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1. Overview 

This technical supplement is an Annex (referred to below as ‘this Annex’) to the England 
Peat Map Final Report (Natural England 2025) (‘the main report’). It provides additional 
technical details which more fully document the development of outputs from the England 
Peat Map project. It is likely to be useful for people interested in the science underlying the 
England Peat Map, to better understand it or to attempt to replicate and improve on it.   

2. Survey quality assurance & management 
The field survey programme delivered by England Peat Map is described in chapter 5 of 
the main report. This Annex provides further information about how quality of the survey 
was assured and managed. The main methods were:  

• Detailed training in the field to contractors and in-house surveyors 
• Extensive protocols and documentation 
• In-house quality assurance surveys with feedback to contracted surveyors 
• Laboratory analysis of soil samples 

2.1. Documentation and Training 
Detailed field protocols were produced for both the vegetation and soil surveys which are 
available in a separate annex to this report. Additional guidance documentation was 
produced covering soil sample collection, peat probing, soil texture identification, and how 
to use the data collection application. DEFRA group biosecurity guidance and a GPS user 
manual were also provided to surveyors.  

To support field survey delivery between November 2021 and August 2024 twelve training 
sessions were run on how to use the field data collection app, and how to undertake the 
England Peat Map Survey. A total of 92 people were trained. The training was developed 
and delivered by Dr Chris Miller supported by other Natural England specialists and 
colleagues. 

2.2. Quality Assurance Surveys  
The objectives of the quality assurance process were to:  

• Identify errors in the survey data.  
• Ensure contracted surveyors are following the agreed processes and procedures.  
• Ensure remedial measures are put in place to reduce potential errors e.g. additional 

training.  
• Improve survey accuracy using post survey data correction procedures.  
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Based on recommendations made by UKCEH it was decided to undertake quality 
assurance (QA) checks on 10% of the contractor’s fieldwork. This approach was refined 
after the field survey pilot to encompass 10% of each field surveyor’s work. Ideally to avoid 
bias each QA survey should be randomly selected, however to make best use of available 
QA surveyor resource we checked clusters of each surveyor’s work, and in some cases 
the 10% requirement was exceeded. It is acknowledged that this may have inadvertently 
introduced some bias into the QA surveys as the selection was not random between 
survey sites.   

A part blind survey approach was adopted where survey points were re-visited, and the 
survey was repeated without the QA surveyor referring to the original survey. Once the 
second survey was complete both sets of results were compared, and any differences 
noted. Whilst presenting coordination challenges, this approach allowed rapid identification 
of quality issues relating to specific surveyors as well as more general issues. This 
facilitated rapid feedback allowing quality issues to be addressed at an early stage. To 
improve the quality of the data collected, changes were made to the survey design, and 
automated and manual checks of the collected data were undertaken. Following the 
survey pilot, changes were made to the survey design to minimise quality issues. This 
included simplification of the field survey protocol to reduce the skill level required to 
deliver the survey. The requirement for soil samples to be taken and analysed for organic 
content helped reduce misidentification of mineral vs peaty soils. In addition, switching 
from using the Domin scale (see glossary) for cover to the nearest 5% helped to more 
precisely quantify vegetation cover reducing potential error.   

Coding scripts were developed to undertake automated checks on the collected field 
survey data and provide the results in a user-friendly form. These included:  

• checks on GPS position,  
• identifying peat depth outliers,  
• checking whether soil samples were collected,  
• whether assigned vegetation class matched dominant vegetation found, and  
• checking whether percentage cover adds up to 100 percent.  

Automatic checks were compared the original survey and QA survey to rapidly identify 
discrepancies that had not been picked up by the QA surveyors during their comparisons.  

Manual comparison of the original survey against the QA survey was also undertaken by 
staff who had not carried out the QA survey. Using professional judgement, thresholds 
were established for when there was a substantial difference between the two surveys and 
further investigation required. A 5-10% difference in vegetation percentage cover was not 
investigated as it was within the natural range expected between different surveyors. More 
substantial variations were investigated primarily using photographs of the quadrat and of 
the core, and a decision made whether to adjust the survey record, reject the original 
survey in favour of the QA survey or reject both surveys. All such decisions were recorded 
in the record.   
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The soil organic content identified through laboratory analysis was compared with the soil 
texture class which the surveyor identified in the field. Where there was a significant 
difference (i.e. more than one soil texture class difference e.g. Mineral vs Peaty Loam) the 
survey was investigated. Photos and field data were examined to identify misidentified soil 
samples, and in extreme cases resulted in the rejection of survey data.   

Peaty soil depth measurement data was initially cleaned to remove data entry errors e.g. 
peaty depth recorded where mineral soil present at the surface. Data outliers/extreme 
values were also investigated and either corrected or removed from the dataset. 
Comparison between original and QA surveys was also undertaken and a decision made 
whether to reject the original survey or not. However, a detailed examination of the 
surveyor error associated with soil probing (i.e. whether surveyors had correctly detected 
point at which peaty soil transitions into non-peaty substrate) was not undertaken as it was 
outside of the scope of this project.  

