A1 NEWBURY LOCAL PLAN SITE 17: WHEATLANDS AGRICULTURAL LAND CLASSIFICATION ALC MAP AND REPORT MARCH 1994

NEWBURY LOCAL PLAN SITE 17: WHEATLANDS AGRICULTURAL LAND CLASSIFICATION REPORT

1.0 Summary

- 1.1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the Newbury District of Berkshire. The work forms part of MAFF's statutory input to the preparation of the Newbury Local Plan.
- 1.2 Approximately 101 hectares of land relating to Site 17, Wheatlands, Newbury was surveyed in February 1994. The survey was undertaken at a detailed level of approximately one boring per hectare. A total of 65 soil auger borings, 3 soil inspection pits and 14 topsoil stone content measurements were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land. These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long-term limitations on its use for agriculture.
- 1.3 Work was conducted by members of the Resource Planning Team in the Guildford Statutory Group.
- 1.4 At the time of the survey, the land use on the site was a mixture of permanent grass, rough grazing and cereals. Approximately one-half of the site falls into land use categories other than agriculture.
- 1.5 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading. This map supersedes any previous information for this site.

Table 1: Distribution of Grades and Subgrades

<u>Grade</u>	Area (ha)	% of Site	% of Agricultural Area
1 2 3a 3b 4	3.5 2.8 5.5 37.3 3.7	3.5 2.8 5.5 37.0 3.7	6.6 5.3 10.4 70.7 <u>7.0</u>
Urban Non-Agricultural Woodland Agricultural Buildings Open Water Not Surveyed	9.9 7.1 21.5 0.1 0.1 9.2	9.8 7.1 21.3 0.1 0.1 9.1	100 (52.8 ha)
Total area of site	100.7	100	

- 1.6 Appendix 1 gives a general description of the grades, subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur, the typical cropping range and the expected level and consistency of yield.
- 1.7 The majority of agricultural land surveyed has been classified as Subgrade 3b. Areas of Grades 1, 2, and 4 and Subgrade 3a are also present. Subgrade 3b land (moderate quality) is limited by soil wetness, topsoil stoniness and gradient. The higher flatter land

contains hard stones larger than 2cm in the topsoil which act to impede cultivation, harvesting and crop growth. Some mid-slope areas can be graded no higher than Subgrade 3b because of gradients between 7.5 and 9.5 degrees. The remainder of the land is classed as Subgrade 3b on the basis of poor drainage. Clay loam topsoils are underlain by slowly permeable subsoils at shallow depths. Land assessed as Grade 1 (excellent quality) comprises deep clay loams with no limitations to agricultural use. Land which is subject to a slight wetness limitation is classed as Grade 2 (very good quality). Land classed as Subgrade 3a (good quality) is restricted by soil wetness and topsoil stoniness. Profile characteristics are such that these limitations are less severe than for those assigned to Subgrade 3b. Land assessed as Grade 4 (poor quality) is subject to high groundwater and seepage, and is likely to be permanently waterlogged for much of the year, restricting agricultural use to seasonal grazing.

2.0 Climate

- 2.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 2.2 The main parameters used in the assessment of the overall climatic limitation are average annual rainfall, as a measure of overall wetness, and accumulated temperature, as a measure of the relative warmth of a locality.
- 2.3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met. Office, 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site. However, climatic factors do interact with soil factors to influence soil wetness and soil droughtiness limitations.
- 2.4 No local climatic factors such as exposure or frost risk affect the site.

Table 2: Climatic Interpolations

Grid Reference:	SU 447 645	SU 450 640
Altitude (m):	110	120
Accumulated Temperature :	1407	1369
(degree days, Jan-June)		
Average Annual Rainfall (mm):	75 8	768
Field Capacity (days):	169	171
Moisture Deficit, Wheat (mm):	100	98
Moisture Deficit, Potatoes (mm):	90	88
Overall Climatic Grade:	1	1

3.0 Relief

3.1 The highest land on the site occurs to the north and west of the reservoir. This land is virtually flat and lies at approximately 120-125 m AOD. The remainder of the site occupies sloping land. From the plateau the land falls to the west and south to altitudes of approximately 95-100 m AOD along the western and southern boundaries. To the north west of Lushy Gully and to the north of Andover Drove gradients of 7.5-9.5 degrees were measured using optical reading clinometers; this land can be graded no higher than Subgrade 3b. In the remainder of the site, neither gradient nor relief impose any restriction to land quality.

4.0 Geology and Soil

- 4.1 British Geological Survey (1971), Sheet 267, Hungerford, shows the survey area to be underlain by four different geological deposits. Land along the eastern site boundary, north of Enborne Grange, is mapped as plateau gravel and the mid-slope areas as Bagshot Beds. Reading Beds are indicated in the north-west corner of the site; the remaining lower-lying land as London Clay.
- 4.2 The published soil survey map, Soils of Berkshire (SSEW, 1975, 1:250,000) shows approximately two-thirds of the site as podzols/brown sands. These soils are described as 'well drained, stony sandy soils, commonly with a subsurface pan, in river-terrace gravel, associated with slowly permeable loamy over clayey soils in head over Eocene clay and occasionally with moderately well drained, loamy soils affected by high groundwater' (SSEW, 1975). The remainder of the site is mapped as stagnogley soils. These are described as 'clayey, or loamy over clayey soils, in Eocene clays and head with drainage impeded at moderate depths by an impermeable layer' (SSEW, 1975).
- 4.3 Detailed field examination found three broad soil types. Poorly drained profiles occur on the lower lying land and stonier profiles on the highest land. Deep profiles exhibiting no or a slight impedance to drainage occur on the mid-slopes of the site.

5.0 Agricultural Land Classification

- 5.1 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map.
- 5.2 The location of the soil observation points are shown on the attached sample point map.

Grade 1

5.3 Excellent quality agricultural land occurs south west of Lushy Gully. This land has no or very minor limitations to agricultural use. Profiles comprise medium clay loam topsoils over similar textured subsoils which can become heavier at depth. The soils are permeable, stoneless to very slightly stony and are typified by Pit 1. These soils hold good amounts of profile available water and are not droughty at this location. Consequently, this land is capable of producing consistent and high yields from a very wide range of agricultural and horticultural crops.

