A1

Wokingham District Local Plan Sites SH11, SH13, SH14, SH15 and SH16 -Shinfield, Berkshire Agricultural Land Classification Semi-detailed survey ALC Map and Report November 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

.

.

ADAS References: 0206/177/95 0206/117/96 MAFF Reference: EL 02/01176 LUPU Commissions: 02301 02704

AGRICULTURAL LAND CLASSIFICATION REPORT

WOKINGHAM DISTRICT LOCAL PLAN SH11, SH13, SH14, SH15, SH16 - SHINFIELD, BERKSHIRE

INTRODUCTION

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 261.7 ha of land around Shinfield, to the west of Wokingham in Berkshire. The original survey work was carried out in February 1996. In August 1996, following receipt of revised plans from Wokingham District Council, some additional areas were assessed. This report describes the combined findings of the fieldwork.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading, in connection with its statutory input to the Wokingham District Local Plan. Land to the south of Arborfield Road and to the east of Hyde End Road was previously surveyed in 1993 as part of the Berkshire Minerals Plan. This survey was undertaken when the soil conditions were extremely dry. Consequently, not all of the soil profiles could be examined to depth. The recent survey work, carried out during wetter soil conditions, revealed some land quality variation within this area not previously detected. Consequently, the attached 1996 ALC map supersedes all previous ALC information for this area.

3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the times of survey much of the agricultural land to the east of the site was in permanent grass. Most of the land to the west and south of Shinfield was in arable use. The areas shown as 'Other Land' include woodland, tracks and roads, open water, dwellings with gardens, farm and university research buildings, and a recreation ground. The 'Not Surveyed' area to the south of Shinfield Grange was not entered due to ongoing work with trial plots.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:15,000 it is accurate at this scale but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf.

7. The fieldwork was conducted at an average density of approximately 2 borings per 3 hectares of agricultural land surveyed. A total of 120 borings and 8 soil pits were described during the January survey with an additional 33 borings and one soil pit described in August 1996.

1

Grade/Other Land	Area (hectares)	% Total Site Area	% Surveyed Area		
2	2.6	1.0	1.2		
3a	104.9	39,2	49.8		
3b	100.3	37.5	47.6		
4	2.9	1.1	1.4		
Agricultural Land Not Surveyed	3.2	1.2	-		
Other Land	53.6	20.0	-		
Total Surveyed Area	210.7	-	100.0		
Total Site Area	267.5	100.0	-		

Table 1: Area of grades and other land

8. The majority of the agricultural land surveyed has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality). A small area in the north of the site has been classified as Grade 2 (very good quality) and a small area of land next to the Infant School has been classified as Grade 4 (poor quality).

9. The land classified as Grade 2 is limited by soil wetness and soil droughtiness. Medium sandy loam topsoils overlie medium clay loam upper subsoils which become heavier and slowly permeable at moderate depths within the profile. These lower subsoils either extend to depth or overlie gravelly horizons deeper within the soil profile. The drainage within these profiles is impeded but the sandy textured topsoils and the relatively dry prevailing climate means that there are only slight restrictions to the flexibility of cropping, stocking and cultivations. These soil characteristics also act to impose a slight droughtiness limitation. This may lead to the soil available water being insufficient to fully meet crop needs. Consequently, this land will suffer from slightly lower and less consistent crop yields.

10. Most of the land classified as Subgrade 3a is limited by soil droughtiness, sometimes in conjunction with soil wetness. In comparison to land classified as Grade 2, the subsoils tend to be sandier and stonier, with gravelly horizons occurring at slightly shallower depths. There is thus less soil water available for uptake by crop roots. Parts of this land are also limited by soil wetness. Some of the profiles are similar to the Grade 2 profiles but with medium textured topsoils. These slightly heavier topsoils increase the risk of workability problems. Other profiles do have sandy topsoils but, in comparison to the Grade 2 land, overlie slowly permeable horizons at much shallower depths which create a greater wetness limitation.

11. Land classified as Subgrade 3b is either limited by soil wetness or droughtiness. The former occurs to the west and south of Shinfield Grange, to the east of Tanner's Copse and to the south of Church Lane. These profiles typically comprise medium textured topsoils which directly overlie slowly permeable subsoils. This results in poor drainage conditions, as indicated by wet vegetation and standing water across parts of the non-arable land at the time of survey. The remaining land classified as Subgrade 3b is limited by soil droughtiness. Medium sandy loam topsoils overlie gravelly and sandy textured horizons, often loamy sands and sands, at relatively shallow depths within the soil profile. This land may be subject to low and inconsistent crop yields.

12. Next to the Infant School, an area of Grade 4 land has been mapped on the basis of microrelief limitations. This area of the site is currently in a state whereby most mechanised operations are not feasible and, as such, it is only suited to permanent grazing.

FACTORS INFLUENCING ALC GRADE

Climate

13. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

14. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values	Values	Values	Values	
Grid reference	N/A	SU735672	SU742694	SU724678	SU736688	
Altitude	m, AOD	44	50	55	60	
Accumulated Temperature	day ^o C	1475	1467	1462	1456	
Average Annual Rainfall	mm	667	662	672	670	
Field Capacity Days	days	138	138	139	139	
Moisture Deficit, Wheat	mm	115	115	113	114	
Moisture Deficit, Potatoes	mm	110	110	108	108	

Table 2: Climatic and altitude data

15. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

16. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

17. The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation. However, climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. The crop-adjusted soil moisture deficits at this locality are above the average for the south-east of England. This increases the likelihood of soil droughtiness limitations. No local climatic factors, such as exposure or frost risk, are believed to adversely affect the land quality on the site. This site is climatically Grade 1.

Site

18. The majority of the land on this site is either flat, or is very gently sloping. Mostly, where sloping the land falls through gradients of $1-3^{\circ}$ and is of a southerly or south-easterly aspect. However, on occasions, for example to the east of Nursery Cottage, slopes are slightly more severe (up to 5°) and of a westerly aspect. The land on this site lies at

approximately 45 to 60 m AOD. Nowhere on the site does gradient affect agricultural land quality. However, a small area of land has been classified as Grade 4 on the basis of a microrelief limitation.

Geology and soils

19. The published geological information (BGS, 1971) shows the entire site to be underlain by a solid geology of London Clay. Drift deposits of alluvium flank the River Loddon, extending as far west as Parrot Farm and Shinfield Grange. An extensive area of land in the south of the site, from Parrot Farm to Ryeish Green is overlain by drift deposits of valley gravel. The latter also occur in the north-east of the site, to the south of Cutbush Lane. Two small areas of land, to the north-east of Ryeish Green and to the south of the reservoir, are mapped as plateau gravel.

20. The published soils information (SSEW, 1983) shows three soil types across the site. The majority of the site comprises soils of the Hurst Association. These soils, which are mapped over the gravel deposits, are described as 'coarse and fine loamy permeable soils mainly over gravel variably affected by groundwater.' (SSEW, 1983). The eastern boundary of the site is mapped as the Fladbury 3 Association. These soils, which are mapped in conjunction with the alluvial deposits, are described as 'stoneless clayey, fine silty, and fine loamy soils affected by groundwater. Flat land. Risk of flooding.' (SSEW, 1983). The northwest of the site is mapped as the Wickham 4 Association. These soils occur where there is an absence of drift over the London Clay. These soils are described as 'slowly permeable seasonally waterlogged fine loamy over clayey and fine silty over clayey soils associated with similar clayey soils, often with brown subsoils.' (SSEW, 1983).

Agricultural Land Classification

21. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 2.

22. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III.

Grade 2

23. A small area of slightly higher land in the north of the site has been classified as Grade 2, very good quality. This land is subject to slight soil droughtiness and wetness limitations. Topsoils comprise non-calcareous medium sandy loams. These overlie permeable medium clay loam upper subsoils which are gleyed and moderately structured. At approximately 50 cm depth these pass into heavy clay loam and clay lower subsoils. These subsoils are poorly structured and slowly permeable. These profiles either become sandier at depth (sandy clay, sandy clay loam) or overlie gravelly deposits at approximately 95 cm depth. These profiles are virtually stoneless. Given the local climate, these profiles are assessed as imperfectly drained (Wetness Class III, see Appendix II). However, the sandy textured topsoils and the relatively dry prevailing climate means that this land is limited by minor soil wetness and workability. This may result in slightly restricted flexibility of cropping, stocking and cultivations. In addition, the interaction between these soil characteristics (texture, stone content and subsoil structure) and the relatively dry prevailing climate slightly reduces the

amount of profile available water for plants. This is likely to have the effect of restricting the level and consistency of crop yields due to minor soil droughtiness to the extent that Grade 2 is appropriate.

Subgrade 3a

24. Just under half of the agricultural land surveyed on this site has been classified as Subgrade 3a, good quality. Most of this land is limited by soil droughtiness with smaller areas limited by soil wetness. Across parts of the site these limitations occur in conjunction.

25. Where soil wetness is the principal limitation profiles are similar to those described in para. 23. However, the topsoils comprise medium clay loams rather than medium sandy loams. These slightly heavier topsoils thus increase the risk of workability problems and so this land is classified as Subgrade 3a. Occasionally, the slowly permeable subsoils occur at shallower depths within the soil profile, typically 35 cm depth. These profiles, which are represented by Pit 8, are poorly drained and are thus assigned to Wetness Class IV. However, these profiles have easily worked sandy textured topsoils (medium sandy loams) and are accordingly classified as Subgrade 3a.

26. Where soil droughtiness occurs in conjunction with soil wetness, profiles are similar to those described in para. 25 but have slightly less profile available water for plants. This results from profiles with either sandier upper subsoils (medium sandy loams), stonier subsoils (containing 20-25% total flints by volume) or profiles overlying gravelly lower subsoils at approximately 80-90 cm depth.

27. Where soil droughtiness is the key limitation profiles either comprise relatively deep soils over gravelly deposits or deep sandy textured soils. Where the latter occurs, profiles typically comprise medium sandy loam topsoils over similarly textured or, occasionally, loamy medium sand upper subsoils. These pass to similarly textured or medium sand lower subsoils. As a result of fluctuating groundwater levels, profiles tend to be gleyed within 40 cm depth and so are assessed as moderately well drained (Wetness Class II). Topsoils tend to be slightly stony, containing 2-5% flints > 2 cm and 10-12% total flints by volume. Subsoils are similarly stony, though occasionally stonier (approximately 20% total flints by volume) at depth. The topsoils and upper subsoils of these profiles are similar to Pit 6, though the lower subsoils are less stony than those of Pit 6. All subsoils are moderately structured. The interaction of the soil characteristics with the local climatic regime acts to impart a moderate soil droughtiness limitation. This may result in the soil available water being insufficient to fully meet crop needs in some years. Consequently this land may suffer from reduced and less consistent crop yields.

28. Where soil profiles overlie gravelly deposits at depth topsoils comprise medium sandy loams. These overlie permeable similarly textured or sandy clay loam (tending medium sandy loam) upper subsoils. At approximately 45-70 cm depth some of these profiles pass into poorly structured and slowly permeable lower subsoils (sandy clay loams, heavy clay loams, clay). These profiles are imperfectly drained (Wetness Class III). In other profiles the lower subsoils are also sandy textured and are moderately well drained (Wetness Class II). Topsoils tend to be slightly stony, containing 0-2% of flints > 2 cm and 5-10% total flints by volume. Subsoils tend to be either slightly or moderately stony, containing 5-30% total flints by volume.

At approximately 60-95 cm depth these profiles proved impenetrable to a soil auger because of underlying gravelly deposits. Consequently, soil inspection pits were dug to assess the soil conditions of horizons below 60-95 cm depth. Pit 4 represents profiles where slowly permeable lower subsoils are present; Pit 6 typifies profiles which are sandy textured prior to proving impenetrable.

29. From Pit 6 it could be seen that the auger proved impenetrable because the underlying horizons are very stony. Lower subsoils were found to comprise medium sandy loams and medium sands which contain approximately 55% total flints by volume. The high stone content of these horizons meant that it was impossible to assess the ped size, shape and their degree of development. However, due to the friable consistence it has been assumed that these lower horizons are moderately structured. From Pit 4 it could be seen that the auger proved impenetrable because the underlying horizon comprised a slightly or moderately stony clay (containing 15% total flints by volume) of very firm consistence. The interaction between the soil characteristics (texture, stone contents, subsoil structures) of both Pits 4 and 6 with the relatively dry prevailing climate acts to impart a moderate soil droughtiness limitation. This may result in the soil available water being insufficient to fully meet crop needs in some years. Consequently this land may suffer from reduced and less consistent crop yields.

Subgrade 3b

30. Land classified as Subgrade 3b, moderate quality, is subject to either significant soil wetness or droughtiness limitations. The former occur to the west of Cutbush Lane (in the north of the site), around the Food Research Institute, across the lower-lying land to the south of Shinfield Grange, and to the south of Millworth Lane. Topsoils comprise medium clay loams and medium silty clay loams. These usually pass into slowly permeable heavier textured (heavy clay loam, clay) subsoils. Occasionally permeable medium clay loam or stony heavy clay loam upper subsoils occur. However, these pass into the slowly permeable lower subsoils at shallow depths (30-36 cm) within the soil profile. Profiles tend to be very slightly stony, containing 0-5% total flints by volume. These profiles, which are represented by Pit 5, are poorly drained. This drainage impedance is indicated by gleving within the subsoils, and often within the topsoils. Given the prevailing climate these profiles are assigned to Wetness Class IV. The interaction between the topsoil textures and drainage characteristics with the local climatic regime means that this land is most appropriately classified as Subgrade 3b. This land will be subject to significant restrictions on the flexibility of cropping, stocking and cultivations.