Feedback from the quality assurance process was presented to the contractor in regular 
meetings throughout the course of the contract. Whilst required actions from these 
meetings varied, they can be distilled into one of three actions: Individual feedback/re-
training; reminder messages to survey group via a live messaging platform; change to field 
protocol.   

2.3. Quality Assurance Analysis  
Soil Survey 

A total of 13.8% (542) of soil quadrats were rejected on quality grounds. Reasons for 
rejection included: QA survey better quality than original due to a variety of issues 
(46.3%); survey undertaken without landowner permission (16%); survey protocol not fully 
followed e.g. soil sample not taken when required (12.9%); all 5 depth points identical 
(10.3%); poor GPS accuracy (9.8%); Missed peaty soil at surface (1.7%); miscellaneous 
(3%). 

The data collected from 24.2% (949) of soil surveys was changed as part of the Quality 
Assurance process. 76.7% (728) of changes were made as a result of laboratory data with 
the remainder being for data entry errors, soil horizon thickness incorrectly input, and 
corrections to position due to GPS issues.   

Vegetation Survey 

A total of 12.3% (368) of vegetation quadrats were rejected on quality grounds. Reasons 
for rejection included: QA survey better quality than original due to a variety of issues 
(26.4%); Species misidentification or cover over/under estimation (25.5%); data entry error 
(23.9%); Survey protocol not followed e.g. incorrect orientation/position (14.1%); Photo 
does not match survey (6.3%); poor GPS accuracy (3.8%). 
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Data collected from 81 (2.7%) vegetation surveys were changed mainly due to data entry 
errors e.g. incorrect vegetation class selected or because of QA surveys highlighting 
species misidentification. 

Impact 

The impact of the Quality Assurance process is difficult to judge accurately as the process 
has not been objectively tested. However, 38.0% of soil surveys and 15.0% of vegetation 
surveys were either rejected or changed as a result of the QA process. Misconceptions in 
survey process were also identified and remedial action taken to prevent their 
reoccurrence. Whilst the QA process has clearly reduced the number of errors in the data 
set it cannot be guaranteed to be error free.    

2.4. Laboratory test and results 
To confirm the accuracy of the field data soil samples were sent off for laboratory analysis 
to determine their organic content using Loss on Ignition (375oC for 16 hours, also see 
glossary) so that they could be assigned to the correct soil texture class. For the main 
survey budget constraints limited soil sample collection to soil horizons where peaty soil 
had been identified or where identification was uncertain, and only one sample was taken 
per unique soil texture class. In May 2024 the requirement of when to take a soil sample 
was expanded to include organo-mineral soils following analysis of the loss on ignition 
data collected to date. Sufficient budget was allocated to ensure that any soil horizons 
encountered meeting these requirements could be analysed. All laboratory analysis was 
undertaken by the James Hutton Institute.  

Table 2-1 Field Survey Loss on Ignition Results 

Soil Texture Class Soil Organic Matter 
Content 

Number of 
samples 

Percentage 
of horizons 

sampled 

Mineral <8% 206 11.8% 

Organo-mineral 8-20% 392 22.4% 

Peaty Loam or Peaty Sand >20-35% 273 15.6% 

Loamy Peat or Sandy Peat >35-50% 225 12.9% 

Peat >50% 707 40.4% 

A summary of the loss on ignition data can be found in Table 2-1, including the breakdown 
by soil texture class. The majority of soil samples (68.1%) analysed were Peaty (>20% 
organic matter content). Analysis of the loss on ignition data has revealed that 953 out of 
the 1747 (54.5%) samples taken corrected a misidentified soil profile. This resulted in 
changes to 853 soil surveys, 727 of which were used in the final model.  
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3. Modelling extent, depth and vegetation 
The modelling process is described in detail in chapter 7 of the main report. The following 
sections provide detailed results and some more detailed description of methods to 
support understanding and replication of the work.  

3.1. Model Evaluation Metrics for England Peat Map 
As set out in section 7.3 of the main report, all models were trained with only part of the 
data, with a portion set aside for calculating validation metrics. Some of the models (extent 
and depth) were then retrained with all data, but no metrics calculated from this final 
model.  

The models which each metric is used for are tabulated in the main report Table 7-3. The 
definition of each metric is set out in Table 3-1 below.  