Grade 2

- 5.4 Very good quality agricultural land is found on the mid-slopes of the site. The land is limited by soil wetness and workability. Topsoils comprise medium clay loams, which range from being stoneless to slightly stony (0-5% flints > 2cm by volume; 0-10% total flints by volume). Similar textured gleyed upper subsoils overlie poorly structured clay horizons at approximately 65-95cm, placing these profiles into Wetness Class II. The interaction between these drainage conditions and topsoil textures at this site means that this land can be graded no better than Grade 2 because of minor restrictions on cultivations and flexibility of cropping and stocking.
- 5.5 Within this mapping unit free draining profiles with heavy clay loam topsoils also occur. Such land is prone to minor soil workability restrictions.

Subgrade 3a

5.6 Good quality land is limited by soil wetness and workability, soil droughtiness or

topsoil stoniness. The principal limitations are soil wetness and workability. Medium clay loam topsoils are underlain by similar textured upper subsoils and heavier textured lower subsoils. These profiles tend to be gleyed within 40cm but not slowly permeable until approximately 55-65cm, placing them into Wetness Class III. The interaction between these drainage characteristics and topsoil textures at this site means that the land is subject to restricted flexibility of cultivations, cropping and stocking. Land restricted by topsoil stoniness occurs on the higher flatter parts of the site. Medium clay loam topsoils contain between 11-15% flints larger than 2cm by volume which act to impede cultivation, harvesting and crop growth. Pit 2 typifies such soils. The remainder of land is restricted by soil droughtiness. Stoneless or very slightly stony medium clay loam topsoils overlie moderately stony to very stony loamy and clay subsoils, which contain between 25-50% total flints by volume. These profiles proved impenetrable to an auger at approximately 70-80cm. The restricted available water for crops in such profiles will tend to reduce the level and consistency of crop yields, and consequently this land can be graded no higher than Subgrade 3a.

Subgrade 3b

- 5.7 The majority of the agricultural land surveyed has been classified as Subgrade 3b, moderate quality. The key limitations are soil droughtiness, wetness, workability, topsoil stoniness and gradient.
- 5.8 The higher flatter land is limited by a combination of topsoil stoniness and soil droughtiness. Topsoils are moderately stony, containing between approximately 16-17% flints larger than 2cm by volume and between 25-35% total flints by volume. The high percentage of large flints acts to impede cultivation, harvesting and crop growth. These overlie similar textured subsoils which become heavier with depth. Subsoils tend to be moderately or very stony, containing between 30-40% total flints by volume. Such profiles proved impenetrable to an auger at varying depths, generally between 30-70cm, though shallower and deeper profiles also exist. The interaction between soil textures and profile stone contents at this site means that the amount of profile available water is also significantly restricted, reducing the level and consistency of crop yields.
- 5.9 Some of the mid-slopes have gradients of between 7.5 and 9.5 degrees. Such slopes, measured using an optical reading clinometer, restrict the range of farm machinery that may be safely and efficiently used. Such land can be graded no higher than Subgrade 3b.
- 5.10 The remaining Subgrade 3b, generally the lower lying land, is limited by soil wetness and workability. Medium and heavy clay loam topsoils overlie clay loam and clay subsoils. Profiles are either gleyed from the surface or below the topsoil and are slowly permeable from approximately 22-38cm. These profiles are typified by Pit 3 and are assigned to Wetness Class IV. The interaction between these drainage characteristics and topsoil textures at this site means that this land can be graded no higher than Subgrade 3b. The soil wetness limitation acts to reduce the flexibility of cultivations, cropping and stocking.

Grade 4

5.11 Land assessed as poor quality is restricted by severe soil wetness and workability restrictions. Medium and heavy clay loam topsoils directly overlie permeable and slowly permeable profiles. Given the high groundwater levels and extreme saturation of the land for much of the year the soils were considered to be Wetness Class V. The predominance of hydrophilic vegetation, such as rushes and sedges, across this land is indicative of long periods of waterlogging caused by the seepage of groundwater at the junction of two geological deposits. Such land is unlikely to benefit significantly from artificial drainage. As such it will present severe difficulties in terms of cropping and cultivations and will be best suited to seasonal grazing.

Other land categories

5.12 The Urban marked on the map is occupied by houses, a covered reservoir, a hotel and a school. The Non-Agricultural land shown includes a cricket ground, a playing field and scrubby land. The Woodland marked on the map consists of mature deciduous trees.

ADAS Ref: 0202/002/94 MAFF Ref: EL 02/00297 Resource Planning Team Guildford Statutory Group ADAS Reading

APPENDIX I

DESCRIPTION OF THE GRADES AND SUB-GRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft, fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land on the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.

Grade 3: Good To Moderate Quality Agricultural Land

Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in grades 1 and 2.

Sub-grade 3A: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Sub-grade 3B: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. the grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with very severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture: housing, industry, commerce, education, transport, religious buildings, cemeteries. Also, hard-surfaced sports facilities, permanent caravan sites and vacant land; all types of derelict land, including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture, including: private parkland, public open spaces, sports fields, allotments and soft-surfaced areas on airports/airfields. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply.

Woodland

Includes commercial and non-commercial woodland.

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses. Temporary structures (eg. polythene tunnels erected for lambing) may be ignored.

Open Water

Includes lakes, ponds and rivers as map scale permits.

Land Not Surveyed

Agricultural land which has not been surveyed.

Where the land use includes more than one of the above, eg. buildings in large grounds, and where map scale permits, the cover types may be shown separately. Otherwise, the most extensive cover type will be shown.

APPENDIX II

REFERENCES

- * British Geological Survey (1971), Sheet No. 267, Hungerford, 1:63,360.
- * MAFF (1988), Agricultural Land Classification of England And Wales: Revised guidelines and criteria for grading the quality of agricultural land.
- * Meteorological Office (1989), Climatological Data Sets for Agricultural Land Classification.
- * Soil Survey of England and Wales (1975), Bulletin No. 8, Soils of Berkshire
- * Soil Survey of England and Wales (1975), Soils of Berkshire, 1:250,000.

APPENDIX III

DEFINITION OF SOIL WETNESS CLASSES

Wetness Class I

The soil profile is not wet within 70cm depth for more than 30 days in most years.

Wetness Class II

The soil profile is wet within 70cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80cm depth, it is wet within 70cm for more than 90 days, but not wet within 40cm depth for more than 30 days in most years.