31. The remainder of the Subgrade 3b land is limited by soil droughtiness. In comparison to land classified as Subgrade as 3a, the profiles in this mapping unit are sandier or shallower over gravelly deposits. The majority of profiles have medium sandy loams topsoils, which are occasionally organic. These profiles pass into similarly textured or loamy medium sand subsoils. Topsoils typically contain 1-7% of flints larger than 2 cm and 8-15% of total flints by volume. Upper subsoils are moderately stony (20-35% total flints), though occasionally are very stony (40% total flints). At approximately 35-45 cm depth these pass into very stony (40-60% total flints) lower subsoils. Fluctuating groundwater levels means that these profiles are well to moderately well drained (Wetness Classes I and II), depending upon the depth to gleying. These profiles proved impenetrable to a soil auger between 45 and 70 cm depth because of underlying gravelly deposits.

32. Other profiles in this mapping unit tend to have slightly heavier textured subsoils. Topsoils comprise sandy clay loams, medium clay loams and occasionally medium sandy loams. Subsoils comprise medium, heavy and sandy clay loams. The flint content of these profiles is similar to before. The slightly heavier subsoils means that these profiles are usually moderately well drained (Wetness Class II). However, profiles which have slowly permeable heavy clay loam, sandy clay loam or clay at depth are imperfectly drained (Wetness Class III). Profiles generally proved impenetrable to a soil auger at slightly shallower depths, typically 40 to 55 cm.

33. In order to assess the lower subsoil conditions of the profiles which proved impenetrable to a soil auger soil inspection pits 1, 2, 3 and 7 were dug. From Pit 2 it could be seen that lower subsoils comprise loamy medium sands. In this profile an iron pan occurred at 42 cm. Although this horizon is only slightly stony (10% total flints) its consolidated nature means that roots are unlikely to penetrate more than a few cm. The very firm consistence of this horizon means that a poor subsoil structure has been assumed.

34. Subsoils in the remaining pits were found to comprise loamy medium sandy, medium sand and, occasionally, medium sandy loams. Horizons were found to be moderately to very stony (31-65% total flints). In many cases the high stone contents meant that it was not possible to determine the size and shape of soil peds or their degree of development. However, given the friable and very friable consistence of these horizons moderate subsoil structures have been assumed. A comparison of the auger boring descriptions and the conditions observed in Pits 3 and 7 highlighted that subsoils were often both sandier and much stonier than originally envisaged in the auger borings. The fact that fieldwork was carried out when subsoils were moist, combined with the subsoils being of friable or very friable consistence, meant that it was often possible to auger through very stony subsoils(including that of 60% total flints). These factors have been considered in determining the extent and boundary of the Subgrade 3b mapping unit.

35. For all of the above pits the interaction of the soil properties, such as texture, stone content, subsoils structures (and restricted rooting in the case of Pit 2), and the prevailing climate results in the amount of soil available water being inadequate to meet crop requirements in most years. The resultant soil droughtiness limitation means that this land will suffer from lower and less consistent yield potential.

Grade 4

36. Grade 4, poor quality, land has been mapped in a single mapping unit to the north-west of Shinfield Infants School. The principal limitation to land quality in this area is microrelief and a lack of soil resource due to the fact that it appears to have been disturbed at some point in the past. This means that the majority of mechanical operations are not feasible and as such it is best suited to permanent grazing.

Gillian Iles Matthew Larkin Resource Planning Team Guildford Statutory Group ADAS Reading

7

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No.268, Reading, 1:63,360 (drift edition). BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land.

MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils of South East England, 1:250,000. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

۰.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
п	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
Ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
V	The soil profile is wet within 40 cm depth for 211-335 days in most years.
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in *Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land* (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	LEY:	Ley Grass	RGR:	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW:	Fallow
PLO:	Ploughed	SAS:	Set aside	OTH :	Other
HRT:	Horticultural Crops				

- 3. **GRDNT**: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. **MB (WHEAT/POTS)**: Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.

8.	If any of th	e following factors are con	sidered signif	ficant, 'Y' will b	e entered in the	he relevant column.
	MREL:	Microrelief limitation	FLOOD:	Flood risk	EROSN:	Soil erosion risk
	EXP: CHEM:	Exposure limitation Chemical limitation	FROST:	Frost prone	DIST:	Disturbed land

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC :	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
ST:	Topsoil Stoniness				

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations:

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts
T .1		1	A		

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)
- The clay loam and silty clay loam classes will be sub-divided according to the clay content:

M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.
 F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +
- 4. MOTTLE CONT: Mottle contrast.
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology. One of the following is used:

HR:	all hard rocks and stones	SLST:	soft oolitic or dolimitic limestone
CH:	chalk	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	GH:	gravel with non-porous (hard) stones
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered igneous/metamorphic	c rock	

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

WK: weakly developed	MD: moderately develop					
ST: strongly developed						
F: fine	M: medium					
C: coarse	VC: very coarse					
S: single grain	M: massive					
GR: granular	AB : angular blocky					
SAB: sub-angular blocky	PR : prismatic					
PL: platy	•					
	 ST: strongly developed F: fine C: coarse S: single grain GR: granular SAB: sub-angular blocky 					

9. **CONSIST**: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extrem	nely firm	EH: extremely	hard	

- 10.
 SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness:

 G: good
 M: moderate

 P: poor
- 11. **POR:** Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations:

- **APW**: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes.

APPENDIX III

SOIL DATA

.

.

Shinfield Additional Area

.

Job Number 0206/117/96

Surveyed August 1996

.

Site Name : WOKING	SHM SHINFIL	D 117/96		Pit Number	: 1	Ρ				
Grid Reference: SL	172306810	Accumula Field Ca Land Use	ted 1 pacit	al Rainfall Temperature ty Level xect	: 146 : 139 : Mai	669 mm 1468 degree days 139 days Maize 1 degrees NW				
HORIZON TEXTURE	COLOUR	STONES	>2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0–29 HCL 29–55 C	10YR42 C			1 0	HR	с	MDCSAB	FM	м	
29-35 C 55-80 C	101R52 C		•	0		M	MDCOPR	FM	P	
Wetness Grade : 3B		Wetness Gleying SPL	Class		¢m					
Drought Grade :		APW : APP :	mm mm		0mm 0mm					
FINAL ALC GRADE :	38									

-

MAIN LIMITATION : Wetness

.

LIST OF BORINGS HEADERS 30/10/96 WOKINGHM SHINFILD 117/96

EROSN FROST CHEM SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS-M.REL ALC EXP DRT FLOOD DIST LIMIT NO. GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB COMMENTS SU74016935 MZE 25 2 099 -16 104 -6 3A DR 3A IMP FLINTS 58 1 1 WE 1P SU72306810 MZE NW 0 0 38 1 29 55 3B 3 IMP FLINTS 65 2 SU73926932 MZE 23 35 4 3A 097 -18 104 -6 ЗA WD 34 DR IMP FLINTS 55 3 SU74046928 MZE 25 2 2 086 -29 088 -22 38 34 SU74256902 PGR 3B DR 38 IMP FLINTS 50 ۵ 30 2 072 -44 072 -39 1 SU74206893 PGR IMP FLINTS 75 5 28 2 107 -9 112 1 3A DR 34 1 SU74306890 PGR TO 120 6 28 2 157 41 122 11 1 1 1 IMP FLINTS 52 7 SU74256880 PGR 25 2 093 -23 094 -17 3B DR 3A 1 SU74336878 PGR WD 2 TO 120 8 23 60 3 2 141 25 118 7 2 SU72706860 MZE NW ٥ WE 3A 0 HCL SPL 9 25 45 3 34 1 ۵ SU72706850 MZE NW WE 3B 10 1 25 35 4 3B 0 0 SU72806850 MZE NW ₩E 3B 11 3 25 35 4 3B 0 0 WE 38 12 SU72716840 MZE W 2 28 28 4 3B 0 0 SU72806840 MZE W 25 25 WE 3B 13 4 4 3B 0 0 14 SU72806830 MZE NW 2 25 25 4 3B 0 0 WE 3B Q SPL 25 SU72396817 MZE 0 WE 38 15 25 25 4 3B 0 WE 3B LONDON CLAY 16 SU72106810 RGR 0 20 4 3B 0 0 WE SL SANDY 17 SU72306810 MZE 58 28 4 3B 0 0 38 SU72406810 MZE NW 25 25 3B 0 WE 38 18 1 4 0 SU72506810 MZE NW 30 50 0 WĘ 3A 19 3 3 3A 0 20 SU72706810 MZE NW 2 83 -31 88 -21 3B DR 38 POSS 3A 1 1 WE Q SPL 25 21 SU72206800 MZE N 2 25 35 4 3B 0 0 38 WE 22 SU72306800 MZE N 25 53 0 3A 2 З 0 3A WE 23 SU72406800 MZE N 3 25 50 3 3A 0 ٥ 3A SANDY 24 SU72576802 MZE 28 2 1 59 -55 59 -50 4 DR 38 IMP FLINTS 40 WE 25 SU71926795 MZE ۵ 38 28 28 4 3B 0 26 SU72106790 MZE NW 28 28 4 3B 0 0 WE 3B 3 27 SU72306790 MZE N 25 25 4 3B 0 0 WE 3B 1 WE SU72446794 MZE 3B 28 23 23 4 3B 0 ۵ 29 SU72146779 MZE W 28 33 4 3B 0 WE 38 1 0 30 SU73206710 MZE IMP FLINTS 50 45 061 -54 061 -48 4 DR 3R 1 1 DR 31 SU73356710 MZE 50 2 1 103 -12 105 -4 3A 3A IMP 75 WE IMP QGH 80 32 SU73426704 MZE 27 40 3 3A 102 -13 107 -2 3A 3A 33 SU73206700 MZE 2 DR 3A MS TO 120 25 114 -1 101 -8 3A 1

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHM SHINFILD 117/96

				1	WATTI I		PFD				- 51	IONES.		STRUCT/	SUB	s			
CANDLE	DEDTU	TEVTUDE	COLOUR		ABUN									CONSIST		-	TMP	SPI	CALC
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ADUN	CONT		G		~2	-0	C1 /11	101	0010101	511			51 6	
1	0-25	fszl	10YR42 00							0	0	HR	3						
	25-40	mcl	10YR53 52	10YR5	5 00 (2			Y	0	0	HR	3		м				
-	40-55	hc1	25Y 51 53	10YR5	B 00 I	1	00MN00	00	Y	0	0	HR	5		м				
-	55-58	hc1	25Y 51 53	10YR5	3 00 I	1	000000	00	Y	0	0	HR	20		Μ				
1 P	0-29	hc1	10YR42 00							0	0	HR	1						
-	29-55	с	10YR52 00	75YR5	6 00 0	2			Y	0	0		0	MDCSAB F	MM				
1	55-80	с	10YR52 62	75YR5	6 OO I	1			Y	0	0		0	MDCOPR P	MP	Y		Y	
2	0-23	fszl	10YR42 00									HR	3						•
ł	23-35	mcl	10YR53 54						Y			HR	3		M				
6	35-60	с	25Y 51 52						Y	0		HR	5		Р			Y	
_	60-65	scl	25Y 52 00	10YR5	B 00 I	1	00MN00	00	Y	0	0	HR	30		M			Ŷ	
3	0-25	1	100043 00							۵	n	HR	3						
3		mcl	10YR42 00 10YR52 53	10005	a	~	00MN00	00	v			HR	5		м				
	25-50 50-55	hcl	25Y 52 53				0000000					HR	20		M				
	50-55	scl	231 32 33	10110	5 00 1	•	001 1100	00	•	Ū	Ŭ	THX .	20		••				
4	0-30	ms]	10YR43 00		•					0	0	HR	10						
•	30~50	ms]	10YR53 00		6 00 1	C			γ			HR	15		м				
•																			
5	0-28	mszl	10YR42 00							0	0	HR	5						
-	28-50	msz]	10YR53 54	10YR5	6 00 (0			γ	0	0	HR	10		М				
_	50-65	ms l	25Y 52 62	10YR5	8 00 (0	00MN00	00	Y	0	0	HR	10		M				
	65-70	scl	25Y 52 00	75YR5	8 00 1	4			Y	0	0	HR	10		м				
	70-75	scl	25Y 52 00	75YR5	8 00 1	4			Y	0	0	HR	50		M				
_											_	_							
6	0-28	fszl	10YR41 42							-		HR	3						
	28-50	mcl	10YR51 61						Y	0		HR	5		M				
	50-120	hcl	25Y 51 61	75YR5	8 00 1	4	QOMNOO	00	Ŷ	0	0	HR	10		M				
7	0-25	fszl	10YR42 00							0	n	HR	3						
	25-50	hcl	25Y 52 53	10785	8 68 1	^			v	õ			5		м				
	50-52	hcl	25Y 52 53						Ŷ			HR	20		M				
1	00 02		201 02 00	• - · · · ·															
8	0-23	fszl	10YR42 00	10YR5	6 00 1	F				0	0	HR	3						
	23-60	mcl	10YR53 00				000000	00	Y	0	0	HR	5		м				
	60-120	с	25Y 53 52	75YR5	6 00 1	٩			Y	0	0	HR	3		Ρ			Y	
9	0-25	mc1	10YR42 00							0	0	HR	5						
	25-45	hcl	10YR52 53	10YR5	8 00 6	C	000000	00	Y	0	0	HR	3		м				
	45-80	с	25Y 53 00	10YR5	B 00 j	4			Y	0	0	HR	3		Ρ			Y	
-			10.00-0-0-							^	~	110	•						
10	0-25	mcl	10YR42 00	10000	c 00 -	~	0010100	00	v			HR	3		ы				
	25-35	hcl	10YR53 00				00MN00	00				HR HR	3 3		M P			Ŷ	
	35-80	с	25Y 53 00	10185		"			Y	0	U	пк	د		٢			۲	
— 11	0-25	ന്റി	10YR42 00							0	0	HR	3						
	25-35	നവി	10YR53 51	10YR5	6 00 (С			Y	0		HR	3		м				
-	35-70	c	25Y 53 00						Y	0		HR	0		Р			Y	