Table 3-1 Evaluation metrics and definitions 

Metric Definition Equation Source 

Overall 
accuracy 

The proportion of correctly classified 
pixels in comparison to the reference data 
> 80% considered ‘good’ 

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

  van Rijsbergen, 
1979 

Precision The proportion of true positives across all 
positive predictions 
> 80% considered ‘good’ 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇

  van Rijsbergen, 
1979 

Recall The proportion of true positives across all 
correctly predicted samples 
> 80% considered ‘good’ 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

  

 

van Rijsbergen, 
1979 

F1 score A balanced mean of precision and recall  
> 80% considered ‘good’ 

2 × Pr 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅
Pr 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅

  Hand, 2012 

Root Mean 
Square Error 
(RMSE) 

The average difference between predicted 
and actual values. 
Lower is better 

 �1
𝑐𝑐 
∑ (𝑃𝑃𝑐𝑐 − 𝑂𝑂𝑐𝑐)2𝑐𝑐
𝑐𝑐=1   Hastie, 

Tibshirani and 
Friedman, 2009 

Matthew’s 
Correlation 
Coefficient 
(MCC) 

Measuring the quality of binary 
classifications 
+1 perfect; – 1 bad; 0 random 

  𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

  Matthews, 1975 

Frequency 
Weighted 
Intersection 

The balanced similarity between the 
predicted region and reference region by 
identifying overlapping regions 

∑ 𝑐𝑐𝑖𝑖
𝑁𝑁
𝑖𝑖=1  �

𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖

�

∑ 𝑐𝑐𝑖𝑖𝑁𝑁
𝑖𝑖=1  

  
Russakovsky et 
al., 2015 
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Metric Definition Equation Source 
over Union 
(fwIoU) 

50% for basic acceptability, 70% for 
higher precision and above 75% very 
good 

Kappa The statistical significance in comparison 
to random performance 
+1 perfect; – 1 bad; 0 random 

𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

  Cohen, 1960 

3.2. Predictors 
Section 7.2 of the main report summarises the predictors used in EPM, and Table 7-2 of 
the main report tabulates the models each predictor is used for. The following provides 
further information and in particular describes the creation of the Bare Soil Sentinel-2 
Mosaic and the Detrended LiDAR predictor. Table 3-2 of this Annex summarises 
sources, temporal and spatial scales and other information about each predictor group.  

The primary sources of predictors used in EPM modelling are derived from Earth 
observation imagery and sensors, aerial imagery and sensing as well as some mapped 
products. In addition, indices were derived from these primary sources.  

Seasonal Sentinel-2 composites were created for Autumn 2022, Spring 2023 and Summer 
2023. A winter composite was not feasible due to excessive cloud cover. These 
composites use solar day matching of Level-2A imagery to select the least cloudy 
imagery, based on the S2 Cloudless cloud mask, within each time period and infill until all 
pixels have been assigned a value, where no cloud-free imagery was available it is left as 
no data. The Sentinel-1 imagery underwent median filtering for the same time periods as 
the Sentinel-2 to reduce radar speckle in both VV and VH polarisation for Ascending and 
Descending acquisition modes. These Sentinel-1 and Sentinel-2 mosaics are the same 
used by the 2022-23 Living England habitat probability map (Trippier and others, 2024).  

The national airborne LiDAR composite Digital Terrain Model (DTM) and Digital Surface 
Model (DSM) from the Environment Agency is used in the extent, depth and vegetation 
modelling which is a composite of imagery captured between 2017 and 2023. Further 
processing of these layers is undertaken to calculate the Canopy Height Model (CHM) 
from the DTM and DSM and slope derived from the DTM to provide further information for 
vegetation presence. 

Additional predictors were used specifically for peat extent and depth modelling. The Land 
Utilisation Survey (1933-1949), Dudley Stamp, categorised Great Britain into 8 land use 
classifications at a 1km resolution. The bedrock and superficial geology predictors are 
derived from the British Geological Survey 1:625,000 scale digital geological map. 
Bedrock is defined as deposits laid down prior to the quaternary period (2.588 million 
years ago) and superficial deposits as laid down during the quaternary period. The OS 
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Open Rivers dataset was used to calculate the Distance to River and the OS Boundary 
High Water Mark dataset was used to calculate the Distance to Sea. 

The bare peat and surface feature mapping used high resolution aerial photography of 
Great Britain (APGB) in upland (as defined by the Moorland Line) areas. A composite of 
upland areas was created using the latest available imagery from BlueSky Mapping at the 
time of the project (January 2023) and includes imagery from 2018 until 2023 for national 
coverage at 12.5 cm and 25 cm resolution for surface features and bare peat, respectively. 
In addition, detrended LiDAR is used alongside aerial photography for improved 
classification of grips, gullies and haggs. 

Bare Soil Sentinel-2 Mosaic  

A new mosaic was created by the England Peat Map team because notable spectral 
differences between peaty and non-peaty soils were observed in areas of the seasonal 
Sentinel-2 mosaics in bare arable-dominated regions. The mosaic enhances these 
spectral properties (Figure 3-1). The Bare Soil Index (BSI) was implemented to identify 
areas when they were bare by calculating the index for all cloud-free atmospherically 
corrected imagery captured between August 2022 and July 2023 to match the timings of 
the other Sentinel-2 mosaics. Cloud masks were applied through the S2 Cloudless 
implementation to remove no data areas into the mosaic creation. The 95% percentile of 
the BSI was taken for each pixel to remove extreme values for identifying bare soil image 
timings and these dates were selected to create the bare soil composite image across all 
lowland peatlands for use within the model. 
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Figure 3-1 Sentinel-2 imagery for Autumn 2022 - Summer 2023 across the 
Cambridgeshire Fens with (a) autumn mosaic, (b) spring mosaic, (c) summer 
mosaic and (d) median bare soil mosaic. Subtle colour variations between mosaics 
are caused by different stretch implementations for visualisation. Contains modified 
Copernicus Sentinel data 2022-2023.  