Wetness Class III

The soil profile is wet within 70cm depth for 91-180 days in most years or, if there is no slowly permeable layer within 80cm depth, it is wet within 70cm for more than 180 days, but only wet within 40cm depth for 31-90 days in most years.

Wetness Class IV

The soil profile is wet within 70cm depth for more than 180 days but not wet within 40cm depth for more than 210 days in most years or, if there is no slowly permeable layer within 80cm depth, it is wet within 40cm depth for 91-210 days in most years.

Wetness Class V

The soil profile is wet within 40cm depth for 211-335 days in most years.

Wetness Class VI

The soil profile is wet within 40cm depth for more than 335 days in most years.

(The number of days is not necessarily a continuous period. 'In most years' is defined as more than 10 out of 20 years.)

APPENDIX IV

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents: * Soil Abbreviations: Explanatory Note

* Soil Pit Descriptions

* Database Printout : Boring Level Information

* Database Printout : Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a database. This has commonly used notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA: Arable WHT: Wheat BAR: Barley CER: Cereals OAT: Oats MZE: Maize OSR: Oilseed rape BEN: Field Beans BRA: Brassicae POT: Potatoes SBT: Sugar Beet FCD: Fodder Crops LIN: Linseed

FRT: Soft and Top Fruit HRT: Horticultural Crops PGR: Permanent Pasture LEY: Ley Grass RGR: Rough Grazing SCR: Scrub CFW: Coniferous Woodland DCW: Deciduous Woodland HTH: Heathland BOG: Bog or Marsh

FLW: Fallow PLO: Ploughed SAS: Set aside OTH: Other

- 3. GRDNT: Gradient as measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in cm to gleying/slight gleying or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance.
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, an entry of 'Y' will be entered in the relevant column.

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC: Overall Climate AE: Aspect EX: Exposure FR: Frost Risk GR: Gradient MR: Microrelief

FL: Flood Risk TX: Topsoil Texture DP: Soil Depth CH: Chemical WE: Wetness WK: Workability

DR: Drought ER: Soil Erosion Risk WD: Combined Soil Wetness/Droughtiness ST: Topsoil Stoniness

Soil Pits and Auger Borings

 ${\bf 1.\ TEXTURE: soil\ texture\ classes\ are\ denoted\ by\ the\ following\ abbreviations.}$

S: Sand LS: Loamy Sand SL: Sandy Loam SZL: Sandy Silt Loam CL: Clay Loam ZCL: Silty Clay Loam SCL: Sandy Clay Loam C: Clay SC: Sandy Clay ZC: Silty Clay OL: Organic Loam P: Peat SP: Sandy Peat LP: Loamy Peat PL: Peaty Loam PS: Peaty Sand MZ: Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of prefixes.

F: Fine (more than 66% of the sand less than 0.2mm)

M: Medium (less than 66% fine sand and less than 33% coarse sand)

C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and sitty clay loam classes will be sub-divided according to the clay content.

M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40 VM: very many 40%+

4. MOTTLE CONT: Mottle contrast

F: faint - indistinct mottles, evident only on close inspection D: distinct - mottles are readily seen

P: prominent - mottling is conspicuous and one of the outstanding features of the horizon

5. PED. COL: Ped face colour

6. STONE LITH: One of the following is used.

HR: all hard rocks and stones MSST: soft, medium or coarse grained sandstone
SI: soft weathered igneous or metamorphic SLST: soft oolitic or dolimitic limestone
FSST: soft, fine grained sandstone ZR: soft, argillaceous, or silty rocks CH: chalk
GH: gravel with non-porous (hard) stones GS: gravel with porous (soft) stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

- 7. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:
- <u>degree of development</u> WK: weakly developed MD: moderately developed ST: strongly developed
- ped size F: fine M: medium C: coarse VC: very coarse
- ped shape S: single grain M: massive GR: granular AB: angular blocky SAB: sub-angular blocky PR: prismatic PL: platy
- 8. CONSIST: Soil consistence is described using the following notation:
- L: loose VF: very friable FR: friable FM: firm VM: very firm EM: extremely firm EH: extremely hard
- 9. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness.
- G: good M: moderate P: poor
- 10. POR: Soil porosity. If a soil horizon has less than 0.5% biopores > 0.5 mm, a 'Y' will appear in this column.
- 11. IMP: If the profile is impenetrable a 'Y' will appear in this column at the appropriate horizon.
- 12. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 13. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.
- 14. Other notations

APW: available water capacity (in mm) adjusted for wheat APP: available water capacity (in mm) adjusted for potatoes

MBW: moisture balance, wheat MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name : NEWBURY LP S17 WHEATLAND Pit Number : 1P

Grid Reference: SU44706425 Average Annual Rainfall: 770 mm

Accumulated Temperature: 1390 degree days

Field Capacity Level : 171 days

Land Use : Permanent Grass

Slope and Aspect : degrees

HORIZON TEXTURE COLOUR STONES >2 TOT. STONE MOTTLES STRUCTURE 0- 35 MCL 10YR43 00 0 0 35- 80 MCL - 10YR44 00 0 MDCSAB 0 80-120 10YR53 00 MCL 0 0 С MDCSAB

Wetness Grade : 1 Wetness Class : I

Gleying :080 cm SPL : No SPL

Drought Grade: 1 APW: 157mm MBW: 59 mm

APP: 119mm MBP: 32 mm

FINAL ALC GRADE : 1
MAIN LIMITATION :

SOIL PIT DESCRIPTION

Site Name: NEWBURY LP S17 WHEATLAND Pit Number: 2P

Grid Reference: SU44906417 Average Annual Rainfall: 770 mm

Accumulated Temperature: 1390 degree days

Field Capacity Level : 171 days

Land Use : Permanent Grass

Slope and Aspect : degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	MOTTLES	STRUCTURE
0- 30	MCL	10YR42 00	11	16		
30- 50	MCL	25Y 64 00	0	27	С	
50- 75	С	25Y 63 00	0	20	С	
75- 85	SC	25Y 63 00	0	15	С	
85-120	LMS	25Y 62 00	0	15	С	