----STONES---- STRUCT/ SUBS ---- MOTTLES----- PED SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 12 0-28 10YR42 00 4 0 HR ۵ mc l Y 0 0 28-75 10YR51 53 75YR58 00 M ۵ Ρ ۷ с 13 0-25 mcl 10YR42 00 5 0 HR 10 25-35 10YR52 53 75YR46 00 C Y O O HR hc] 15 м ٧ 35-70 10YR53 62 75YR68 00 M Y 0 0 0 Р Y C j 0-25 mc1 14 10YR42 00 4 0 HR 4 25-55 hc l 10YR52 53 10YR46 00 C Y 0 0 0 Y м Υ. 55-80 10YR53 00 75YR58 00 M Y 0 0 0 ρ С 15 0-25 hcl 10YR42 00 0 0 HR 1 10YR62 00 Y 25-45 c 10YR53 00 75YR58 00 C 0 0 0 Ρ Y 10YR53 00 75YR58 00 C 10YR62 00 Y 45-50 c 0 0 HR 10 р Y 50-90 10YR62 00 75YR68 78 M 0 0 0 Ρ с Y 16 0-20 10YR51 00 75YR58 00 C 0 0 0 hc1 Y 20-75 10YR62 00 75YR58 00 M Y 0 0 0 Ρ Υ с 17 0-28 hc1 10YR42 00 0 0 HR 2 28-80 10YR52 53 75YR58 00 M Y 0 0 0 Р Y с 18 0-25 hcl 10YR42 00 0 0 0 25-60 с 10YR52 00 75YR68 00 M Y 0 0 0 Ρ • 19 0-30 10YR42 00 0 0 HR mc] 2 10YR63 00 75YR58 00 C 10YR72 00 Y 0 0 HR 30-50 sc] 5 м Y 0 0 50-80 Ç 10YR62 00 75YR68 00 M 0 Ρ Y 20 0-30 5 ms l 10YR41 42 2 0 HR 30-45 10YR44 00 0 0 HR ms) 5 м 45-70 Jwż 10YR64 66 0 0 0 м 21 0-25 u c J 10YR32 42 3 0 HR 3 25-35 hc1 10YR53 00 10YR58 00 C Y 0 0 0 M 35-80 10YR53 61 75YR58 00 M Y 0 0 0 Ρ ٧ Ç 22 0-25 mc) 10YR42 00 2 0 HR 2 Y O O HR 25-53 25Y 53 62 10YR46 00 C mc1 2 м 53-80 С 10YR53 00 10YR58 00 M Y 0 0 0 Ρ Y 23 0-25 mcl 10YR42 00 5 0 HR 5 25-50 unc J 25Y 53 62 10YR46 00 C Y O O HR 5 М 50-70 c 10YR53 00 10YR58 00 C Y 0 0 0 p 10 24 0-28 10YR41 42 3 0 HR ms î 28-40 ms 1 10YR44 00 10YR56 00 C Y O O HR 15 М

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHM SHINFILD 117/96

					MOTTLES								STRUCT/			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LIT	н тот	CONSIST	STR POR	IMP SPL CALC	
25	0-28	hc1	25Y 42 00						1	0	HR	5				
	28-70	c	25Y 53 63	10YR6	B 00 M			Y	0	0	HR	2		P	Y	
26	0-28	mcl	10YR42 00						,	0	HR	5				BORDERLINE HCL
20	0-28 28-70	c	25Y 53 63	10YR5	8 00 M			Y	0			0		Р	Y	BORDEREINE TRE
-																
27	0-25	hc1	10YR32 00								HR	3		_		
	25-70	с	10YR53 00	75YR5	B 51 M			Ŷ	0	0	HR	2		Р	Y	
28	0-23	mcl	10YR32 00						10	2	HR	15				
	23-40	с	10YR53 51	75YR5	8 00 C			Y	0	0	HR	15		Ρ	Y	
	40-50	с	10YR53 51	75YR5	8 00 M			Y	0	0		0		Ρ	Y	
_	50-70	с	10YR51 00	10YR5	8 00 C			Y	0	0		0		P	Y	
29	0-28	mcl	10YR42 00						1	0	HR	5				
	28-33	mcl	10YR53 52	10YR5	в 00 м	0	000000)0 Y	0	0	HR	3		M		
	33-80	c	25Y 52 53	10YR5	8 00 M	C	omnoo ()0 Y	0	0	HR	2		Ρ	Y	
30																
30	0-25	ms l	10YR42 00								HR	5				
-	25-45	lms	10YR43 00								HR	5		M		
	45-50	msl	10YR52 00	TUYR5	5 UU C			Ŷ	U	U	HR	15		M		
31	0-27	msz ì	10YR31 00						5	1	HR	12				
	27-40	msz]	10YR43 00						0	0	HR	12		M		
	40-50	ms]	10YR43 00						0	0	HR	15		м		
-	50-70	ms)	25Y 54 64					Y			HR	10		M		
	70-75	scl	25Y 53 64	10YR5	B 00 M			Ŷ	0	0	HR	20		M		
32	0-27	mc1	10YR32 00						0	0	HR	2				
	27-40	mc]	25Y 42 00	75YR40	5 00 C			Y	0	0	HR	2		м		
	40-80	c	25Y 31 41	75YR4	5 00 C			Y	0	0		0		Ρ	Y	
33	0.25		104043 00						1	^	HR	5				
33	0-25 25-65	msไ msl	10YR42 00 10YR53 00	10705	5 00 0			Y			HR	5		м		
	23-85 65-85	lms i	25Y 53 63					Ý			HR	5		M		
	85-120	ms	25Y 72 00					Ý			HR	10		M		
			20. 72 00		/ / /		•	•	-	-						

APPENDIX III

,

.

SOIL DATA

.

Shinfield Original Area

.

٩,

Job Number 0206/177/96

Surveyed February 1996

Grid Refe	erence: SU	17 3006 760	Accumulate	nnual Rainfal ed Temperatur acity Level Aspect	e : 146 : 136 : Le <u>:</u>	57 degree 3 days				
HORIZON	TEXTURE	COLOUR	STONES	2 TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CAL
0- 28	OMSL	10YR42 0	-	12	HR					
28- 46	SCL	10YR43 5		25	HR		MDCSAB	FR	м	
46- 64	MS	10YR64 0		57	HR	С			м	
64- 90	LMS	10YR64 0	-	50	HR	M		EM	М. Р	
90-120	С	25Y 62 D	0 0	30	HR	М		FM	P	
Wetness G	Frade : 1		Wetness C	lass : I						
			Gleying	:046	Cm					
			SPL	: 090	CW					
Drought G	irade : 3B		APW : 94 r APP : 75 r		21 mm					
	GRADE : TATION :	38 Droughtine:	5							
MAIN LIMI	TATION :	Drought ine:	PIT DESCRI	PTION Pit Number	: 21	2				
MAIN LIMI Site Name	TATION :	Droughtine: SOIL IAM DLP SH1 73106710	PIT DESCRI],13,14 Average An Accumulate	Pit Number nual Rainfall d Temperature	: 66 : 146	2 mm 7 degree (days			
MAIN LIMI Site Name	TATION : : WOK[NGF	Droughtine: SOIL IAM DLP SH1 73106710	PIT DESCRI 3,13,14 Average An Accumulate Field Capa	Pit Number nual Rainfall d Temperature	: 667 : 146 : 138	2 mm 7 degree d days	days			
MAIN LIMI	TATION : : WOK[NGF	Droughtine: SOIL IAM DLP SH1 73106710	PIT DESCRI],13,14 Average An Accumulate	Pit Number nual Rainfall d Temperature city Level	: 666 : 146 : 138 : Aral	2 mm 7 degree d days	days			
MAIN LIMI Site Name Grid Refe	TATION : : WOK[NGF	Droughtine: SOIL IAM DLP SH1 73106710	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and	Pit Number nual Rainfall d Temperature city Level	: 666 : 146 : 138 : Aral	2 mm 7 degree d days ble degrees		CONSIST	SUBSTRUCTURE	CALC
MAIN LIMI Site Name Grid Refe	TATION : : WOK[NGH rence: SU7	SOIL SOIL AM DLP SH1 3106710	PIT DESCRI 3,13,14 Average An Accumulate Field Capa Land Use Slope and STONES >	Pit Number nual Rainfall d Temperature city Level Aspect	: 667 : 146 : 138 : Aral : 0	2 mm 7 degree d days ble degrees		CONSIST	SUBSTRUCTURE	CALC
MAIN LIMI Site Name Grid Refe HORIZON	TATION : : WOK[NGF rence: SU7 TEXTURE	Droughtine: SOIL IAM DLP SH1 73106710 COLOUR	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE	: 667 : 146 : 138 : Aral : 0	2 mm 7 degree d days ble degrees		CONSIST	SUBSTRUCTURE	CALC
MAIN LIMI Site Name Grid Refe HORIZON 0- 29	TATION : rence: SU7 TEXTURE MSL	Droughtines SOIL IAM DLP SH1 73106710 COLOUR 10YR21 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5	: 66. : 146 : 138 : Aral : 0 LITH HR	2 mm 7 degree d days ble degrees	STRUCTURE			CALC
MAIN LIMI Site Name Srid Refe WORIZON 0- 29 29- 42	TATION : H rence: SU7 TEXTURE MSL MSL	COLOUR 10YR21 00 75YR34 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0 0	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5 10	: 666 : 146 : 138 : Aral : 0 LITH HR HR	2 mm 7 degree d days ble degrees	STRUCTURE	FR	M	CALC
MAIN LIMI Site Name Grid Refe ORIZON 0- 29 29- 42 42- 50 50-120	TATION : H rence: SU7 TEXTURE MSL LMS LMS	SOIL SOIL AM DLP SH1 3106710 73106710 75YR44 00 75YR44 00 75YR44 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0 0	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5 10 10 55	: 666 : 146 : 138 : Aral : 0 LITH HR HR HR	2 mm 7 degree d days ble degrees	STRUCTURE	FR	M P	CALC
MAIN LIMI Site Name Grid Refe ORIZON 0- 29 29- 42 42- 50 50-120	TATION : H rence: SU7 TEXTURE MSL LMS LMS	SOIL SOIL AM DLP SH1 3106710 73106710 75YR34 00 75YR44 00 75YR44 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0 0 0 0	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5 10 10 55 ass : I	: 666 : 146 : 138 : Aral : 0 LITH HR HR HR	2 mm 7 degree d days ble degrees	STRUCTURE	FR	M P	CALC
MAIN LIMI Grid Refe HORIZON 0- 29 29- 42 42- 50	TATION : H rence: SU7 TEXTURE MSL LMS LMS	SOIL SOIL AM DLP SH1 3106710 COLOUR 10YR21 00 75YR34 00 75YR44 00 75YR44 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0 0 0 0 Wetness C1	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5 10 10 55 ass : I :	: 666 : 146 : 138 : Aral : 0 LITH HR HR HR HR HR	2 mm 7 degree d days ble degrees	STRUCTURE	FR	M P	CALC
MAIN LIMI Site Name Grid Refe Or 29 29- 42 42- 50 50-120	TATION : H rence: SU7 TEXTURE MSL LMS LMS MSS MSC LMS	SOIL SOIL AM DLP SH1 3106710 COLOUR 10YR21 00 75YR34 00 75YR44 00 75YR44 00	PIT DESCRI 1,13,14 Average An Accumulate Field Capa Land Use Slope and STONES > 1 0 0 0 0 Wetness C1 Gleying	Pit Number nual Rainfall d Temperature city Level Aspect 2 TOT.STONE 5 10 10 55 ass : I :	: 667 : 146 : 138 : Aral : 0 LITH HR HR HR HR HR	2 mm 7 degree d days ble degrees	STRUCTURE	FR	M P	CALC

5

FINAL ALC GRADE : 38 MAIN LIMITATION : Droughtiness

Site Name	e : WOK[NG]	IAM DLP SH	111,13,14	Pit Number	: 3	3P				
Grid Refe	erence: SU7	72806740	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ity Level	: 146 : 136 : Plo	52 mm 57 degree 3 days bughed degrees	days			
HORIZON	TEXTURE	COLOUR	STONES >2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MSL	10YR42 0	_	15	HR	INTILLO	STRUGTORE	0010101	000011001012	Unco
30- 50	SCL	101R42 0		40	HR		WKCSAB	FR	м	
			•				WKCSAB	VF	M	
50- 55	MSL	10YR62 0		60	HR					
55- 75	LMS	10YR62 0		60	HR		WKCSAB	VF	м.	
75-120	MS	10YR63 0	0 0	60	HR				M	
Wetness (Grade : 1		Wetness Clas Gleying		сm					
			SPL	: No						
Drought (Grade : 3B		AP₩ : 78 mm	MBW : ~3	7 mm					
			APP : 71 mm	MBP : -3	9 mm					
		_								

FINAL ALC GRADE : 3B MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Name : WOKINGHAM DLP SH11,13,14 Pit Number : 4P Grid Reference: SU73266816 Average Annual Rainfall : 662 mm Accumulated Temperature : 1467 degree days Field Capacity Level : 138 days Land Use : Permanent Grass Slope and Aspect : degrees STONES >2 TOT. STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC HORIZON TEXTURE COLOUR 0-28 MSL 10YR43 00 2 8 HR 28- 45 MSL 10YR53 00 15 HR С MDCSAB FR м 0 45- 55 Μ MDCPR Ρ SCL 25Y 63 53 15 HR FΜ 0 55- 80 25Y 51 00 м MDCPR Ρ С 5 ٧M 0 HR 15 80-120 25Y 51 00 Ρ С 0 НR м MDCPR ٧M Wetness Grade : 2 Wetness Class : III Gleying :028 cm SPL :045 cm

