		Y	IMP FLINTS 40
39	0 20	mcl	10YR42 00					O HR	5					WATER ON SURFACE
•	20 25	mcl	10YR42 00	10YR56 00 C		Y	0	0 HR	10		M			IMP FLS/GRAVELLY 25
	0.20	_	100042 00	10V055 00 C		v	•	0 40	15					IMP FLS/GRAVELLY 20
4 1	0 20	c	101842 00	10YR56 00 C		Y	Ų	0 HR	15					
4 4	0 25	mcl	10YR53 00				16	0 HR	25					
	25-45	c		75YR58 00 M		Y		0 HR	5		Ρ		Y	WET
-	4560	hc1		10YR58 00 M		Y		0 HR	20		Ρ		Y	DRY
•	60 120	с	10YR53 00	75YR68 00 M		Y	0	0	0		Ρ		Y	WET
46	0 35	wcl	10YR52 00					O HR	5					
-	35-55	ແຕ່		10YR68 00 C		Y		0 HR	5		M			
		c		75YR68 00 M		Ŷ		OHR	2		P		Y	
-	70 100	с	U5Y 71 00	75YR58 00 M		Y	0	0 HR	5		Ρ		Y	

page 2

				-MOTTLES		PED		STONES			STRUCT/	SUBS									
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	TOT	CONSIST	STR PC	DR I	mp sp	L CALC				
		_								_											
49	0 30	mcl	10YR43 00						18	5	HR	30									
	30-35	hcl	10YR41 56						0	0	HR	40		Ρ				IMP	INFILL	35	
51	0-20	mcl	10YR43 00						5	19	HR	30									
	20-40	msl	10YR42 68						0	0	HR	30		M				IMP	FLINTS	40	

page 3