Wetness Grade : 2 Wetness Class : II

Gleying :030 cm SPL : No SPL

Drought Grade : 2 APW : 109mm MBW : 11 mm

APP: 96 mm MBP: 9 mm

FINAL ALC GRADE : 3A

MAIN LIMITATION: Topsoil Stoniness

SOIL PIT DESCRIPTION

Site Name: NEWBURY LP S17 WHEATLAND Pit Number: 3P

Grid Reference: SU44976482 Average Annual Rainfall: 770 mm

Accumulated Temperature: 1390 degree days

Field Capacity Level : 171 days

Land Use : Permanent Grass Slope and Aspect : 03 degrees S

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	MOTTLES	STRUCTURE
0- 25	MCL	10YR41 00	0	0	С	
25- 36	MCL	10YR52 00	0	0	M	MDCSAB
36- 70	С	10YR52 00	0	0	M	MDCAB

Wetness Grade : 3B Wetness Class : IV

Gleying : 0 cm :036 cm

Drought Grade: 3A APW : 95 mm MB₩ : -3 mm

APP: 107mm MBP: 20 mm

FINAL ALC GRADE : 38 MAIN LIMITATION : Wetness program: ALCO12

LIST OF BORINGS HEADERS 26/04/94 NEWBURY LP S17 WHEATLAND

SAM	PLE	A	SPECT			WET	NESS	-WHI	EAT-	-P0	TS-		M. REL	ı	EROSN	FF	ROST	CHEM	ALC	
NO.	GRID REF			GRDNT	GLEY SPL					AP		DI	RT FL	.00D		EXP	DIST	LIMIT		COMMENTS
1	SU44606480		_	01	0 032	4	3B		0		0							WE		SPL 32; HCL TS
_	A SU44706477		W	01	0 038	4	3B		0		0	_						WE		SPL 38; HCL TS
	P SU44706425				080	1	1	157		119		1						CT	1	TOPOGLI CTOUCE
	S SU45106470				005				0		0							ST		TOPSOIL STONES
2	SU44506470	PGR	N	02	065	1	1	129	31	113	26	1							1	IN 3B UNIT
_	P SU44906417	DCD.			030	2	2	109	11	06	9	2						ST	34	TS SIEVED, 10S
_	S SU44926465				030	2	2	103	0	90	0	2						31	JA	TOPSOIL SIEVED
	SU44606470		u	04	0 035	4	3B		0		0							WE	38	SPL 35; HCL TS
_	P SU44976482			03	0 035	4	3B		0		0							WE		SPL 36; MCL TS
	S SU44976455		•	00	0 000	7	-		0		ō							ST		TOPSOIL STONES
									_		•									
- 4	SU44706470	PGR	s	02	0 028	4	3B		0		0							WE	3B	SPL 28; HCL TS
_ 4	S SU45106450	PGR							0		0							ST		TOPSOIL STONES
5	SU44776472	PGR	S	02	0 030	4	3B		0		0							WE	3B	SPL 30; MCL TS
5	S SU44806450	PGR							0		0									TOPSOIL SIEVED
6	SU45106470	PGR				1	1	72	-26	81	-6	3B						ST	38	TS SIEVED, 1S
6	S SU44906450	PGR							0		0									TOPSOIL SIEVED
7	SU44506460	PGR	N	04	022 022	4	3B		0		0	ЗА						WE	3B	SPL 22; HCL TS
	S SU44836422								0		0							\$T	3B	TOPSOIL STONES
	S SU44956422								0		0							ST	3B	TOPSOIL STONES
— 9	S SU44856419	PGR							0		0							ST	3B	TOPSOIL STONES
.											_									
	S SU44906417						_		0		0		•						_	TOPSOIL SIEVED
	SU44926465				030 080	2	2	149		125	38	1						ME	2	TS SIEVED, 2S
	S SU44786412								0	00	0							ST ST	3A 3A	TOPSOIL STONES TS SIEVED, 3S
	SU44956455 SU44866408					1	1	141	43 0	98	11	1						ST	3B	TOPSOIL STONES
12	3 3044666408	Puk							U		U							31	36	TOPSOIL STORES
13	S SU44956410	PGR							0		0									TOPSOIL SIEVED
	SU44526450		N	04	0 033	4	3B		0		ō							WE	3B	SPL 33; C TS
•	S SU44856403		•••	• .		•	•••		ō		0							ST	3B	TOPSOIL STONES
	SU44706450		s	04	035 035	4	3B		0		0							WE	3B	SPL 35; HCL TS
	SU44806450			04		1	1	154	56	116	29	1							1	TS SIEVED, 5S
5																				
18	SU44906450	PGR			065 065	2	2	138	40	115	28	1						WE	2	TS SIEVED, 6S
20	SU45106450	PGR				1	1	24	-74	24	-63	4						DR	3B	IMP 20; RE 4S
24	SU44806440	PGR				1	2	156	58	118	31	1						WK	2	
29	SU44606430	PGR			0 065	3	3A		0		0	1						WE	3A	SPL 65; MCL TS
3 0	SU44706430	PGR				1	1	157	59	119	32	1							1	
3 1					020 020	4	3B		0		0							WE		SPL 20; HZCL TS
_ 35					055 055	3	3A		0			1						WE		SPL 55; MCL TS
36	SU44606420					1	1	155		117	30								1	
37						1	1	164		117	30								1	
_ 38	SU44806420	PGR	NW	02	085 085	1	1	120	22	94	7	2						ST	38	TS STONE, 7S
	L CHAACECASO	~~					•	60	20	70	10	20						Ст	30	TO CTEVEN OC
	\$U44856419					1	1	69 71	-29		-12 16							ST Dr		TS SIEVED, 9S IMP 50; RE 10S
39	SU44906420	ruk				1	1	71	-27	/1	-16	35						DK	JA	110 JU; RE 103