Drought Grade : 3A APW : 116mm MBW : 1 mm APP : 96 mm MBP : -14 mm

FINAL ALC GRADE : 3A MAIN LIMITATION : Droughtiness

ărid Refe	erence: SU7			ted 1 pacit	-	e : 146 : 138 : Per	2 mm 7 degree 1 days manent Gr dég <i>re</i> es				
IORIZON	TEXTURE	COLOUR	STONES	>2	TOT. STONE		MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CAL
0- 16	MZCL	10YR41 00	0		1	HR	F	WKCSAB	FM	Р	
16- 40 40- 60	HCL C	25Y 52 62 25Y 61 62	0		0 0		M M	WKVCAB	FM	P	
40- 60	L	251 01 02	U		U			nice on the			
letness (Grade : 3B	ŗ	Hetness (Class	s : IV						
		1	Sleying		:016	Cm					
			SPL		:016	CUI					
)rought (arade :		APW : APP :	നന നന		0 mm 0 mm					
MAIN LIM	C GRADE : 3	ketness SOIL	PIT DESC	RIPT			50				
MAIN LIM) Site Name	ITATION : >	SOIL AM DLP SH1 74206850	1,13,14 Average Accumula	Annu ited ipaci	Pit Number al Rainfal Temperature ty Level	1 : 66 e : 146 ; 136					
MAIN LIMI Site Namu Grid Refo	ETATION : P	SOIL AM DLP SH1 74206850	1,13,14 Average Accumula Field Ca Land Use Slope an	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level pect	1 : 66 e : 146 : 136 : Per :	52 mm 57 degree 3 days manent Gr degrees	ass			
MIN LIM Site Nam Grid Ref	ITATION : ≯ ≘ : ₩OKING	SOIL AM DLP SH1 74206850	1,13,14 Average Accumula Field Ca Land Use Slope an STONES	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level	1 : 66 e : 146 : 136 : Per :	52 mm 57 degree 3 days manent Gr degrees	ass	CONSIST	SUBSTRUCTURE	CAL
MAIN LIM Site Nam Grid Ref HORIZON	TEXTURE	SOIL IAM DLP SH1 74206850 COLOUR	1,13,14 Average Accumula Field Ca Land Use Slope an STONES 1	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level pect TOT.STONE	1 : 66 e : 146 : 136 : Per : LITH	52 mm 57 degree 3 days manent Gr degrees	ass	CONSIST FR	SUBSTRUCTURE	CAL
44 IN LIM Site Nam Grid Ref OR IZON 0- 25 25- 43 43- 67	ETATION : P E : WOKING erence: SU TEXTURE MSL MSL MSL	SOIL AM DLP SH1 74206860 COLOUR 10YR44 43 10YR44 54 10YR53 00	1,13,14 Average Accumula Field Ca Land Use Slope an STONES 1 0 0	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level pect TOT.STONE S	1 : 66 e : 146 : 136 : Per : LITH HR	52 mm 57 degree 3 days manent Gr degrees	STRUCTURE			CAL
44 IN LIM Site Nam Grid Ref ORIZON 0- 25 25- 43 43- 67 57- 95	E : WOKING erence: SU TEXTURE MSL MSL MSL MSL	SOIL AM DLP SH1 74206850 COLOUR 10YR44 43 10YR44 54 10YR53 00 10YR53 00	1,13,14 Average Accumula Field Ca Land Use Slope an STONES 1 0 0 0	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level pect TOT.STONE 5 5 5 5 56	1 : 66 e : 146 : 136 : Per : LITH HR HR	52 mm 57 degree 3 days manent Gr degrees MOTTLES	rass STRUCTURE MDCSAB	FR	M M M	CAL
4 IN LIM Site Nam Grid Ref OR IZON 0- 25 25- 43 43- 67	ETATION : P E : WOKING erence: SU TEXTURE MSL MSL MSL	SOIL AM DLP SH1 74206860 COLOUR 10YR44 43 10YR44 54 10YR53 00	1,13,14 Average Accumula Field Ca Land Use Slope an STONES 1 0 0 0	Annu ited ipaci id As	Pit Number al Rainfal Temperature ty Level pect TOT.STONE 5 5 5	1 : 66 e : 146 : 136 : Per : LITH HR HR HR	52 mm 57 degree 3 days manent Gr degrees MOTTLES M	rass STRUCTURE MDCSAB	FR	M M	CAL
MIN LIM Site Nam Grid Ref ORIZON 0- 25 25- 43 43- 67 67- 95 95-120	E : WOKING erence: SU TEXTURE MSL MSL MSL MSL	SOIL AM DLP SH1 74206860 10YR44 43 10YR44 54 10YR53 00 10YR64 00	1,13,14 Average Accumula Field Ca Land Use Slope an STONES 1 0 0 0	Annu ited ipaci i i i s i s 2	Pit Number al Rainfal Temperature ty Level pect TOT.STONE 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 : 66 e : 146 : 136 : Per : LITH HR HR HR HR HR HR HR	52 mm 57 degree 3 days mmanent Gr degrees MOTTLES M M	rass STRUCTURE MDCSAB	FR	M M M	CAI

Site Name : WOKINGHAM DLP SHI1,13,14 Pit Number : 7P

Grid Reference:	SU72786797	Average Annual Rainfall	:	662 mm
		Accumulated Temperature	:	1467 degree days
		Field Capacity Level	:	138 days
		Land Use	:	Cereals
		Slope and Aspect	:	02 degrees S

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	MSL	10YR42 00	3	8	HR					
29- 52	LMS	10YR52 00	0	58	HR	F		VF	м	
52-75	MS	10YR52 00	0	31	HR	С		VF	м	
75- 95	MS	75YR68 58	0	36	HR			٧F	M	
95-120	LMS	05Y 62 00	0	65	HR	С		VF	M ·	

.

Wetness Grade : 1	Wetness Class	: I
	Gleying	:052 cm
	SPL	: No SPL
Drought Grade : 3B	APW : 70 mm MBW	: -45 mm
	APP: 61 mm MBP	: -49 mm

FINAL ALC GRADE : 38 MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Nam	e : WOKINGH	IAM DLP SH	11,13,14	Pit Number	-: E	3P				
Grid Ref	erence: SU7	72506770	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ty Level	e : 146 : 138 : Cer	7 degree days	-			
HOR[ZON 0- 26 26- 35 35- 67 67-120	TEXTURE MSL MSL SCL SCL	COLOUR 10YR42 04 10YR53 04 25Y 63 04 25Y 63 04	0 0 0 0	TOT. STONE 5 5 2 2 2	LITH HR HR HR HR	MOTTLES C M M	STRUCTURE MDCSAB MDVCPR WKCSAB	CONSIST FR FM FM	SUBSTRUCTURE M P P	CALC
Wetness (Grade : 3A		Wetness Clas Gleying SPL	s : IV :026 :035						
Drought (Grade : 2		APW : 129mm APP : 100mm		4 mm 0 mm					

FINAL ALC GRADE : 3A MAIN LIMITATION : Wetness

A	IPLE	A	SPECT				WETI	NESS	-WH	EAT-	-P0	TS-	м.	REL	EROSN	FROST	CHEM	ALC	
П О.	GRID REF	U\$E		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIS	T LIMIT		COMMENTS
_																			
	SU74306948			01	030		2	2	72	-43		-37	3B				DR	38	Imp55 gravelly
-	P SU73006760		NW	01	046		1	1	94	-21		-35	3B				DR	3B	AB impen at 50
	SU74056938		S	03	028	075	2	2	119		113	3	3A				WD	2	Imp90 gravelly
	P SU73106710						1	1	66	-49	66	-44	3B				DR	38	Iron pan 42
	SU74206940	PL0	S	06	030	030	4	3B		0		0					WE	38	Imp60 gravelly
	P SU72806740	PLO					1	1	78	-37	71	-39	3B				DR	3B	Pit100 ASP179
			s	03	030	055	3	ЗА	94	-21		-7	3B				WD	3A	Imp60 gravelly
	P SU73266816		Ŭ	00	028		3	2	116		96	-14	3A				DR	34	Pit90 Augd120
					030		2	1	108	-7		-13	3A				· DR	3A	Imp95gravelly
	P SU73906790				016		4	38		0		0					WE	38	Surf. water nr
- 6	SU74206920	PLO	S	02	0	025	4	3B		0		0					WE	38	
	P SU74206860	PGR			043		1	1	113	-2	103	-7	ЗА				DR	3A	Pockets of scl
7	SU74406920	FL₩			028		2	2	86	-29	91	-19	38				DR	3A	Imp60 gravelly
•	P SU72786797	CER	S	02	052		1	1	70	-45	61	-49	38				DR	3B	At boring 101
_ {	SU74306910	FLW			035		2	1	77	-38	82	-28	38				DR	3B	Imp70 gravelly
																	_		
	P SU72506770		SE	03	026	035	4	3A	129		100	-10	2				WE	3A	
9					028		2	1	75	-40		-30	3B				DR	38	Imp70 gravelly
10					030		2	1	106	-9		-28	3A				DR	3A	Wet at 55 plus
			SW	02	030		3	2	115		108	-2	3A 2.				WD	2	Imp95 gravelly
12	SU73526894	ŧĹ₩			026	070	2	1	109	-6	100	-10	3A				DR	3A	Imp100gravelly
13	SU73406890	PCP	SW	02	030	050	3	2	129	14	102	-8	2				WD	2	Augd to depth
				02		025	4	38		0		õ	-				WE	- 38	Plastic 25
15			••		025		3	3A	125		101	-9	2				WE	3A	
16			SW	01	030	060	3	2	105	-10	105	-5	3A				DR	3A	Imp90 gravelly
17			SE	02	025	025	4	38		0		0					WE	3B	London clay
_																			
18	SU73706880	PGR	S	03	0	025	4	3B		0		0					WE	38	Plastic 25
19	SU73876881	PGR	SE	03	025	060	3	3A	133	18	109	-1	2				₩E	3A	Horizon2 Q hcl
20			SE	02	030		3	2	122		108	-2	2				WD	2	
20	A SU73506863			02	042	065	2	1	119	4	108	-2	3A				DR	3A	Borderline Gr2
21	SU73806870	PGR	S	02	030	030	4	3B		0		0					WE	3B	
	0177706060	000		01	020	045	2	24	110	F	02	10	24				ыŋ	3A	
22			SE SE	01 01	030 0	045	3 2	3A 1	110 95	-5 -20		-18 -9	3A 3A				WD DR	JA JA	Imp70 gravelly
24			SC.	ОТ.	050	ກຣກ	2	1	98	-17		-8	3A				DR	3A	Imp75 gravelly
25					024		3	ЗА	102	-13		-4	3A				WD	3A	Impro graterij
-26						055	3	3A	134		111	1					WE	3A	Augd to depth
	,				•		-					•	-				•••		
27	SU73706850	PGR	SE	02	028	060	3	2	125	10	102	-8	2				₩D	2	H2 Q ms1 – 3a
_ 28					045		1	1	137		112	2	2				ÐR	2	
29	SU74106850	PGR					1	1	92	-23	99	-11	3B				DR	3A	Imp70 gravelly
30	SU74306850	PGR			025	060	3	2	106	-9	102	-8	3A				DR	3A	Imp90 gravelly
31	SU72946844	PGR			0	036	4	3B		0		0					WE	38	
32			SE	01	0		2	2	59	- 56		-51					DR	3B	Imp40 gravelly
33	SU74006840	PGR			025	040	3	3A	78	-37	80	-30	3B				DR	3B	Imp55 gravelly

SAMP	LE	Δ	SPECT				WETI	NESS	-WH	EAT-	-PC)TS-		M. REL	EROSN	FRO	ST	CHEM	ALC	
NO.	GRID REF			GRONT	GLEY S					MB	_	мв	DRT			XP	DIST	LIMIT		COMMENTS
		002		GRONT		0. 2	02/100					1.2			-			21.12.1		
34	SU74206840	PGR			040 06	60	3	2	144	29	104	-6	2					DR	2	Augd to depth
35	SU73706830	FLW	E	02	028 06	60	3	2	125	10	100	-10	2					DR	2	Borderline 3a
36	SU73906830	PGR			015 01	15	4.	38		0	-	0						WE	3B	Imp70 gravelly
37	SU74106830	PGR			028		2	2	78	-37	78	-32	3B					DR	3A	Imp48 gravelly
38	SU73176826	PGR	S	01			1	1	52	-63	52	-58	4					DR	38	Imp50 gravell
39	SU73626824	FLW			030 06	64	3	2	113	-2	84	-26	3A					DR	3A	Just WC III
40	SU73776820	PGR			020 03	35	4	3A	76	-39	85	-25	3B					DR	3B	Imp70 gravell
41	SU74006820	PGR			045 0 4	45	3	3A	111	-4	105	-5	3A					WE	3A	Sl.gley0;Imp8
42	SU72786815	PGR			023 07	70	2	1	133	18	110	0	2					DR	2	Augd to depth
43	SU73106815	PGR	S	01			1	1	61	-54	61	-49	4					DR	38	Imp50 gravell
44	SU73266816	PGR	S	01	028 05	55	3	2	100	-15	101	-9	3A					DR	3A	Imp85 gravelly
45	SU73706810	FLW			030 09	90	2	1	132	17	99	-11	ЗA					DR	3A	-
46	SU73906812	PGR			0 01	10	4	3B		0		0						WE	3B	Rushes
47	SU74106810	PGR			020 02	20	4	3B		0		0						WE	3B	•
48	SU72606800	CER	S	02			1	1	86	-29	91	-19	3B					DR	3A	Imp65 gravelly
49	SU72806800	ĊER	S	02	038		2	1	91	-24	97	-13	38					DR	38	Imp72 gravell
50	SU73026800	PGR	S	02	025 04	47	3	2	121	6	99	-11	3A					DR	3A	
51	SU73226802	PGR	S	01	026 06	50	3	2	126	11	103	-7	2					WD	2	-
52	SU73306800	PGR			028 05	55	3	2	112	-3	103	-7	3A					DR	3A	Imp100gravell
53	SU73606800	LEY			030 07	75	2	1	111	-4	84	-26	3A					DR	3A	-
																				_
54	SU73826800				025 05		3.	3A	103	-12	109	-1	3A					WD	3A	Imp80 gravelly
55	SU74006800				0 02	25	4	38		0		0						WE	38	
56	SU72506790				030		2	1	99	-16		-11	3A					DR	3A	Prob stonier3b
57	SU72686788	_			065		1	1	86	-29		-25	3B					DR		Imp90 gravelly
58	SU72906790	PGR	S	01	026 03	35	4	3A	119	4	97	-13	3A					WD	3A	Augd to depth
													~							
59	SU73106790				050	10	1	1	124	_	100	-10	2						2	Impl10gravelly
60	SU73616791				035 07			1	113		103	-7	3A					DR		Imp100grave11
61	SU73906790				015 03		4	3B	115	0		0	7.					WE	38	V 0
	SU74106790				045 04	10	3		115		112	2	3A					WE		V wet 60 -Q 3b
63	SU72406780	UEK					1	1	59	-56	29	-51	4					DR	3B	Imp45 gravelly
64	SU72606780	() E D	s	02	023 05	55	3	2	110	-5	94	-16	3A					DR	3A	Augd to depth
65	SU72806780	_			023 05		3	2	126	-5		-11						DR		Augd to depth
65 66	SU72806780			1	V20 V3			2	68	-47		-11						DR		Imp45 gravell
67	SU73206780		in in		010				39	-76		-71		Y			Y	MR		Disturbed
68	SU73806780				030		2	2	89	-26		-13		·			•	DR		Imp70 gravell <u>v</u>
	007.0007.00	, ar			000		-	-		-20		- 10	50					U.	54	Impro grateri
69	SU72306770	CER	SE	01			1	1	107	-8	80	-30	3A					DR	3A	Wet & stony
70	SU72506770				030 03	35			123		96	-14	3A						3A	<i>********************************</i>
71	SU72706770				028				83	-32		-23	3B					DR		Imp65 gravell
72	SU72876769				040				99	-16		-1	3A							Imp70 gravell;
73	SU73106770		N	01	-				49	-66		-61						DR		Imp50 gravelly
		_ 1										- 1								
74	SU73306770	FLW					1	1	66	-49	66	-44	3B					DR	3B	Imp45 gravell;
75	SU73706770						1		78	-37		-32								Imp50 gravelly