Detrended LiDAR for surface feature mapping 

LiDAR is used alongside the aerial imagery to enhance the detection of grips, gullies and 
haggs and to calculate the depth and slope of modelled features. The 1 m resolution 
LiDAR derived DTM was detrended to remove large-scale elevation changes and highlight 
features relative to the local terrain. Detrending is achieved by subtracting the median 
elevation of a moving 100 m radius window from each 1 m pixel (Figure 3-2). After de-
trending, the relatively small-scale features of grips and gullies can be clearly seen in the 
data. A range window sizes were trialled from 2 to 200 metres.  
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Figure 3-2 Example of original 1 km2 LiDAR image (a) and corresponding detrended 
image (b)  

The goal of the median layer conceptually is to put a line of best fit through the surface 
model, forming a straight line across the grips and gullies as though they were not present. 
The vertical difference between this median surface and the terrain model forms the 
detrended LiDAR layer. If the moving window size is too small, this line of best fit follows 
the features instead of cutting across the top. 

 
Figure 3-3 sample of gullies and grips in the West Pennines, with a transect line 
used for creating an elevation profile. Lidar data from Environment Agency 2020. 

The difference in moving window sizes is illustrated in Figures 3-4 and 3-5 using a transect 
across a range of gully and grip features. Figure 3-4 shows the elevation profile for the 
transect shown in Figure 3-3. The black profile shows the actual topography as recorded 
in the Environment Agency’s LiDAR digital terrain model. The various coloured lines show 
the smoothing effects for different moving median window sizes ranging from 2 m up to 
200 m. The smallest 2 m median follows the terrain model very closely, so is not 
appropriate for detrending. At 20 m, the orange median line still drops down as it passes 
across the gully features. At the 100 m median in green, the line draws a fairly straight line 
across all of the depressions. This level line is important, as the detrended LiDAR is 
created by measuring the depth to the original terrain model (black line) below the chosen 
median line (in this case the green line). The 200 m median window applies too much 
smoothing in most areas. In the example below it is seen to pass above the high spots, 
meaning that they would show up as depressions in the detrended LiDAR, and 
overestimate the depth of features. There will always be an element of compromise here.   
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Figure 3-4 Elevation profiles for different median average moving window sizes, 
compared to the LiDAR digital terrain model from Environment Agency LiDAR 

Figure 3-5 shows the resulting detrended LiDAR models for the transect shown above. 
This illustrates the issue with the smaller moving window sizes. This is obtained by 
subtracting the original Digital Terrain Model from the smoothed median surface. The red 
2 m moving window follows the black 0 m axis line through the middle of the graph. If we 
used this as our detrended terrain model, we would measure the depth across the gullies 
to be near 0 m depth. This is clearly not helpful or desirable. By contrast, the largest 200 m 
window floats above many of the high points, which is also undesirable as it will cause us 
to overestimate the depths of the low points. The 100 m window size provides a better 
indication of the shape of the terrain, whilst normalising the elevation values to be relative 
to the average surface as shown in Figure 3-4.  
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Figure 3-5 Detrended elevation profiles for different median average moving window 
sizes, derived from Environment Agency LiDAR 

This gives us a normalised terrain model which clearly shows features which extend above 
and importantly for this work, below the surface. It also enables us to more accurately 
measure the depth along these features. To this end it is important for the median surface 
to pass as close as possible to the tops of the gully and grip features. In practice this is 
tricky as large scale and small scale topographic variations affect the different moving 
window sizes in different ways, but visual inspection suggests that the 100 m window size 
strikes a decent compromise for this purpose.  
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Table 3-2 Summary of predictor sources used for England Peat Map 

See table 7-2 of the main report for a different overview of predictors.  

Source Description Spatial 
Scale 

Temporal 
Scale 

License Reference How are these data used? 

Sentinel-1 
backscatter 

Radar imagery from 
Sentinel-1 satellite 
mission, capturing C-
band synthetic aperture 
radar images. 

10 m 1 Aug 2022 
– 31 Jul 
2023 

OGL (Gorelick and 
others, 2017) 

Created 10m multitemporal mosaics using 
Living England (LE) workflow in Google 
Earth Engine (GEE), used in extent, depth 
and vegetation models.  