SAMP	LE	A	SPECT				WETI	NESS	-WH	EAT-	-P0	TS-	М	I. REL	EROSN	FROS	T	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	6	EXP	DIST	LIMIT		COMMENTS
39 A	SU44956422	PGR			025		2	2	50	-48	50	-37	38					ST	3B	TS SIEVED, 8S
40	SU44976420	PGR					1	1	91	-7	100	13	3A					DR	3 A	IMPEN 70; WET
43	SU44506410	PGR	SW	02	036	036	4	3B		0		0						WE	3B	
44	SU44606410	PGR			030		2	2	164	66	118	31	1					WE	2	GLEY 30
45	SU44706410	CER	W	01	095	095	1	1	145	47	117	30	1						1	SPL 95
46	SU44806410	CER	W	03	035	035	4	3B		0		0						WE	3B	SPL 35; MCL TS
# 46A	SU44786412	PGR					1	1	68	-30	70	-17	3B					DR	38	IMP 55; TS 11S
47	SU44906410				055	055	3	ЗА		0		0						WE	3A	SPL 55; MCL TS
47A	SU44956410	PGR			065	065	2	2	116	18	104	17	2					WE	2	TS SIEVED, 13S
48	SU45026412	PGR			0	020	4	3B		0		0						WE	38	SPL 20; C TS
•																				
50	SU44506400	PGR			0	035	4	3B		0		0						WE	3B	SPL 35; HCL TS
51	SU44606400	PGR			0	025	4	3B		0		0						WE	38	SPL 25; HCL TS
52	SU44706400	PGR	W	02	0	025	4	3B		0		0						WE	3B	SPL 25; HCL TS
5 3	SU44806400	PGR					1	1	141	43	107	20	1						1	IN DIP
54	SU44906400	PGR			030	030	4	3B		0		0						WE	3B	SPL 30; MCL TS
55	SU44806394	CER	W	03	027		3	3A	81	-17	81	-6	3A					WD	ЗА	IMPEN 50; SANDY
	SU44506390	PGR	S	01	0	027	4	3B		0		0						WE	3B	SPL 27; HCL TS
58	SU44606387	PGR			0	030	4	3B		0		0						WE	38	SPL 30; MCL TS
59	SU44676387	PGR	S	01	0	030	4	3B		0		0						WE	38	SPL 30; MCL TS
62	SU44976394	PGR	SE	03	035		2	2	127	29	119	32	2					WE	2	SANDY LENSES
_																				
64	SU44406380	PGR	E	01	0	030	4	3B		0		0						WE	3B	SPL 30; MCL TS
65	SU44506380	PGR			0	020	4	3B		0		0						WE	38	SPL 20; MZCL TS
66	SU44606380	PGR			0	028	4	3B		0		0						WE	3B	SPL 28; MCL TS
67	SU44676380	PGR			0	035	4	3B		0		0						WE	3B	SPL 35; MCL TS
70	SU44976482	PGR	SE	03	0	028	4	3B		0		0						WE	3B	SPL 28; MCL TS
7 3	SU45306380	RGR	Ε	04	025	095	2	2	148	50	117	30	1					WE	2	
74	SU45406380	RGR	Ε	03	025	025	4	3B		0		0						WE	38	SPL 25; MCL TS
75	SU44406470	PGR	W	01	0	028	4	3B		0		0						WE	3B	VERY WET TS
_ 76	SU44506470	PGR	N	01	028	028	4	3B		0		0						WE	38	SPL 28; MCL TS
81	SU44996472	PGR	SE	02	0	030	4	3B		0		0						WE	38	
83	SU45206370			02	025		4	38		0		0						WE		SPL 25; WET
84	SU45306370			03	000		4	3B		0		0						WE	38	SEEPAGE
85	SU44406460			01		028	4	38		0		0						WE	38	SPL 28; MCL TS
86	SU44506460			01	028		3	3A		0		0						WE	38	SPL 38; MCL TS
■ 92	SU45216360	PGR	NE	03	070	070	2	2	119	21	117	30	2					WE	2	Q WC3 GRADE 3A
93	SU45306360			04	0		2		95	-3	95	8	3A					DR		IMPEN 77
94	SU44906450			02		065	4	3B		0		0						WE	38	WT 40 - WC IV
95	SU44996450			03		025	5	4		0		0						WE	4	RUSHES
96	SU45106450		S	03		030	5	4		0		0						WE	4	RUSHES
99	SU45496450	PGR			0	060	3	3 A		0		0						WE	3 A	
•																				

•					OTTLES	5	PED			-ST	ONES-		STRUCT/	SUBS	3			
SAMPLE	DEPTH	TEXTURE	COLOUR										CONSIST			IMP S	PL C	ALC
1	0-32	hcl	10RY41 00	10YR46	00 C			Υ	0	0		0						
	32-48	hc1	10YR63 00	10YR56	00 M			Y	0	0		0		Р	Υ		Y	
_	48-80	С	25Y 53 00	10YR58	3 00 M			Y	0	0		0		Р	Y		Y	
•																		
1A	0-38	hc1	10YR41 00	10YR46	5 00 C			Y	0	0		0						
•	38-70	С	10YR51 52	75YR56	5 00 M			Y	0	0		0		Р			Y	
_																		
1P	0-35	mcl	10YR43 00							0		0						
8	35-80	mc]	10YR44 00							0			MDCSAB F					
	80-120	mc1	10YR53 00	10YR56	3 61 C			Y	0	0		0	MDCSAB F	R M	Y			
18		_	10,010.00						15	_		20						
18	0-25	mc]	10YR42 00						15	U	HK	30						
•	0.33	7	10/043 00						٥	0		0						
a 2	0-32	mcl	10YR43 00							0		0		М				
	32-50	mcl	10YR44 00 10YR63 00	10VD66						0		0		M				
_	50-65 65-120	ms] lms	101R63 64					v	0			0		M				
•	03-120	IIII	IUTKOS OT	101100	, 00 0			•	Ü	·		·		• •				
2P	0-30	mc1	10YR42 00						11	0	HR	16						
	30-50	mc1	25Y 64 00	75YR56	5 00 C			Υ	0			27		М				
_	50-75	c	25Y 63 00					Υ		0		20		м				
	75–85	sc	25Y 63 00					Υ		0		15		М				
	85-120	lms	25Y 62 00					Υ	0	0	HR	15		М				
28	0-25	mcl	10YR43 00						5	0	HR	10						
3	0-35	hc1	10YR41 42	10YR46	5 00 C			Υ	0	0	HR	2						
6	35-40	С	10YR41 51	10YR46	5 00 M			Y	0	0		0		Р	Y		Y	
l	40-80	С	10YR51 53	75YR56	5 00 M		00MN00	00 Y	0	0		0		Ρ	Υ		Υ	
■ ^{3P}	0-25	mcl	10YR41 00					Y		0		0						
g sr	25-36	mcl	10YR52 00					Υ					MDCSAB F					
_	36-70	С	10YR52 00	10YR58	3 00 M			Y	0	0		0	MDCAB F	МР	Υ		Y	
		_								_								
3S	0-25	mc1	10YR42 00						12	U	MK	20						
	0.00		000 43 00	7EVD44	- 00 0			v	^	0		0						
_ 4	0-28	hc1	25Y 41 00 10YR51 52					Y	0			0		В	Υ		Υ	
	28-70	С	101851 52	TOTRO) UU FI			7	U	U		U		r	1		•	
48	0-25	mc1	10YR42 00						17	n	HR	35						
43	0-23	112	101K42 00						• •	Ū		-						
5	0-30	mel	10YR32 42	10YR56	5 00 C			Υ	0	0		0						
ľ	30-70	c	10YR41 00					Y		0	HR	3		р	Υ		Υ	
	00 /0	Ū	1011(11 04	, •														
5S	0-25	mc1	10YR43 00						0	0	HR	5						
	 -	=																
- 6	0-25	mc1	10YR42 00						15	0	HR	30						
	25-55	mc1	10YR43 00						0	0	HR	35		M				
	55-70	mc1	10YR43 00						0	0	HR	35		М				IMPEN 70
_																		