SAMP	LE	A	SPECT				WETN	VESS	-WH	EAT-	PO	TS-	М.	REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF			GRDNT	GLEY	SPL	CLASS			MB	AP	MB	DRT	FLOOD	EX				COMMENTS
76	SU72606760	STB			030		2	1	92	-23	89	-21	38				DR	3B	V. compact 100
77	SU72806760	FLW					1	1	70	-45	70	-40	3B				DR	3B	Imp50 gravelly
78	SU73006760	LEY	NW	01			1	1	64	~51	64	-46	4				DR	3B	Imp50 gravelly
79	SU73206760	LEY			030 0	45	3	3A	106	-9	104	-6	3A				WD	3A	See 5P -spl 45
80	SU73626760	PGR			025 0	50	3	3A	98	-17	109	-1	3A				WD	3A	Imp70 gravelly
-																			
81	SU73806760	PGR			030		2	2	82	-33	89	-21	38				DR	3B	Imp70 gravelly
82	SU72706750	PLO			028		2	1	65	~50	65	-45	38				DR	3B	Imp48 gravelly
83	SU72906750	PLO	N	01			1	1	79	-36	83	-27	38				DR	3B	Imp60 gravelly
84	SU73106750	FLW					1.	1	57	- 58	57	-53	4				· DR	3B	Imp45 gravelly
85	SU73706750	PGR			030 0	70	2	1	108	-7	109	-1	3A				DR	3A	Imp80 gravelly
86	SU73196745						1	1	29	-86		-81	4				ST	3B	Imp40 gravelly
87	SU73566745				0		2	2	92	-23	100	-10	3B				DR	3A	Imp70 gravelly
88	SU72606740						1	1	69	-46	69	-41	3B				DR	38	See 5P
89	SU72826742		S	01			1	1	86	~29	90	-20	38				DR	3B	Imp75 gravelly
90	SU73016741	FLW			027		2	1		0		0					ST	38	Imp45 gravelly
91	SU73646740				0		2	2	57	~58		-53					DR	3B	Imp40 gravelly
_ 92	SU73806740				035		1	1	91	-24		-10	3B				DR	3A	Imp65 gravelly
93	SU72606730				058 0		2	1	128		106	-4	2				DR	2	Augd to depth
94	SU72706730				050 0		2	1	131		105	-5	2				DR	2	Prob stonier3a
95	SU72806730	CER			035 0	60	3	2	107	-8	104	-6	3A				DR	3A	Imp90 gravelly
	0120005200	050			0.70		2		0 7	20	~ .	10	20						7 . (0 11
96	SU72886732				030		2	1	87	-28 -33		-19	38				DR	3A 24	Imp60 gravelly
97	SU73006730				030 0		3	2	82			-22	3B				DR	3A 24	Imp65 gravelly
98 99	SU73106730 SU73306730			03	030 0 035	15	2 2	1 1	116 128		90 105	-20 -5	3A 2				DR DR	3A 2	Augd to depth
100	SU73506730		พ เม	03	0.0	20	4	3B	120	0	105	0	٤				WE	2 38	Augd to depth
	3073300730	FGR	м	03	00	J U	4	50		0		Ū					HC.	30	
01	SU72606720	CER					1	1	94	-21	103	-7	38				DR	3A	Imp70 gravelly
102	SU72706720		•		025 0	45	3	2	83	-32		-22	3B				DR	3A	Imp60 gravelly
103	SU72806720				020 0		1	1	67	-48		-43	3B				DR	3B	Imp50 gravelly
104	SU73006720				025		2 ·	1	71	-44		-38	3B				DR	3B	Imp55 gravelly
105	SU73106720						1	1	75	-40		-34	3B				DR	3B	Imp55 gravelly
							-		-								2		
106	SU73606720	PGR			030		2	1	115	0	112	2	3A				DR	2	Imp90 gravelly
07	SU72606710				030		2	1	64	-51		-46	4				DR	3B	Imp42 gravelly
08	SU72706710	FL₩			045 0	60	2	1	102	-13	107	-3	3A				DR	3A	Imp80 gravelly
109	SU72906710						1	1	55	-60		-55	4				DR	3B	Imp40 gravelly
10	SU73006710				025		2	1	113	-2		-16	3A				DR	3A	Waterlogged 55
111	SU73106710	PLO					1	1	64	-51	64	-46	4				DR	38	Imp50 gravelly
_112	SU73506710		W	03	0.0	80	2	2	137		116	6	2				WD	2	Imp110gravelly
13	SU72606702	FLW			065		1	1	153		107	-3	2				DR	2	Augd to depth
114	SU72706700				025 04	45	3	3A	127		104	-6					WE	3A	
115	SU72806700				025		2	1	59	- 56		-51					DR		Imp45 gravelly
16	SU72906700	CER			030		2	1	110	-5	83	-27	3A				DR	3A	Augd to depth
-117	SU72986702	ARA			015		2	1	106	-9	88	-22	3A				DR	3A	Wet at 60
_																			

.

LIST OF BORINGS HEADERS 30/10/96 WOKINGHAM DLP SH11,13,14

SAMP	LE	ASPECT			WET	NESS	-WH	EAT-	-P()TS-	м	REL	EROSN	FROST	CHEM	ALC	:
NO.	GRID REF	USE	GRDNT GLE	Y SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000	EX	P DIST	LIMIT		COMMENTS
118	SU72906690	PLO	025	060	3	2	128	13	104	-6	2				WD	2	Augd to depth
119	SU73006690	PL0	030	045	3	2	95	-20	94 .	-16	3A				DR	3A	Imp90 gravelly

. . page 4

•

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11,13,14

8					NOTTLES	PED			¢'	TONES		STRUCT/		SU8S	:			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT COL.	GLEY					CONSIST				TMP	SPL CALC	
0,4 1 20		TENTONE	002000	000	ABOIT	00111 0021						00,1010,				••••		
1	0-30	mcl	10YR42 00					6	0	HR	15							
	30-40	hcl	10YR52 00	75YR56	5 00 M		Ŷ	.0		HR	30			Ρ				Borderline c
-	40-55	msl	25Y 52 00				Ŷ	0		HR	20			M				Q iron pan
-			201 02 00					•	-									
16	0-28	omsl	10YR42 00					3	0	HR	12							
	28-46	scl	10YR43 53					0		HR	25	MDCSAB F	FR	м				Borderline msl
	46-64	ms	10YR64 00	10785	3 00 0		Y	0		HR	57			M				Wet sieved
	40-04 64-90	lms	10YR64 00				Ý	Ő		HR	50			M				Wet sieved
	90-120		25Y 62 00				Ý	ō		HR	30	F	FM		Y		Y	hat stated
	30-120	C	231 02 00	10/10.30	5 00 11		,	Ŭ	v		50	•					· .	
2	0-28	f Om	10YR42 00					2	٥	HR	5							
	28-60	mcl	10YR53 00	107856	5 46 C	00MN00	00 Y	0		HR	2			м				Borderline hcl
-	60-75	scl	10YR62 00			00.100	Ŷ	0		HR	2			M				Light scl
-	75-90	scl	25Y 62 00				Ý	Õ		HR	2			p			Y	Border sc; Impen90
	75-50	361	251 02 00	75110			•	Ť	Ť		-			•			•	bor dar bot impenso
2P	0-29	msl	10YR21 00					1	0	HR	5							
Ľ,	29-42	ms l	75YR34 00					0		HR	10	WKCSAB P	R	м				
	42-50	lms	75YR44 00					0		HR	10		м			Y		Iron Pan
	50-120	lms	75YR44 00					0		HR	55	-		P				Pit to 60
	00 120	1110	, 3 1111 3 5					•	Ĩ		••							
3	0-30	mcl	10YR42 00					4	0	HR	10							
	30-50	с	10YR62 00	10YR56	5 00 M		Y	0		HR	10			Ρ			Y	Very firm
-	50-60	c	25Y 62 00				Y	0		HR	25			Ρ			Y	Imp 60 gravelly
_		•																
38	0-30	msl	10YR42 00					4	0	HR	15							
•	30-50	scl	10YR43 00					0	0	HR	40	WKCSAB F	R	м				
	50-55	msl	10YR62 00					0	0	HR	60	WKCSAB V	/F	м				
	55-75	lms	10YR62 00					0	0	HR	60	WKCSAB V	/F	м				
	75-120	тs	10YR63 00					0	0	HR	60			м				
4	0-30	mcl	10YR42 00					2	0	HR	5							
	30-55	mcl	10YR63 00	10YR66	5 61 C		Y	0	0	HR	10			м				
-	55-70	hc1	10YR62 00	75YR58	3 00 M		Y	0	0	HR	15			Ρ			Y	Heavy scl
_																		
4P	0-28	msl	10YR43 00					2	0	HR	8							
	28-45	ms l	10YR53 00	10YR56	5 00 C		Y	0	0	HR	15	MDCSAB F	R	М				
	45-55	scl	25Y 63 53	75YR68	3 00 M		Y	0	0	HR	15	MDCPR F	M	P	Y		Y	
	55-80	с	25Y 51 00	75YR68	358 M		Y	0	0	HR	5	MDCPR V	м	Ρ	Y		Y	Borderline sc
	80-120	с	25Y 51 00	75YR68	358 M		Y	0	0	HR	15	MDCPR V	M	Ρ	Y		Y	
5	0-30	ms l	10YR41 42					3	0	HR	8							
	30-55	ms]	10YR52 00	10YR56	5 66 C	00MN00	00 Y	0	0	HR	15			М				
	55-70	msl	10YR52 62	10YR58	3 00 C	00MN00	00 Y	0	0	HR	25			м				
-	70-90	scl	25Y 62 00	10YR58	3 00 M		Y	0	0	HR	10			Ρ			Y	Heavy scl
	90-95	sc	25Y 62 00	10YR58	8 68 M		Y	0	0	HR	20			Р			Y	Imp 95 gravelly
					• .													
SP	0-16	mzcl	10YR41 00	10YR46	5 00 F			0	0	HR	1							Borderline mcl
1	16-40	hc1	25Y 52 62				Y	0	0		0	WKCSAB F			Y		Y	
	40-60	с	25Y 61 62	75YR68	3 00 M		Y	0	0		0	WKVCAB F	Μ	Ρ	Y		Y	Tending massive