Sentinel-1 
InSAR 
coherence 

Single Look Complex 
(SLC) images containing 
amplitude and phase 
information 

15 m 1 Aug 2022 
– 31 Jul 
2023 

OGL (Gorelick and 
others, 2017) 

Created 10m multitemporal mosaics as 
above, used in extent, depth and vegetation 
models. 

Sentinel-2 Optical imagery from 
Sentinel-2 satellites 
capturing 13 spectral 
bands 

10 m 1 Aug 2022 
– 31 Jul 
2023 

OGL (Gorelick and 
others, 2017) 

Created 10m multitemporal mosaics as 
above, used in extent, depth and vegetation 
models. 
Created 10m bare soil mosaic using EPM 
workflow in GEE, used in extent and depth 
models.  

Landsat-8 Optical imagery from the 
Landsat-8 satellite 
capturing  

30 m 1 Aug 2022 
– 31 Jul 
2023 

OGL (Gorelick and 
others, 2017) 

Created 10m annual median lowland 
thermal mosaics in GEE used in extend and 
depth models.  
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Source Description Spatial 
Scale 

Temporal 
Scale 

License Reference How are these data used? 

LiDAR EA’s National LIDAR 
programme capturing 
accurate elevation data 
of the height of the 
terrain and surface 
objects on the ground 

1 m 2016 - 2023 OGL (Environment 
Agency, 2023) 

Derived 10m rasters of: 
- slope used in extent, depth and vegetation 
models.  
- aspect, Digital Terrain Model (DTM), 
Terrain Roughness Index (TRI), 
Topographic Wetness Index (TWI) and 
Geomorphons used in extent and depth 
models.  
- Canopy Height Model (CHM) used in 
vegetation model.  
- detrended DTM used in surface feature 
model.  

Geology 
(Bedrock and 
Superficial) 
1:625,000 

National geological map 
data 

1:625,000 2016 License 
agreeme
nt for 
use 

(British 
Geological 
Survey, 2016) 

Rasterised to 10m. Used in the extent and 
depth models 

Dudley Stamp 
Land Utilisation 
Survey 

Land use survey across 
England 

1 km 1933-1949 OGL (Environment 
Agency, 2011) 

Rasterised to 10m. Used in the extent and 
depth model.  

OS Open 
Rivers 

GB river network 
generalised from OS 
large-scale data. 

1:25,000 2024 OGL (Ordnance 
Survey, 2023) 

Derived 10m raster of distance to river. 
Used in the extent and depth model 

 

OS Boundary 
Line 

Mean high water mark 
(England and Wales)  

1:10,000  2024 OGL (Ordnance 
Survey, 2024) 

Derived 10m raster of distance to the sea.  
Used in  the extent and depth model 

Aerial 
Photography 

Aerial survey imagery 
across Britain 

12.5 cm &  
25 cm 

2018 - 2023 License 
agreeme
nt for 
use 

(Bluesky 
International 
Ltd, 2023) 

Used as the only input to bare peat and 
dam models and alongside LIDAR for grip, 
gully and hagg models 
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Source Description Spatial 
Scale 

Temporal 
Scale 

License Reference How are these data used? 

Flood Map for 
Planning 
(Rivers and 
Seas) Flood 
Zone 3  

Areas of land at risk of 
flooding, when the 
presence of flood 
defences are ignored 
and covers land with a 1 
in 100 (1%) or greater 
chance of flooding each 
year from Rivers; or with 
a 1 in 200 (0.5%) or 
greater chance of 
flooding each year from 
the Sea. 

Not known 2004-2024 OGL (Environment 
Agency, 2024) 

Rasterised to 10m. Used in the extent and 
depth model. 

Risk of 
Flooding from 
Surface Water  

Extent of flooding from 
surface water that could 
result from a flood with a 
3.3% chance of 
happening in any given 
year. Previously known 
as the updated Flood 
Map for Surface Water 
(uFMfSW). 

Variable  2013 OGL (Environment 
Agency, 2013) 

Rasterised to 10m. Used in the extent and 
depth model. 
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Table 3-3 Indices used for England Peat Map 

Metric How is this index 
used? 

Equation Source 

Topographic 
Wetness Index 
(TWI) 

Used to inform the 
extent and depth 
model 

𝐿𝐿𝐿𝐿((𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  1) / 𝑇𝑇𝑇𝑇𝐿𝐿 (𝑆𝑆𝐿𝐿𝑂𝑂𝑃𝑃𝑆𝑆 
∗  (𝜋𝜋/180))) 

(Kopecký and others, 
2021) 

Bare Soil 
Index (BSI) 

Used to inform the 
imagery selected for 
the Sentinel-2 bare 
soil mosaic 

𝐵𝐵𝑆𝑆𝐵𝐵 =  
(𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆2 + 𝑆𝑆𝑆𝑆𝑅𝑅) − (𝑁𝑁𝐵𝐵𝑆𝑆 + 𝐵𝐵𝐿𝐿𝐵𝐵𝑆𝑆)
(𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆2 + 𝑆𝑆𝑆𝑆𝑅𝑅) + (𝑁𝑁𝐵𝐵𝑆𝑆 + 𝐵𝐵𝐿𝐿𝐵𝐵𝑆𝑆)