				MC	TTLES		PED			-STONES	S	STRUCT/	SUBS	5			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A	BUN	CONT	COL. (GLEY	>2	>6 LIT⊦	TOT I	CONSIST	STR	POR :	IMP :	SPL CALC	
68	0-25	mcl	10YR42 00						3	0 HR	5						
7	0-22	hc1	10YR43 00	10VD46	56 F				0	0	0						
_ ′	22-70	C	25Y 52 53					Υ			0		Р	γ		Y	
78	0-25	mcl	10YR42 00						17	0 HR	30						
88	0-25	mcl	10YR32 00						16	0 HR	25						
98	0-25	mcl	10YR43 00						16	0 HR	30						
108	0-25	mcl	10YR42 00						11	0 HR	16						
_ 11	0-30	mcl	10YR43 00						5	0 HR	10						
	30-45		10YR52 00	10YR58	61 C			Υ			0		М				
	45-80		10YR52 00					Υ	0	0	0		М				
	80-110	C	10YR62 00	10YR58	61 M			Y	0	0	0		Р	Y		Y	
118	0-25	mcl	10YR43 00						13	0 HR	25						
12	0-30	mc1	10YR42 00						12	0 HR	35						
	30-50	mcl	10YR54 00						0		0		М				
	50-95	msì	10YR56 00						0	0	0		М				
	95-120	scl	10YR56 00						0	0 HR	5		М				
128	0-25	mcl	10YR42 00						15	0 HR	25						
138	0-25	mcl	10YR43 00						3	0 HR	15						
14	0-33	c	25Y 41 00	10VP58	00 C			Υ	0	n	0						
, · ·	33-70		25Y 52 51			(00MN00 00			=	0		Р	Y		Y	
148	0-25	mcl	10YR42 00						16	0 HR	30						
16	0.35	h.a.1	25V 42 00						^	^	_						
16	0-35 35-60	hcl c	25Y 42 00 25Y 62 00	100050	00 M			Υ	0		0		Ρ	v		Y	
	33-00	C	231 02 00	101130	00 M			1	Ü	U	·		Г	T		'	
17	0-35	mcl	10YR43 00						0	0 HR	5						
	35-60	mcl	10YR44 00						0	0	0		М				
	60-120	hcl	10YR56 00						0	0	0		М				
18	0-35	mcl	10YR42 00						3	0 HR	5						
	35-65	hc1	10YR54 42						0	0	0		М				
_	65-120		25Y 52 00	75YR 58	M 00			Y	0	0	0		P	Υ		Υ	
20	0-20	mcl	10YR42 00						17	O HR	35						IMPEN 20
n 04	0.20	ha1	100042-00	10VPF6	00 5				0		^						
24	0-29 29-45	hcl hcl	10YR43 00						0	0	0		ш				
•	45-120	mcl	10YR44 00						0	-	0		M M				
1	- ·				- 				-	-	-		••				

1				MOTTLES	PED			-STONE:	S STRL	JCT/	SUBS	3		
SAMPLE	DEPTH	TEXTURE	COLOUR										MP SPL CALC	
							_		_					
29	0-40	mc]		10YR58 00 C		Y	0		0		_		V	
	40-65 65 120	mcl hal		10YR58 61 C		Y Y	0	0	0			Y	Y	
_	65–120	hcl	101K4Z 00	75YR58 51 M		7	U	U	0		М			
30	0-35	mcl	10YR44 00				0	0	0					
•	35-70	mc1	10YR54 00				0	0	0		М			
_	70-120	hc1	10YR56 00				0	0	0		М			
31	0-20	hzcl	10YR43 00				0		0					
	20-55	ZC	25Y 63 00	75YR58 61 M		Y	0	0 HR	5		Р	Y	Υ	
35	0-35	mcl	10YR42 00				0	0	0					
•	35-55	mc1	10YR43 00				0	0	0		M			
	55-70	hc1		10YR58 00 C		Υ	0	0	0		Р	Υ	Y	
	70-120	С	25Y 62 00	10YR58 61 M		Υ	0	0	0		Р	Y	Y	
36	0-35	mc1	10YR42 00					0 HR	1					
	35–120	mc1	10YR56 44				0	0 HR	2		М			
37	0-35	mcl	10VP42 00	10YR56 00 F			n	0 HR	2					
, B	35-55	hc]	10YR43 56	1011100 00 1			0		2		М			
	55-90	hcl	10YR56 00				0	0 HR	1		М			
	90-120	fs1	10YR54 00				0	0	0		М			
•														
38	0-35	mc1	10YR43 00					0 HR	35					
•	35-48	mc1	10YR43 56				0	0 HR	5		M			
•	48-85 85-120	hc1	10YR56 00	75YR56 00 C		Υ	0	O HR O HR	10 5		M P	Υ	Υ	
	05 120	C	231 03 00	731130 00 0		•	Ū	0 1110	J		•	•	•	
38A	0-25	mc1	10YR43 00				16	0 HR	30					
1	25-40	mcl	10YR56 00				0	0 HR	40		М			
	40–70	scl	10YR54 00				0	O HR	40		М			
	0.00	_						0 UD	16					
39	0-36		10YR42 00					0 HR	16 25		м			IMPEN 50
	36-50	msl	10YR56 00				U	0 HR	25		М			IMPEN 30
39A	0-25	mc1	10YR32 00				15	0 HR	25					
	25-40	sc1	10YR52 54	10YR58 00 C		Υ	0	0 HR	35		М			IMPEN 40
40	0-30	mc1	10YR42 00					0 HR	5					
ì	30–70	mc1	10YR43 00				0	0 HR	25		М			
43	0-36	mc1	10YR43 00				0	0	0					
43	36-70	hc1		10YR56 00 M		Υ	0		0		Р	Υ	Y	
	70-120			10YR58 68 M		Y	0		0		P	Ý	Y	
44	0-30	mc1		10YR56 00 F				0	0					
	30-40	mcl		10YR46 00 C		Y		0	0		M			
	40-65	mc1		10YR46 00 C		Y		0	0		M			
	65-95 95 120	mcl fol		10YR56 00 C		Y Y	0	0	0		M M			
	95–120	fsl	101833 00	10YR58 00 M		T	U	0	0		ri .			