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11,13,14

				M	OTTLES	S	PED				STO	NES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL			COL.	GLE								IMP SPL CALC	
												_	_				
6	0-25	mcl	10YR42 00					Y			Эн		5		0		Maria Charl
	25-60	hc1	10YR52 00					Y			Эн		10		P	Y	Very firm
	60- 80	с	10YR52 00	75YR56	00 M			Y	U) () HI	K I	0		Р	Y	
6P	0-25	msl	10YR44 43						1	(н	R	5				
	25-43	ms l	10YR44 54						0) (ы	R	5	MDCSAB F	R M		
	43-67	ms l	10YR53 00	75YR58	00 M			Y	0	. (о ні	R	5	MDCSAB F	RM		
	67-95	ms]	10YR53 00	75YR58	00 M			Y	0) () ні	R S	56		M		Wet sieved
	95-120	ms	10YR64 00	75YR58	68 M			Y	0	0	Эн	R 5	56		м		Q stones as above
-	0.00		10/012 00						~			0	•			•	
7	0-28	mc]	10YR42 00	100055	~ ~	~	04000	<u> </u>) ні		8				
	28-55	nnc]	10YR53 52				OMNOO) H		0		M		
	55-60	hcl	10YR52 53	TUYR58	56 C	U	OMNOO	00 Y	0	L L) Hf	к 4	0		м		Imp 60 gravelly
7P	0-29	ms]	10YR42 00						3		н	R	8				Wet sieved
	29-52	lms	10YR52 00	75YR46	00 F				0	0) н	R 5	8	v	FM		Wet sieved
	52-75	ms.	10YR52 00	75YR56	00 C	0	omnoo	00 Y	0	0) н	R 3	31	V	FM		Wet sieved
	75-95	ms	75YR68 58					Ŷ	0	0) ня	R 3	86	v	FМ		Wet sieved
	95-120	lms	05Y 62 00	75YR66	00 C			Y	0	0) HF	R 6	55	V	FM		Estimated stone
0	0.00		100041 42						-			n	0				
8	0-28	ms]	10YR41 42	100055	00 5				1) HF		8		м		
	28-35	msl	10YR53 00					v	0) HF) HF		25 10				Borderline scl
	35-60 60-70	ms) sc]	10YR53 00 10YR52 53					Y Y			, п.) НЕ		50 50		M M		Borderline msl
	00-70	201	101832 33	101630	00 14			'	0		. 114						border The list
8P	0-26	msl	10YR42 00						1	C) ня	R	5				
	26-35	ms]	10YR53 00	75YR56	46 C	0	OMNOO	00 Y	0	C) ня	R	5	MDCSAB F	RM		Borderline scl
	35-67	scl	25Y 63 00	75YR68	00 M	2	5Y 62	00 Y	0	0) HF	र	2	MOVCPR FI	4 P Y	Y	Heavy scl
	67-120	scl	25Y 63 00	75YR58	00 M	2	5Y 62	00 Y	0	0) HF	र	2	WKCSAB FI	4 P Y	Ŷ	Tending massive
9	0-28	ms 1	10YR41 42						0	0) ня	२ 1	0				
-	28-45	ms)	10YR52 00	10YR56	00 C			Y	-) HF		-		м		
	45-65	msl	10YR53 00					Ŷ) HR		0		м		i i
	65-70	ms 1	10YR58 00					Y			HR		0		м		Imp 70 gravelly
													_				
10	0-30	ms1 -	10YR41 00		~~ ~				1) HF		0				
	30-45	ms]	10YR53 00					Y) HF		0		M		
	45-55	msl T	10YR62 00				OMNOO		0				0		M		Mar
	55-75	lms	25Y 62 00				OMNOO) HR) HR		.0 :0		M P	Y	Very wet Border sc -v wet
	75-120	scl	25Y 51 61	731836	00 11	0	omnoo	00 7	U	0	1	()			F	Ŧ	border sc -v wet
11	0-30	ms]	10YR42 00						Ð	0)		0				
	30-50	mcl	10YR62 00	75YR58	00 C	10	0YR71	00 Y	0	0	l I		0		м		
	50-60	hc1	10YR62 00	75YR68	00 C			Y	0	0	1		0		Р	Y	
	60-95	c	25 Y62 00	75YR68	00 M			Y	0	0	I		0		Ρ	Y	Imp 95 gravelly
12	0-26	msl	10YR41 42						۵	0	HR	2 1	0				
	26-50	msi	10YR53 63	10YR56	58 C			Y			HR		5		м		Borderline scl
	50-70	ms l	10YR62 00					· Y	0		HR		5		M		Borderline scl
	70-90	scl	25Y 63 00					Ŷ	0		HR		5		Р	Y	Heavy scl
	90-100	ms 1	25Y 53 00					Ŷ	0		HR		0		м	Y	Imp 100 gravelly
										•							

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11, 13, 14

,

				MOTTLES	S PED			-STONES	S	STRUCT/	SUBS		
EAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT COL.	GLEY	>2	>6 LIT	н тот	CONSIST	STR POR IMP	SPL CALC	
	0 00		10/042 00				~	0.00	F				
13	0-30	ms]	10YR42 00	75YR56 00 C	10YR73	nn v	0	OHR OHR	5 8		м		
	30-50 50-75	mcl hel		75YR68 00 C	TUTK/S	ν γ	0 0	0	0		P	Y	Prob spl
	50-75 75-100	hcl		75YR68 00 C		Ý	0	0	0		P	Ŷ	FTOD SPI
		c		75YR68 00 M		Y	ō	-	ŏ		P	Y	
	100-110	sc		75YR68 00 M		Ý	0		0		P	Ŷ	
-	110-120	scl	101873-00	751808 00 14		т	U	U	U		r	f	
14	0-25	hc]	10YR42 00	10YR56 00 C		Y	0	0 HR	2				
	25-60	zc		75YR68 56 M		Ŷ	Ō		0		Р	Y	
-	20 00	20	201 01 00			•	-	-	-				
1 5	0-25	mcl	10YR43 00				1	ОHR	5				
	25-50	mcl		10YR56 00 C		Y	0	0 HR	15		м		
	50-120			75YR68 56 M		Y	0	OHR	2		Р	Y	
_													
16	0-30	ണടി	10YR42 00				0	0 HR	2				
	30-60	scl	10YR53 00	75YR58 00 C	10YR61 (00 Y	0	0 HR	5		м		Tending msl
	60-75	scl	10YR53 00	75YR58 00 C	10YR61 (00 Y	0	0 HR	10		Р	Y	Heavy scl
	75-90	lms	10YR62 00	75YR68 00 M		Y	0	0 HR	25		м		Clay lens, Imp 90
- 17	0-25	mcl	10YR42 00				0	0 HR	1				Imp 90 gravelly
-	25-35	hc1	10YR61 00	75YR46 00 C		Y	0	0	0		Р	Y	
	35-90	с	10YR62 00	75YR58 00 M		Y	0	0	0		Р	Y	
-													
18	0-25	നവി	10YR42 00	10YR56 00 C		Y	1	OHR	3				
	25-60	zc	25Y 61 00	75YR68 56 M		Y	0	0	0		₽	Y	
19	0-25	mc]	10YR43 00				1	OHR	5				
1	25-60	m¢]		10YR56 00 C	00MN00	00 Y	0		5		м		Borderline hcl
	60-120	с	25Y 51 00	75YR68 00 M		Y	0	0	0		Р	Y	
		_							•				
20	0-30	msì	10YR42 00				0	0 HR	2				
	30-50	mc]		10YR58 00 C		Y	0	OHR	0		M	.,	
-	50-65	scl		75YR58 00 C		Y	0	0	0		P	Y	Heavy scl
-	65-100	SC	10YR62 00	75YR58 00 M		Ŷ	0	U	0		P	Y	
20A	0-35	msl	10YR41 00				0	OHR	2				
204	35-42	msi msi	10YR41 00				0	0 HR	2		м		
_	42-65	scl		75YR46 00 C	10YR61 (00 V	0	0 HR	2		M		Borderline ms]
	42-05 65-75	hcl		75YR58 00 C		Ŷ	0	0 HR	2		P	Y	Prob spl
	75–100			75YR58 00 M		Ŷ	0	0 HR	2		P	Y	
	75-100	C C		751R56 00 M		,	Ŭ	U HK	C		r	I	
21	0-30	mcl	10YR42 00				0	0 HR	1				
	30-50	hc]		75YR46 00 C	10YR71 (00 Y	0		0		Р	Y	
	50-80	c		75YR58 00 M		γ	0	0	0		P	Y	
	80-85	c		75YR58 00 M		Ŷ	õ		õ		Р	Y.	
		-				·	-	-	÷				
22	0-30	mcl	10YR32 00				3	0 HR	12				
-	30-45	mcl		75YR56 00 C		Y		0 HR	20		м		Borderline hcl
	45-55	hc1		75YR58 00 C		Ŷ		0 HR	25		Р	Y	
-	55-90	с	10YR53 62	75YR58 00 M		Y	0	0 HR	25		Ρ	Y	
-	90-120	hc1	25Y 52 00	75YR58 00 M		Y	0	0 HR	25		Ρ	Y	Sandyish

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11,13,14

				MOTTLES	5	PED		-	\$1	TONES	;	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT	COL.	GLEY							MP SPL CALC	
	0.00		100041-00	10-016-00-0				2	~	00	2				
23	0-30 30-50	msl scl		10YR46 00 C 75YR46 00 C			Y Y	2 0		HR HR	2 1		м		Borderline mcl
	50-50 50-60	sci msl		10YR58 00 C			Ŷ	0		HR	2		M		boi der i me mot
	60-70	ากรา โภร	10YR71 00				, Y	ŏ		HR	10		M		Imp 70 gravelly
	00-70	1113					•	Ŭ	Ŭ		10				
24	0-25	ms 1	10YR43 44					1	0	HR	5				
	25-50	ms l	10YR54 44					0	0	HR	5		м		
	50-60	ms 1	25Y 52 00	75YR58 00 M			Y	0	0	HR	5		м		
	60-75	scl	25Y 52 00	75YR58 00 M			Y	0	0	HR	10		Ρ	Y	Heavy scl; Imp 75
25	0-24	mcl	10YR42 00	10YR46 00 F				0	0		0			•	
	24-45	mcl		10YR56 00 C			Y	0		HR	5		м		
	45-55	hcl		10YR58 00 C	C	00MN00	00 Y	0	0	HR	5		Ρ	Ŷ	
	55-80	с	25Y 53 51	10YR58 00 M			Y	0	0		0		Р	Y	
26	0-28	mc1	10YR41 00	10YR46 00 C			Y	0	0		0				
	28-50	mcl	25Y 41 00	10YR46 00 C			Y	0		HR	5		M		
	50-55	hcl		10YR46 00 M	Q	00MN00		0		HR	5		M		Q sp1
	55-120	с	25Y 53 51	10YR58 68 M			Ŷ	0	0		0		Р	Y	
27	0-28	ms]	10YR43 00					1	0	HR	8				
	28-60	scl	10YR64 53	10YR58 00 M			Y	0	0	HR	5		м		Borderline msl
	60-120	с	25Y 52 00	75YR58 00 M			Y	0	0	HR	5		Р	Y	
28	0-28	mcl	10YR42 00					0	0	HR	1				
20	28-45	scl		10YR56 00 F				0		HR	2		м		Tending msl
	45-80	sci		75YR56 00 C			Y	ō		HR	2		M		Tending ms1
	80-120			75YR56 00 M			Ŷ	Ō		HR	10		P	Ŷ	· · · · · · · · · · · · · · · · · · ·
		•						-	-						
29	0-30	msl	10YR43 00					1	0	HR	5				
	30-40	msl	10YR43 00					0		HR	10		M		
	40-70	ms1	10YR43 00					0	0	HR	20		М		Imp 70 gravelly
30	0-25	msl	10YR43 00					1	0	HR	5				
	25-45	ms1		10YR56 00 C			Y	0	0	HR	5		м		
	45-60	msl	10YR64 00	10YR58 00 C			Ŷ	0	0	HR	5		м		
	60-90	с	25Y 51 00	75YR58 00 M	0	OMN00	00 Y	0	0	HR	10		Ρ	Y	Imp 90 gravelly
31	0-25	mcl	10YR41 42	10YR46 00 C			Y	0	0	HR	3				
	25-36	mcl		10YR46 56 C			Ŷ	0		HR	5		м		
	36-80	c		10YR58 68 M			Ŷ	0	0		0		P	Y	
	80-100			10YR58 68 M			Y	0	0	HR	10		Ρ	Y	
				10.0000 00 0					•		~				
32	0-25	mcl		10YR56 00 C			Y Y	1	0 0		5 30		м		Sandwich
	25-35 35-40	mcl mol		10YR58 00 C 10YR58 00 M			Ŷ	0 0	0		30 50		M M		Sandyish Imp 40 gravelly
	J2-4Ų	mcl	101804 00	UU DCATUI			Ţ	0	U	IIK.	50		10		timp to graveriy
33	0-25	mc 1	10YR43 00					1	0	HR	5				
	25-40	hcl	10YR53 00	10YR56 00 C			۷	0	0	HR	5		м		Tending mcl
	40-55	с	25Y 52 00	75YR58 00 M			Y	0	0	HR	30		Ρ	Y	Imp 55 gravelly

.

34

35

36

37

39

39

40

41

---- PED ----STONES---- STRUCT/ SUBS DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0-25 10YR43 00 1 0 HR 5 ms l 0 HR 5 25-40 നവി 10YR54 44 0 М Slightly sandy 5 м 40-60 10YR63 00 10YR56 00 C 0 0 HR ms l Y 60-85 25Y 62 00 75YR68 53 M Y 0 0 HR 5 р Y Borderline sc scl 25Y 61 00 75YR68 00 M Y 0 0 HR 5 м 85-120 ms1 0-28 10YR43 00 0 HR 5 ms 1 1 10YR64 53 10YR56 00 C Y 0 0 HR 5 М 28-40 ms 1 10YR63 64 75YR58 00 M 0 0 HR 20 40-60 ms 1 Y м 60-120 С 25Y 51 52 75YR58 68 M Y 0 0 HR 2 P Υ. 10YR42 00 0-15 0 0 0 mzc] р 15-30 hc1 10YR61 00 75YR56 00 C Y 0 0 0 10YR61 00 75YR58 00 M 0 0 Ρ Y Imp 70 gravelly 30-70 ç Y Û 0-28 mc] 10YR43 00 1 0 HR 4 10YR53 00 10YR68 00 C 0 0 HR 3 М 28-45 mc1 Y 10YR53 00 10YR68 00 M 0 0 HR 45 М Imp 48 gravelly 45-48 Y mcl 10YR43 42 0 HR 15 Borderline lms 0-27 ms 1 0 10YR43_00 0 0 HR 25 м Borderline msl 27-45 lms 45-50 lms 10YR44 00 0 0 HR 50 м Imp 50 gravelly 0-30 10YR42 00 3 0 HR 10 ms 1 0 0 HR 10YR63 00 10YR46 00 C DOMNOO DO Y 40 м 30-55 ns l Borderline scl 0 HR 55-64 ms 1 10YR63 00 10YR46 00 C 00MN00 00 Y 0 45 м 64-120 scl 25Y 62 00 75YR56 00 M Y 0 0 HR 15 Ρ Y Borderline c 10YR42_00 6 0 HR 15 0-20 ms 1 10YR62 00 10YR46 00 C 00MN00 00 Y 0 0 HR 30 Borderline msl 20-35 scl М 35-70 25Y 62 00 10YR56 00 M 00MN00 00 Y 0 0 HR 5 р Y With fine sand hc1 10YR43 00 10YR58 00 C 0 Slightly gleyed 0-20 S 0 0 mzc] Slightly gleyed 20 - 4510YR54 00 10YR58 00 C S 0 0 0 м wcj.