 
(Nguyen and others, 
2021) 
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3.3. Model Performance 
Peaty Soils Extent Probability Thresholds 

The extent model estimates the probability that peaty soil is present. To make a final 
prediction we used the evaluation metrics to determine the optimal threshold at which to 
predict that peaty soil is present or not present (see Table 3-4). The final extent model 
uses a probability threshold of 0.4 because it has good performance across all metrics, 
scored highest for MCC, and in particular it balances sensitivity and specificity, with both 
scoring above 0.9. We also gave consideration to using a threshold of 0.5, which also 
scores above 0.9 in both sensitivity and specificity and scores best in accuracy and F1 
Score.  However we gave preference to the MCC metric which is better at balancing false 
positives and false negatives (Chicco & Jurman, 2020).  The 0.4 threshold also has a 
higher sensitivity, at the cost of a slight reduction in specificity.  

Table 3-4 Extent model performance metrics at different probability thresholds 

prob. 
threshold 

accuracy f1_score mcc sensitivity specificity 

0.1 0.942 0.895 0.862 0.982 0.929 

0.2 0.950 0.907 0.877 0.975 0.941 

0.3 0.953 0.912 0.883 0.970 0.947 

0.4 0.954 0.913 0.885 0.964 0.951 

0.5 0.955 0.914 0.884 0.956 0.954 

0.6 0.954 0.912 0.882 0.946 0.957 

0.7 0.953 0.909 0.878 0.929 0.961 

0.8 0.949 0.899 0.865 0.895 0.968 

0.9 0.934 0.859 0.820 0.800 0.979 
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Confusion Matrix for Peaty Soils Extent  
 

Predicted Absent Predicted Present 
Observed Absent 78,740 4,083 

Observed Present 1,002 26,825 

 

Full Confusion Matrix for National Vegetation Classification 
 

Predicted 
(columns) 

Observed 
(rows) 

Sphag-
num sp. 

Erio-
phorum 
sp. bog 

Molinia 
caerulea 
bog 

Calluna 
vulgaris 
bog 

Dry 
grass & 
scrub 
bog 

Short 
fen 
veget’n 

Tall fen 
veget’n 

Scrub & 
tree fen 

Sphagnum 
sp. 23 5 2 9 0 0 1 0 

Eriophorum 
sp. bog 5 393 8 97 2 1 4 1 

Molinia 
caerulea 

bog 
0 18 127 18 2 0 6 0 

Calluna 
vulgaris bog 2 43 5 3,519 1 1 0 1 

Dry grass & 
scrub bog 0 4 5 7 42 1 1 2 

Short fen 
vegetation 0 1 1 0 0 51 8 1 

Tall fen 
vegetation 0 1 1 0 0 12 63 1 

Scrub & tree 
fen 0 3 3 0 2 2 2 34 
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Full Confusion Matrix for Upland Bare Peat Classification 
 Predicted Absent Predicted Present 

Observed Absent 23,644,541 305,282 

Observed Present 479,771 450,406 

 

3.4. Depth interpolation 
Geostatistical analysis and predictions were carried out in R using the gstat package 
(Pebesma, 2004; Gräler and others, 2016). Variogram fitting was carried out using the 
automap package (Hiemstra and others, 2008).  

 

 
Figure 3-6 Empirical and fitted variograms for depth residual.  
Model = Matern (M. Stein’s parameterisation), nugget = 159.37, partial sill = 687.71, 
range = 65.53 

  

250

500

750

1000

0 250 500 750
distance (metres)

se
m

i-v
ar

ia
nc

e

 

    

      
          



Page 22 of 37 England Peat Map Technical Supplement to the Final Report, NERR149, Annex 6 

4.  Modelling surface drainage and erosion 
features 

The upland peat drainage and erosion features models, delivered by the AI4Peat project 
team are described in section 7.6 of the main report. The following provides more details 
about the modelling process, parameterisation, post-processing, calculation of dimensions 
and metrics. It also addresses the issue of quality assurance and ethics in the context of 
this application of artificial intelligence, and considers potential future work.  

4.1. Model Selection  
The training datasets for each feature (grips, gullies, haggs and dams) were split into 
training (70 %), validation (20 %) and test(10 %) datasets. To ensure even spatial 
coverage in each of these sets, the full dataset was split using the third numerical value of 
the spatial index of the 50 m chip (e.g. value 3 is used for the chip with index 
SD123456NW). Chips with values 0-6 were assigned to the training dataset, values 7-8 to 
the testing dataset and values equal to 9 the validation dataset. Due to this method of 
selecting training datasets, the proportions don’t line up exactly with the 70/20/10 split, 
though due to the even distribution of the spatial index in the 50m chips, the proportions 
are close enough to refer to them as such. This is shown in Figure 4-1. 