					MOTTLES		PED			-ST	ONES-	;	STRUCT/	SUBS	,			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN								CONSIST			IMP	SPL (CALC
45	0-35	mc1	10YR42 00						0	0 1	НR	3						
	35-60	mcl	10YR43 00						0	0 1	⊣R	2		М				
-	60-80	mzcl	10YR44 00						0	0 1	⊣R	2		M				
•	80-95	mzcl	10YR44 54						0	0 1	HR '	15		M				
}	95–120	C	10YR53 00	75YR5	6 00 M			Y	0	0		0		Ρ			Y	
46	0-35	mcl	10YR43 00						0	0	HR	10						
	35–80	С	25Y 53 00	75YR5	8 00 M			Y	0	0	HR	10		Р	Υ		Y	
46A	0-30	mc1	10YR43 00							0		25						
1	30-55	hc1	10YR52 00						0	0 1	HR :	30		M				
47	0-35	mcl	10YR42 00							0		15						
	35-55	mcl	10YR43 00						0	0 1	HR	5		M				
	55-85	hc1	10YR52 62					Υ	0	0 1	HR	5		Þ	Υ		Y	
•	85-120	mcl	10YR72 00	10YR6	6 76 M			Υ	0	0 1	HR	5		M				
47A	0-30	mc1	10YR43 00						7	0 1	HR	15						
J	30-65	mc1	10YR54 00						0	0 1	HR	10		М				
	65–75	sc1	10YR51 00					Υ				10		Р	Υ		Υ	
1	75–100	sc	10YR62 00	10YR5	8 61 M			Y	0	0 1	HR	10		Р	Y		Y	
48 48	0-20	С	10YR42 00	10YR5	6 00 C			Υ		0 (5						
	20-60	С	25Y 52 00	10YR5	8 00 M			Y	0	0	HR	10		Ρ			Υ	
	60-65	С	25Y 52 00	10YR5	8 00 M			Y	0	0 1	HR :	30		Р			Y	
50	0-35	hc1	25Y 42 00	75YR4	6 00 C			Υ		0		0						
	35-50	hc1	10YR53 00	10YR5	6 52 M			Υ	0	0	HR	1		Ρ	Υ		Υ	
}	50-70	С	10YR53 00	10YR5	6 00 M	0	OOMNOO	00 Y	0	0 1	HR	1		Р	Υ		Υ	
51	0-25	hc1	10YR42 00	10YR5	6 00 C			Υ	0	0		0						
1	25-60	hc1	10YR42 00	10YR5	6 00 M			Y	0	0		0		Ρ	Y		Υ	
52	0-25	hc1	25Y 42 00	75YR4	6 00 C			Y	0	0 1	HR	2						
	25-50	hcl	10YR63 52	10YR5	6 00 M			Y	0			2		Þ	Y		Υ	
)	50-60	hcl	10YR63 52	10YR5	6 00 M			Y	0	0	HR :	25		M				
53	0-20	mcl	10YR42 00						0	0		5						
J	20-120	mcl	10YR42 00						0	0	HR	10		М				
54	0-30	mcl	25Y 42 00						0	0		5						
	30-40	hc1	10YR53 00	10YR5	6 00 C			Υ	0	0 1	HR	10		Р	Y		Y	
•	40-70	С	10YR53 00	10YR6	8 56 M			Y	0	0		0		Ρ	Y		Y	
55	0-27	hcl	25Y 42 00	75YR4	6 00 F				0	0 1	HR	5						
J	27-40	hc1	10YR53 00	10YR5	6 68 M			Υ	0	0 1	HR	5		М				
	40-50	hc1	10YR42 00	10YR5	6 00 C			Y	0	0 1	HR	5		М				
1																		

				MC	ITTLI	ES	PED			-STO	NES	STRUCT/	SUBS	3			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A								CONSIST		POR	IMP :	SPL	CALC
57	0-27	hc1	25Y 42 00	75YR46	1 00	1		Υ	0	0 H	R 1						
	27-60	c	10YR51 52					Y		0 н			Ρ	Υ		Y	
	0.00	. 7	10/044 00	35/855	^^	•											
58	0-30	mc1	10YR41 00					Y		0 H							
	30-35 35-60	hcl c	10YR62 00 10YR62 00					Y		0 H			M Y	٧		γ	
	55 55	J	TOTROE GO	1011130				,	·	•			•	•			
59	0-25	mc1	25Y 52 00	75YR56	00 (3		Y	0	0 H	R 1						
	25-30	mcl	10YR71 00	75YR56	00 (2		Υ	0	0 H	R 2		M				
	30-50	hc1	10YR71 00	10YR58	00 1	1		Y	0	0 H	R 2		P	Υ		Y	
	50-70	С	10YR71 00	10YR58	00 1	4		Υ	0	0	0		Ρ	Υ		Y	
62	0-35	mc1	10YR42 00						0	0	0						
	35-45	mcl	10YR53 00	75YR58	00 (C		Υ	0	0	0		М				
	45-100	c	10YR53 00	75YR58	00 (C		Υ	0	0	0		М				
64	0-30	mc1	25Y 41 00	75YR46	00.6			γ	٥	0 н	R 2						
	30-60	c	10YR61 00					Ÿ		0 H			Р	Υ		γ	
	00 00		TOTAGE GO	(011100		•		•		•			·	Ċ		•	
65	0-20	mzcl	25Y 41 00	75YR46	00 (C		Y	0	0	0						
	20-35	hcl	10YR51 00	10YR58	00 1	1		Υ	0	0	0		Р	Υ		Υ	
	35–60	С	10YR61 00	10YR58	00 1	1		Y	0	0	0		Р	Y		γ	
66	0-28	നേടി	25Y 63 00	75YR56	00 (2		Υ	0	0	0						
	28-55	hc1	10YR63 00	75YR56	00 1	4		Υ	0	0	0		Р	γ		Υ	
	55-70	С	10YR71 00	75YR56	00 1	4		Υ	0	0 H	R 2		Р	Y		Y	
67	0-25	mcl	25Y 52 00	75VR52	ന ര			Υ	۵	0 H	R O						
0,	25-35	mc1	10YR71 00					Ÿ		0 H			М				
	35-45	hc]	10YR71 00					Ý		0 H			P	Υ		Υ	
	45-70	С	10YR71 00					Υ	0	0	0		Р	Υ		Υ	
		_				_			_	_							
70	0-28	mc1	10YR52 00					Y	_	0	0		_			.,	
	28-70	С	10YR71 00	/54868	/8 I	4		Y	U	0	0		Р			Y	
73	0-25	mcl	10YR32 00						0	0	0						
	25-55	mc1	10YR53 54	75YR58	00 (C		Y	0	0	0		М				
	55-85	mcl	10YR53 00					Y	0	0	0		М				
	85-95		10YR53 00					Y	0	0	0		М				
	95–120	c	10YR72 00	75YR58	00 1	4		У	0	0	0		Р	Y		y	
74	0-25	mc1	10YR31 00						0	0	0						
	25-75	c	10YR52 00		00 1	1		Y	0	0 H	R 3		Р	Y		Υ	
75	0-28	mc1	10YR41 00	75VDA6	00 <i>(</i>	•		Y	Λ	0	0						
′3	28-55	hc1	25Y 71 00					Ÿ		0	0		Р	Υ		Υ	
_	55-60	c	25Y 71 00					Ý	-	0	0		P	Ÿ		Y	
-	60-80	c	25Y 71 00					Y		0	0		P	Y		Y	
_																	