p Q spl 45-60 hc1 10YR52 62 75YR58 00 C Y 0 0 0 Y 0 0 HR 50 М 60-70 hc1 10YR52 62 75YR58 00 C Y 10YR52 62 75YR58 00 M 0 0 HR 5 м Imp 85 gravelly 70-85 sc1 Y 42 0-23 ms 1 10YR42 00 0 0 HR 3 23-50 ms 1 10YR52 00 10YR56 00 C Y 0 0 0 М 50-70 10YR53 00 10YR58 00 M 00MN00 00 Y 0 0 0 М mc l p 0 0 Y 70-120 с 25Y 52 62 10YR58 00 M Y 0 0-25 ms 1 10YR43 41 0 0 HR 10 Borderline lms 43 Borderline lms 0 0 HR м 25-40 ms 1 10YR43 00 20 40-50 10YR44 00 0 HR 50 Μ Imp 50 gravelly lms 0 10YR42 43 0-28 **ຫຣ**່ ໃ 0 0 HR 5 44 28-45 10YR53 00 10YR56 00 C 0 0 HR 10 М Borderline scl ms 1 Y 45-55 10YR53 63 10YR58 00 M 0 0 HR 5 М Tending msl scl 00MN00 00 Y 25Y 53 00 75YR58 00 M 0 0 HR Ρ 55-80 с Y 5 80-85 25Y 51 61 75YR58 00 C Y Ó 0 HR 30 ρ ٧ Imp 85 gravelly с

55

56

0-25 mzc1

0-30 ms1

30-78 ms1

с

25-80

10YR51 00 10YR58 00 C

10YR42 00

10YR61 00 75YR46 00 M

10YR53 00 75YR46 00 C

					·										
program	: ALCO11			COMPL	ETE LI	ST OF PROFIL	E\$ 3	0/10,	/96	WOK 3	INGHA	M DLP SHI	1,13,14		page 6
													0,000		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	S PED CONT COL.								IMP SPL CALC	
45	0-30	msl	10YR42 0	0					1 0	HR	5				
	30-60	ຫຣ ໄ	10YR63 0	0 10YR4	6 00 C	00MN00	00	Y C	0 0	HR	15		м		
	60-90	ms]	10YR63 0	0 75YR4	6 00 C	000000	00	γ İ	0 0	HR	25		м		Very moist
	90-120	scl	25Y 62 0	0 75YR5	6 00 M		•	Y (0 0	HR	5		Ρ	Y	Heavy scl
46	0-10	mzcl	10YR42 0	0 75YR4	6 00 M		•	Y (0	HR	5				
	10-20	hzc1	10YR62 0	0 75YR5	6 00 M		•	y (0 0	HR	5		Р	Y	
	20-70	с	10YR61 0	0 75YR5	6 00 M	000000	00	Y (0 0	1	0		Ρ	Y	Very firm
47	0-20	mzcl	10YR43 0	b				(0 0	I	0				
	20-70	¢	10YR61 0		800 M	10YR71	00	y (0 0		0		Ρ	Y	
48	0-28	msl	10YR42 0	0					30	HR	10				
	28-50	ms)	10YR43 4						0 0		5		м		
	50-60	msl	10YR54 0		•					HR	5		м		
	60-65	lms	10yR54 5	3				C	0 0	HR	50		м		Imp 65 gravelly
49	0-28	ms 1	10yR41 42	>				2	2 0	HR	10				
	28-38	msl	10YR42 00						0		15		м		Borderline lms
	38-65	msl	10YR53 6		8 00 M		Ņ	Y C	-		10		м		Borderline lms
	65-72	ms l	25Y 62 00				١	y C) ()	HR	50		м		Imp 72 gravelly
50	0-25	msl	10YR43 00)				2	2 0	HR	8				
	25-47	msl	10YR53 63		6 00 C		١	y c	0 0	HR	5		м		
	47-120	с	25Y 63 6	10YR5	8 00 M		١	Y C	0	HR	5		Ρ	Y	Borderline scl
51	0-26	msl	10YR42 00)				c) 0	HR	5				
	26-60	scl	10YR53 52		6 00 C	00MN00	00 N		0		5		м		Borderline msl
	60-120	с	25Y 61 00	0 10YR6	8 00 M		١	Y C	0	HR	5		Ρ	Y	
52	0-28	ms }	10YR42 4	3				c) O	HR	5				
	28-55	നടി	10YR53 63	3 10YR5	8 00 C	00MN00	00 N	<i>i</i> 0	0 (HR	5		м		
	55-100	c	25Y 61 62	? 10YR5	8 68 M		١	Y C	0	HR	5		Ρ	Y	
53	0-30	msl	10YR42 00)				1	0	HR	10				Q lms
	30-50	ms 1	10yR63 00	10YR5	6 00 C	00MN00	00 N	<i>(</i>) 0	0 (HR	30		м		
	50-75	ms 1	10YR63 00) 10YR5	6 00 C	00MN00	00 N	<i>(</i>)	0	HR	50		Μ		
	75-120	hc1	25Y 62 00) 75YR5	6 00 M		١	<i>(</i>)	0	HR	10		P	Y	Very firm
54	0-25	mzcl	10yR42 00)				1	0	HR	5				
	25-50	mzcl	10YR52 00) 10YR5	6 00 C		١	r 0	0	HR	5		м		
	50-80	hzcl	10YR62 00) 75YR5	6 00 M		Y	r O	0	HR	2		Ρ	Y	Border c;Imp

Y 0 0

2 0 HR

00MN00 00 Y 0 0

00MN00 00 Y 0 0 HR

0

0

8

15

Ρ

М

Y

Q stonier as 7P Q stonier as 7P

•					OTTLES		DED			61	ONES		STRUCT/	SUBS			
CAMDLE	DEDTU	TEXTURE	COLOUR		ABUN		PED COL.						CONSIST		IND SDI	CALC	
SAMPLE	DEPTH	TEATURE	LULUUK	COL	ADUN	CONT	ωL.	ULET	24	>0	LII	101	0003131	JIK FOR	INF JEL	UALC	
57	0-28	msl	10YR41 42						5	0	HR	15					
<i>.</i> ,	28-55	ms l	10YR42 52						0		HR	15		м			Borderline lms
-	55-65	lms	10YR52 00						0		HR	20		м			
_	65-75	ไตร	10YR63 00	10YR58	00 M			Y	0	0	HR	15		м			Very wet
	75-90	ms	75YR58 00					Y	0	0	HR	40		M			Imp 90 gravelly
58	0-26	<i>เ</i> กรไ	10YR42 00						0	0	HR	8					
	26-35	mc l	10YR53 63	10YR66	5 00 C			Y	0	0	HR	5		M			
	35-45	hc1	10YR63 53	10YR68	00 C	00	MNOO	00 Y	0	0	HR	5		Р	Y		
	45-120	с	25Y 63 61	10YR58	8 00 M			Ŷ	0	0	HR	5		Р	Y	•	
59	0-25	msl	10YR42 00						3	0	HR	10					
_	25-50	msl	10YR54 53	10YR56	600 F				0	0	HR	10		м			
	50-65	msl	10YR53 63	10YR58	3 00 C)MN00		0	0	HR	10		M			
	65-95	mcl	10YR53 00	10YR58	3 00 M	00	MNOO	00 Y	0		HR	10		М			
	95-110	mcl	10YR63 00	10YR68	3 00 M			Ŷ	0	0	HR	40		М			Imp 110 gravelly
		_								•							
60	0-35	ms]	10YR42 00						1		HR	8					
	35-70	mcl	10YR52 00					Ŷ	0		HR	15		M	.,		
	70-100	hc l	10YR62 00	10YR56	00 0			Ŷ	0	U	HR	5		ρ	Ŷ		Imp gravly;firm
	0.15	1	10/042 00						0	~	HR	2					
61	0-15	mcl bel	10YR43 00	TEVDEO				Y	0		HR	30		м			Stony-prob not spl
	15-30 30-50	hcl hcl	10YR53 00 10YR61 00					Y	0		HR	2		P	Y		Stony-prob not spi
	50-50 50-80	hcl c	10YR61 00					Y	o	0	DK.	0		P	Ŷ		
	30-00	Ç		731740	00 11				v	Ŭ		Ŭ		•			
62	0-30	mzcl	10YR43 00						0	0		0					
	30-45	hc]	10YR34 00						0	0		0		м			
	45-60	hc1	10YR42 00	10YR58	3 00 C	00	MN00	00 Y	0	0		0		P	Ŷ		
-	60-90	с	10YR42 00	75YR46	00 M			Ŷ	0	0		0		Р	Y		Saturated
•																	
63	0-30	ms l	10YR42 00						6	0	HR	12					
•	30-45	ms 1	10YR43 00						0	0	HR	40		M			Imp 45 gravelly
-																	
64	0-23	ms 1	10YR41 42						5	0	HR	12					
	23-55	ms]	10YR53 63	10YR56	6 00 C			Y	0	0	HR	15		M			
	55-90	с	25Y 53 63	10YR58	00 M			Y	0	0	HR	10		Ρ	Y		Sandyish
	90-120	lcs	10YR53 00	10YR58	8 00 M			Y	0	0	HR	5		м			
									_	_	_						
65	0-28	ms 1	10YR41 42						2			10					
	28-55	msl	10YR63 62					Y	0		HR	5		M			0 1 4 1
	55-85	c	25Y 53 00					Y	0		HR	10		P	Ŷ		Sandyish
-	85-120	scl	25Y 63 00	75YR58	5 UU M			Y	0	U	HR	5		Р	Y		Borderline sc
6	0.25	anl	100043 00		•				2	n	uD	10					Borderline scl
66	0-25 25-45	mc]	10YR42 00 10YR44 54						3 0		HR HR	15		м			Border scl, Imp45
-	20-40	mcl	101844 54						0	U	111	10		T.			DOLOGI SCITTIINAS
67	0-10	fszl	10YR42 00						0	0	HR	10					Disturbed
	10-40	hcl	25Y 62 00	107859	100 м			Y		õ		50		ρ			V wet & gravelly
•	10 70		20, 02 00						~	•				-			

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11,13,14

				MOTTLES	PED			-STON	ES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT COL.	GLEY	Y >2	>6 LI	тн тот	CONSIST	STR POR IMP	SPL CALC	
68	0.20	1	10YR43 00				0	0 HR	10				Previous survey
00	0-30 30-55	mc] ຫວ່າ		10YR58 00 C	10YR61	00 Y			20		M		Frevious survey
	55-70	sc1		75YR58 00 C	ICTROT	γ	•	0 HR	35		M		Light scl; Imp70
	55 /0	301				•	Ũ	• • • •	••				
69	0-30	ms l	10YR43 00				11	0 HR	20				
	30-60	ms 1	10YR44 00				0	0 HR	35		м		
	60-120	msl	10YR44 00				0	0 HR	45		м		
70	0-30	ms 1	10YR42 00				2	0 HR	5				
	30-35	ms 1	10YR63 00	75YR46 00 C	00MN00	00 Y	0	0 HR	25		м	•	
	35-120	scl	25Y 62 00	75YR56 00 M		Y	0	0 HR	10		Р	Y	Heavy scl
71	0-28	ms]	10YR41 42				3	0 HR	10				-
	28-55	നട ി		10YR58 00 C		Ŷ		0 HR	15		м		Borderline scl
	55-65	៣sl	10YR53 52	10YR58 00 C		Ŷ	0	0 HR	40		м		Imp 65 gravelly
									•				-
72	0-40	msl	10YR42 00				1	0 HR	3				_
	40-55	msl		75YR46 00 C	004000	Y AD V	0	0 HR	5 10		M		Border mcl;Imp 70
	55-70	hc1	101803 00	75YR46 00 C	00MN00	UU Y	0	0 HR	10		M		Border mc1;1mp //
73	0-25	ms l	10YR42 00				12	3 HR	30				Borderline ms]
75	25-38	ms1	10YR44 00				0	0 HR	40		м		bor dur i find his i
	38-50	 ກຣ ໂ	10YR54 00					0 HR	60		P		Imp 50 gravelly
74	0-28	scl	10YR43 00				0	0 HR	5				Borderline msl
	28-42	scl	10YR54 53	10YR56 00 F			0	0 HR	15		м		
	42-45	ms 1	10YR64 00				0	0 HR	50		м		Imp 45 gravelly
75	0-30	mcl	10YR43 00				0	0 HR	5				Previous survey
	30-40	mcl	10YR43 53		•			0 HR	10		м		-
	40-50	mc]	10YR43 53				0	0 HR	25		м		Imp 50 gravelly
76	0-30	msl	10YR42 00					0 HR	10				-
	30-48	msl		75YR58 00 C				0 HR			M		6
	48-68	scl	10YR52 00	75YR56 00 C		Y	0	0 HR 0 HR	30 20		M M		Coarser sand Compact 100,Imp
	68-100	ms	101872 00				0	0 rik	20		11		
77	0-28	msl	10YR42 00				3	0 HR	12				-
.,	28-45	scl		10YR46 56 F				0 HR	10		м		
	45-50	msl	10YR44 00					0 HR	40		M		Imp 50 gravelly
													-
78	0-28	scl	10YR43 00				3	0 HR	12				
	28-42	scl	10YR44 54	10YR56 00 C		S	0	0 HR	20		м		Slightly gleyed 🛛 📕
	42-50	ms l	10YR56 00				0	0 HR	50		Р		No gleying apparent
													1
79	0-30	mcl	10YR43 00					0 HR	5				Q ms1
	30-45	scl		10YR58 00 C	00MN00			0 HR	2		м		Light scl
	45-60	hcl		10YR58 00 M	00MN00			0 HR	2		P _	Y	See 5P - sp1
	60-90	с	25Y 62 00	10YR68 00 M	00MN00	00 Y	0	0 HR	5		Ρ	Y	