 

Figure 4-1 The distribution of the 3rd digit in the spatial index ID for the 291,049 
chips in the full training dataset. 

Due to the requirements of certain model architectures needing input sizes divisible by 32, 
such as the FPN model, the 400x400 pixel chips had to be resized to 416x416. This extra 
padding was done using the constant mode with a value of 0. The images were also 
normalised to have means and standard deviations closer to the means and standard 
deviations of the ImageNet dataset the models were pretrained on. These means and 
standard deviations are as follows: mean = [0.485, 0.456, 0.406, 0.42], std = [0.229, 0.224, 
0.225, 0.22]. The first 3 bands are the RGB bands for APGB data, with the final band 
being the LiDAR. 
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Grips, Gullies and Haggs  

All models went through an experimentation process that tested the following aspects of 
the model with the accompanying parameter sets: 

• Model architecture (PSPNet, Linknet, Unet, FPN, Manet) 
• Dropout (0, 0.1, 0,2, 0.3, 0.4, 0.5), backbone (ResNet18, ResNet32, ResNet50) 
• Optimiser (Adam, NAdam, SGD with and without momentum (Nesterov)) 
• Loss function (Dice, Focal, Lovasz, Jaccard, SoftBCE) 
• Learning rate (0.0001-0.1), momentum (0.7-0.99), beta2 (0.99-0.9999), epsilon (1e-

8-1e-4), weight decay (1e-8-0.0001), momentum decay (1e-8-0.1) 

Each feature was tested over 5 experiments, each one testing the scientific parameters, 
along with nuisance parameters (which tended to be the learning rate and momentum of 
the loss functions) and all remaining parameters fixed. Each experiment also has an 
average of 60 trials, this ranged from 30-100 trials. Most of the experiments used a 
random parameter selection algorithm to test the full width of the parameter space, 
however the final experiment of the numerical hyperparameters of the optimiser used a 
Tree-structured Parzen Estimator sampler. This sampler is a Bayesian-style sampler that 
homes in on an optimal set of hyperparameters. 

The experiments were set up to explore trends in the effects of each hyperparameter on 
the performance of the models, as opposed to a brute force parameter-space search. This 
was done due to the oversized parameter space to search, and to gain meaningful insight 
into the purpose of the hyperparameters.  

For the Grip and Gully models, there were two different datasets: A “raw” dataset and an 
“improved” one. The “raw” dataset comprised of a larger number of chips, made using line 
segments buffered by a constant width. The “improved” dataset was comprised of a 
smaller number of chips, made by hand digitising the features by drawing around their 
edges. A further experiment was therefore created to test the ideal split between training 
on the larger raw dataset and fine-tuning on the smaller improved dataset. This covered 
raw_epochs (1-5) and improved_epochs (5-15). After testing both grips and gullies for the 
ideal split between raw and improved data, it was determined that for grips, the inclusion 
of improved data did not have a big enough impact on the results to justify their use. Whilst 
the metrics did improve, the visual performance of the model appeared to suffer. This is 
believed to be due to the overfitting of the model to the - much smaller – improved dataset, 
though further testing should be undertaken to confirm and rectify. Whilst the gullies did 
show a similar effect in that the improvement to the metrics outstrips the visual 
improvement, the visual results did appear better once improved data was included, 
usually due to the ability of the improved data to better capture the irregular and variable 
width of the features. 

Dams 

To detect dams where restoration has already occurred, an object detection model was 
used. Unlike the semantic segmentation models used for the other features, these models 
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do not pick out the exact shape of a feature, but instead draw a bounding box around the 
feature of interest.  

To find the best model for detecting the dams, three different model architecture-backbone 
combinations were tested.  

• Faster R-CNN with ResNet50 FPN: Faster R-CNN (Region-based Convolutional 
Neural Network) with a ResNet50 backbone and Feature Pyramid Network (FPN) is 
a two-stage detector. It first generates region proposals (potential object locations) 
and then classifies them and refines their locations in a second stage. The addition 
of FPN helps the model capture objects of varying sizes by combining feature maps 
from multiple layers. It’s accurate but typically slower than single-stage detectors 
because of the extra region proposal step.  

• RetinaNet with ResNet50 FPN: RetinaNet is a single-stage detector, meaning it 
predicts objects and their locations in one step. It also uses a ResNet50 backbone 
with FPN, which helps detect objects of different sizes. RetinaNet is known for its 
"focal loss" function, which adjusts its focus to better detect harder (e.g., smaller) 
objects that can be overlooked by other detectors. It’s faster than Faster R-CNN but 
tends to be slightly less precise.  

• YOLOv8 (You Only Look Once, Version 8): YOLOv8 is the latest iteration in the 
YOLO  family, which is known for its speed and efficiency in real-time object 
detection. YOLO models are single-stage detectors, which means they predict 
object classes and locations in a single forward pass through the network, allowing 
for very fast detection.  