......

]					10TTLES	i 1	PED			-ST	ONES-		STRUCT/	SUBS	3			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT							CONSIST		POR	IMP	SPL	CALC
76	0-28	mc1	10YR53 00	10YR58	3 00 F				0	0		0						
	28-40	С	10YR63 00	75YR58	3 00 M			Υ	0	0		0		Ρ	Υ		Υ	
	40-60	С	10YR71 00	75YR58	3 00 M			Y	0	0		0		Р	Y		Y	
81	0-30	mcl	10YR52 00	75YR56	00 C			Y	0	0		0						
•	30-60	scl	10YR52 00	75YR46	00 C	101	YR71	00 Y	0	0		0		Р	Υ		Y	
	60-70	hcl	10YR71 00	75YR58	3 00 M			Y	0	0		0		Р	Υ		Y	
	70-90	С	10YR52 51	75YR58	3 00 M			Y	0	0		0		Р	Y		Υ	
83	0-25	mcl	25Y 32 00						0	0		0						
1	25-45	С	10YR53 00	75YR58	3 00 C			Υ	0	0		0		Ρ	Υ		Υ	
	45-80	С	10YR51 00	75YR58	3 00 M			Y	0	0	HR	5		Р	Y		Y	
84	0-30	mcl	10YR52 00	75YR46	00 C			Y	0	0		0						
1	30-45	mcl	10YR62 00					Υ	0	0		0		М				
ı	45-70	С	10YR62 00	75YR58	3 00 M			Y	0	0		0		Р	Υ		Υ	
85	0-28	mc1	25 Y42 00	10YR58	3 00 C			Υ	0	0		0						
	28-35	С	10YR53 00	10YR58	3 00 C			γ	0	0		0		₽	Υ		Υ	
	35-60	С	10YR53 00	10YR58	3 00 C			Υ	0	0		0		Ρ	Y		Υ	
1	60-90	fsl	10YR63 00	75YR58	3 00 M			Υ	0	0		0		М				
	90-100	scl	10YR53 00	75YR58	3 00 C			Y	0	0		0		Р	γ			
86	0-28	mcl	10YR43 00	10YR58	3 00 F				0	0		0						
	28-38	fsl	10YR53 00	10YR58	3 00 C			Υ	0	0		0		М				
)	38-48	scl	10YR53 00	10YR58	3 00 C			Υ	0	0		0		Ρ	Υ		Υ	
_	48-60	С	10YR63 00	75YR58	3 00 M			Y	0	0		0		Р	Υ		Y	
•	60-90	С	10YR63 00	75YR58	3 00 M			Y	0	0		0		Р	γ		Υ	
92	0-27	mcl	10YR44 00						0	0		0						
ì	27-50	hc1	10YR44 00						0	0		0		М				
	50-70	С	10YR54 00						0	0		0		М				
	70-95	С	10YR53 00	75YR58	3 00 M			Y	0	0		0		Р	Υ		Υ	
93	0-25	mc1	10YR53 00					Y	0	0		0						
,	25-45	mcl	10YR64 00	75YR58	3 00 C	75	YR58 1		0	0		0		M				
_	45~77	С	10YR64 00					Υ	0		HR	50		P -				
,	77-120	gh	00ZZ00 00						0	0		0		Р				
94	0-20	mzc1	10YR52 00	75YR56	00 M	10°	YR61 (00 Y	0	0		0						
1	20-65	mcl	10YR63 00	75YR58	3 00 M	10	YR71 (00 Y	0	0		0		М				
	65-90	С	10YR62 00	75YR68	3 00 M			Y	0	0		0		Р			Y	
95	0-25	hc1	10YR51 00	75YR56	00 C			Υ	0	0		0						
	25-60	С	10YR71 00	75YR58	8 68 M			Y	0	0		0		Р			Y	
96	0-30	mcl	10YR51 00	75YR46	00 C			Υ	0	0		0						
1	30-60	С	10YR61 00	75YR68	00 M			Υ	0	0		0		Ρ			Y	
ļ																		

program: ALCO11

COMPLETE LIST OF PROFILES 26/04/94 NEWBURY LP S17 WHEATLAND

page 7

SAMPLE	ОЕРТН	TEXTURE	COLOUR	N	NOTTLES ABUN					STRU TOT CONS	 		P SPL C	ALC
99	0-28	mc1	10YR32 00	75YR46	00 C		Υ	0	0	0				
	28-60	mc1	10YR53 00	75YR58	00 M		Υ	0	0	0	М			
•	60-80	С	10YR51 52	75YR58	3 00 M		Υ	0	0	0	P	Υ	Y	