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11, 13, 14

•

				MOT	TLES	- PED				-ST	ONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		BUN CON		GL					OT CONSIST		IMP SPL CALC	
80	0-25	mcl	10YR42 00						0	0		2			Previous survey
•	25-50	wc]	10YR52 00					Y	0	0		0	M		
	50-60	hc1	10YR62 00					Y	0	0		0	P	Ŷ	
	60-70	с	10YR62 00	75YR58 0	00 M			Y	0	0	I	0	Р	Y	Imp 70 gravelly
81	0-30	ms 1	10YR42 00						0	0	HR 1	n			Previous survey
0.	30-70	scl	10YR61 00	75YR58 0	00 C			Y	ō	0			м		Imp 70 gravelly
	30-70	301		731100 0				•	Ŭ	Ť.		•			1p /o grateriy
82	0-28	msl	10YR42 00						3	0	HR 1	0			
	28-38	hc1	10YR42 00	75YR46 0	00 C	00MN00	00	Y	0	0	HR 2	5	м		Q lighter see3P
	38-48	hc1	10YR53 00	75YR46 0	00 C	00MN00	00	Y	0	0	HR 4	0	м		As above; Imp48
		_								-		-			
83	0-35	ms 1	10YR42 00							0					See 1P
	35-60	scl	10YR54 00						0	0	HR 2	5	м		Imp 60 gravelly
84	0-28	msl	10YR32 00		•				7	0	HR 1	5			
04	28-40	sci	101R32 00						ó	0			м		Tending msl
	40-45	mcl	101R43 00						ō	0			P		Imp 45 gravelly
	40-45		101745 00						Č	Ŭ		•	,		Imp 45 graverty
85	0-30	ms 1	10YR43 00						0	0 1	HR	4			
	30-70	ms 1	10YR53 00	75YR58 0	00 C	10YR62	00	Y	0	0	I	0	м		
	70-80	с	10YR62 00	75YR58 0	0 C			Y	0	0	(D	Р		Qspl,I80gravelly
—															
86	0-25	ms 1	10YR31 00						20	5 I					
	25-40	lms	10YR31 00						0	0	HR 6	0	Ρ		Imp 40 gravelly
- 87	0-28		00YR42 00	754056 0	0 C			Y	0	0 1	10	5			Previous survey
	28-50	mcl	10YR52 00			00MN00			0	01			м		Sandyish
	20-50 50-70	mcl mcl	101R52 00			001-1100		Y	0	01			M		Sandyish; Imp 70
-	50-70	THC I	101852 00	751830 0				1	U	0 1	GIN 40	0	r.		Sandyrsn; thip /o
88	0-30	ms 1	10YR42 00						2	0 1	HR	8			
	30-40	msl	10YR53 00						0	0 1	HR 2	0	м		
-	40-50	mcl	10YR53 00						0	0 1	HR 4	D	м		Imp 50 gravelly
89	0-30	ms 1	10YR42 00							0 1)Qstonier
	30-50	hcl	10YR52 53		•				0	0 1			м) and sandier
	50-75	scl	10YR72 00						0	0 1	HR 4	0	м) as Pit 3
90	0-27	omsl	10YR21 00						16	3 1	HR 34	n			Borderline fszl
- 30	27-45	ໄຫຣ	10YR62 00	10VP66 0	0 C			Y	0	01			Р		Imp 45 gravelly
	27-43	1103		101,00 0				,	Ŭ			-	I		Tinp 40 graverity
91	0-30	mcl	10YR42 00	75YR46 0	0 C			Y	0	01	HR 1	5			Previous survey
	30-40	mcl	10YR53 00	75YR56 5	52 C			Y	0	0 1	HR 3	5	м		Imp 40 gravelly
92	0-35	ms1	10YR43 00							0 1		0			Previous survey
	35-65	mcl	10YR44 00	75YR46 0	10 C		:	S	0	01	HR	5	м		Imp 65 gravelly
• •••	0.25		100042 00						1	0 1		5			
93	0-25 25-58	msl msl	10YR43 00 10YR53 00						1 0	01		2	м		
	25-58 58-68	misi scì	10YR63 00	107050 0	0 C		,	Y	0	01		5	M		Light scl
	58-68 68-120		104R63 00					r Y		01			P	Y	Eight SCI
	00-120	-	101802 72	, 511(30/0				•	5	U 1		~		T	

				MOTTLES	PED		-	\$1	TONE	s -	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	•		GLEY							IMP SPL CALC	
				•										
94	0-25	ms]	10YR42 00)			2	0	HR	8				
	25-50	hc1	10YR43 00)			0	0	HR	10		м) Prob stonier
	50-72	msl	10YR63 00	75YR58 00 C		Y	0	0	HR	2		м) like Pit 1
	7 2 -120	с	10YR72 00	75YR56 00 M		Y	0	0	HR	5		P	Y	Firm
95	0-35	ms l	10YR42 00				1		HR	5				
	35-60	scl		75YR56 00 C		Y	0		HR	5		M -		Light scl
	60-78	hcl		75YR56 00 C		Y	0		HR	5		P	Ŷ	
	78-95	hc1	10YR63 00	75YR56 00 C		Y	0	0	HR	40		Р	Y	Q spl; Impen
96	0-30	msl	10YR42 00				1	٥	HR	8				
90	30-30	msi msi		, 10YR58 00 C		Y	0		HR	2		м) Prob stonier
	40-58	msi msi) 10YR58 00 C		Y	0		HR	2		M) like Pit 1
	40-38 58-60	C		75YR56 00 M		Ŷ	0		HR	10		P		Imp 60 gravelly
	30-00	C	101802 03	5 7 5 FK 50 00 FT		,	U	Ŭ	ш	.0		•		Tub oo diaverià
97	0-30	ms 1	10YR32 00	1			1	0	HR	5				
2,	30-45	msl		10YR56 00 C		Y	Ó		HR	15		м		
	45-65	scl		75YR56 00 C		Ŷ	Ō		HR	25		Ρ	Y	Border c; Imp
98	0-30	ms 1	10YR42 00)			3	0	HR	8				
	30-50	ms1	10YR53 64	10YR56 00 C		Y	0	0	HR	5		м		
	50-75	lms	10YR63 00	75YR68 00 C		Y	0	0	HR	5		М		
	75-90	с	25Y 52 00	75YR68 00 M		Y	0	0	HR	5		Р	Y	
	90-120	с	25Y 61 00	75YR46 68 M		Y	0	0	HR	10		Р	Y	
99	0-35	ms l	10YR32 00				3		HR	8				Previous survey
	35-60	ms)	10YR62 00	75YR58 00 C		Y	0		HR	5		M		
	60-80	msl		75YR56 00 M		Y	0		HR	2		м		
	80-120	las	05Y 62 00	75YR56 00 M		Y	0	0		0		м		1
	0.00			100050 00 0			~	~		2				
100	0-30	mcl		10YR58 00 C		Y	0		HR	2		0		Previous survey
	30-40	hc1		10YR58 00 M		Y	0		HR	2		Р Р	Y Y	Firm Vacu firm
	40-80	c		75YR56 00 M		Y Y		0		2		P	Ŷ	Very firm
	80-90	scl	101802 00	75YR56 00 M		T	U	0	ri k	15		r	1	Imp 90 gravelly
101	0-30	ms]	10YR42 00				1	0	HR	5				
101	30-60	scl	10YR53 00				0		HR	5		м		Borderline mcl
	60-70	scl	10YR53 00					0		25		м		Border mcl; Imp 70 (
							-							
102	0-25	ms l	10YR42 00				1	0	HR	3				
	25-45	scl	10YR62 00	10YR58 00 C		Y	0	0	HR	2		м		Borderline msl
	45-60	с	10YR72 00	75YR56 00 M		Ŷ	0	0	HR	10		Ρ	Y	Imp 60 gravelly
														l l
103	0-30	ns l	10YR42 00				١	0	HR	5				
	30-50	scl	10YR41 00				0	0	HR	40		м		Imp 50 gravelly
														l
104	0-25	msl	10YR42 00					0		10				
	25-40	ms]		10YR56 00 C		Y	0		HR	20		M		
	40-50	ms)		10YR56 00 C		Ŷ		0		30		M		The Eff. 1 11
	50-55	msl	10YR52 53	10YR56 00 C		Ŷ	0	0	HK	40		м		Imp 55 gravelly

					MOTTLES	5	PED		~	S	TONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL		CONT	COL.	GLEY					CONSIST	STR POR	IMP SPL CA	LC	
-		_							_								
105	0-30	ms]	10YR32 00						3		HR	10					
	30-45	ms1	75YR44 00						<u>ر</u> 0		HR	10		M			
_	45-55	msl	75YR44 00						0	U	HR	40		M		Imp 55 grave	Цy
106	0-30	fs1	10YR42 00						0	0	HR	5				Previous sur	vey
	30-70	mcl	10YR53 00	75YR5	6 00 M	(00MM00	00 Y	0	0	HR	5		м		Sandyish	•
	70-90	ms 1	10YR53 00	75YR5	8 00 M	(DOMNOO	00 Y	0	0	HR	40		м		Imp 90 grave	1 1 y
107	0~30	msl	10YR42 00						2	0	HR	10					
	30-42	mc1	10YR42 53	75YR4	6 00 C			Y	0	0	HR	10		M		Imp 42 grave	11y
108	0-30	ms 1	10YR42 00						1		HR	5					
	30-45	wcj	10YR44 00						0	0	HR	5		м		Sandyish	
	45-60	mcl	10YR53 00					Y	0		HR	5		M		Sandyish	
	60-80	с	25Y 51 00	75YR5	8 00 M			Y	0	0	HR	5		Р	Ŷ	Imp 80 grave	Пy
109	0.00	1	10YR42 00						2	^	HR	8					
109	0-28 28-40	msl msl	75YR54 00						0		HR	40		м		Imp 40 grave	11.
	20-40	10.5 1	731834 00						v	Ŭ	T IX					Tilb 40 Åi 846	. 19
110	0-25	nns 1	10YR41 00						2	0	HR	7					
•	25-55	msl	10YR62 00	75YR4	6 00 C			Ŷ	0	0	HR	2		м			
	55-120	lms	10YR61 00	75YR5	8 00 C			Y	0	0	HR	2		M		Waterlogged	
111	0-30	ms l	10YR32 00						3	0	HR	10					
	30-40	ms l	75YR44 32						0	0	HR	10		м			
	40~50	lms	75YR44 00						0	0	HR	40		м		Imp 50 grave	1 1y
		_							_							a .	
112	0-30	mcl	10YR43 00					Y	0		HR	2		м		Previous sur	<i>v</i> ey
	30→50	mc]	10YR53 00					Y	0		HR	2		M		Sandyish	
	50-68	mcl	10YR63 00 10YR63 00					Y Y	0 0		HR HR	2 2		M M		Sandyish Tending mcl	
	68-80 80-100	hc1	107R53 00					Y	0		HR	2 5		M P	Y	rending mor	
	100-110	c ms]	10YR72 00					Ŷ	0		HR	15		M		Imp 110 grave	
	100-110	102.1	101672 00	03163	0 00 14			T	U	Ű	T IX	15				Thip i to grave	5119
113	0-25	msì	10YR42 00						1	0	HR	5					
	25-45	mc]	10YR44 00						0	0	HR	5		м			
	45-65	ms 1	10YR54 00						0	0	HR	5		м			
	65-75	msl	10YR53 00	10YR6	8 00 C			Ŷ	0	0	HR	5		Μ			
	75-120	<i>m</i> ຣໄ	10YR53 00	75YR6	8 00 M			Y	0	0	HR	2		м			
114	0-25	mcl	10YR42 00						1		HR	5					
	25-45	mcl	10YR53 00					Ŷ	0		HR	5		M		.	_ 1
	45-70	с	10YR52 00					Y			HR	5		P	Ŷ	Borderline ho	21
-	70-120	с	10YR52 00	/5YR6	8 61 M			Y	0	0	HR	2		Р	Ŷ		
115	0-25	ms1	10YR42 00						2	n	HR	10					
	25-40	ms 1	10YR53 00	10YR5	5 00 C			Y	0		HR	30		м			
•	40-45	ms l	10YR53 00					Ŷ	ō		HR	40		M		Imp 45 grave	11y
									-	-	-	-				· · · ·	-

-

COMPLETE LIST OF PROFILES 30/10/96 WOKINGHAM DLP SH11,13,14

. . .

----STONES---- STRUCT/ SUBS ---- MOTTLES----- PED SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC UHR 5 Y 0 0HR 10 Y 0 0 0-30 ms1 10YR42 00 116 10YR53 00 75YR58 00 C М 30-60 lms 60-90 ms1 10YR52 00 75YR58 00 C Μ 90-120 ms 25 Y63 00 75YR58 00 C Y O O HR 2 Μ 117 0–15 msl 10YR42 00 3 O HR 10 Y O O HR 15-40 ms1 25Y 52 51 75YR46 00 M 10 Μ Y O O HR 40-60 ms1 25Y 52 51 75YR46 00 M 20 М 60-120 lms 25Y 51 00 75YR58 00 M Y O O HR 5 М 0-25 ms1 10YR42 00 2 0 HR 5 118 25-60 scl 10YR52 62 75YR58 00 C Y 0 0 HR 5 Μ Light scl 60-120 c 10YR61 00 75YR58 00 M 00MN00 00 Y 0 0 0 Р Y 3 0 HR 119 0–30 ms1 10YR41 00 8 Light scl 10YR52 00 10YR58 00 C 30-45 sc1 Y 0 0 HR 25 М Y 0 0 HR 10 45-80 c 25 Y62 00 75YR58 00 M ρ ΥĽ Ρ Y 0 0 HR 25 Y Imp 90 gravelly 80-90 c 25 Y62 00 75YR58 00 M