All these models were used pre-trained on the COCO (Common Objects in Context) 
dataset which includes around 200k labelled images with 80 different object classes. This 
gives the models the advantage of being able to already detect simple structures in 
images such as edges of objects. The first two models can be run using Pytorch, while 
YOLOv8 is most effectively used through the Ultralytics package.  

A detailed comparison of the three models was carried out using the Optuna package 
which allows a Bayesian search over a hyperparameter grid. For each model three 
optimisers were tested: Adam, NAdam and SGD. For each model-optimiser combination 
20 trials were run across the hyperparameter grid, resulting in 180 trials in total. The 
Faster R-CNN and RetinaNet models learned very quickly and usually reached maximum 
performance by around 10 epochs, so each trial was run for 10 epochs. The YOLOv8 
model took longer to learn, so each trial was run for 100 epochs but was set to stop after 
20 epochs if no improvements in the validation loss were made. The performance of each 
model on the validation dataset was logged using Mlflow.  

Figure 4-2 shows how the validation mAP50 metric varies with training epochs for the best 
two YOLO models and the best Faster R-CNN and RetinaNet models.  
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Figure 4-2: Validation mAP50 for each training epoch for best performing YOLO 
models on the left and Faster-RCNN and RetinaNet models on the right. 

The ground truth data are not always accurate, and the bounding boxes will not always be 
centred precisely on the dam itself. In addition, the clearest indicator of where a dam is 
varies depending on the dam - sometimes the actual dam is obvious, but sometimes the 
overflow pools behind the dam are the clearer indicator. This means that the model 
predicted bounding boxes won’t always overlap exactly with the ground truth bounding 
boxes. To assess the performance of the model a minimum acceptable IoU needs to be 
set to define when the model is successful. We have defined this as 50%. 

The model predicts both the location of objects and the confidence in those predictions. 
The results and the performance of the model when comparing to the ground truth will 
depend on the minimum confidence threshold set.  

Figure 4-3 shows how the model predictions vary with three different confidence 
thresholds. For lower thresholds (shown on the left) there are a higher number of model 
predictions (shown in blue). This means an increase in the number of correctly identified 
dams or “true positives” as almost all dams in the ground truth data (shown in red) have 
been captured, but it also means in increase in false positives – where the model thinks 
there is a dam where there isn’t. For higher thresholds (on the right) the reverse is true: 
while there are fewer false positives, there are also fewer true positives. Setting an 
appropriate confidence threshold to balance these is important to maximise the quality of 
the output.  

 
Figure 4-3: Ground truth and model inference for three different confidence 
thresholds. Aerial imagery © 2015 Getmapping plc and Bluesky International Ltd. 
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This balance is captured by the precision and recall metrics, where precision effectively 
measures what proportion of your predictions are correct, and recall measures the 
proportion of actual existing objects you model manages to capture. With a higher 
confidence threshold, the precision will generally increase, while recall will decrease.  

Figure 4-4 shows how the recall, precision and MAP50 vary with confidence threshold for 
the best performing model for the holdout test dataset. This shows that the best mAP50 is 
achieved with a fairly low confidence threshold.  

In the post processing we remove detections that are not on grips, so many remaining 
false positives will likely be removed. It was therefore decided that a low confidence 
threshold of 0.1 would maximise the number of dams detected without creating too many 
false positives. Any dams below this confidence threshold were removed.  

 

Figure 4-4: How precision, recall and mAP50 vary with confidence threshold. 

4.2. Final model parameters  
Grips 
The Grip model selected by the experimentation process has the following 
hyperparameters: 

Architecture: FPN, batch_size: 16, Beta2: 0.9943339059275593, Dropout: 0.3, 
encoder_depth: 5, encoder_name: resnet34, Eps: 2.1413053466815238e-08, Feature: 
Grip, learning_rate: 0.000765386594404144, Loss: Dice, Momentum: 
0.8223237921224302, number_of_epochs: 20, Optimiser: Adam, Quality: Improved, 
weight_decay: 3.5076443639918004e-06 

Gullies 

The gully model selected by the experimentation process has the following 
hyperparameters: 
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Architecture: FPN, batch_size: 16, Dropout: 0.3, encoder_depth: 5, encoder_name: 
resnet34, Feature: Gully, improved_NUM_EPOCHS: 15, learning_rate: 0.001, Loss: 
Jaccard, number_of_epochs: 20, Optimiser: Adam, Quality: Improved, 
raw_NUM_EPOCHS: 5 

Haggs 

The hagg model selected by the experimentation process has the following 
hyperparameters: 

parameters = {"learning_rate": 0.007314, "number_of_epochs": 20, "batch_size": 16, 
"architecture": FPN, "encoder_name": "resnet34", "loss": Dice, "encoder_depth": 5, 
"dropout": 0.0, "optimiser": "NAdam", "momentum": 0.924627, "beta2": 0.999016, 
"weight_decay": 1.24431e-8, "momentum_decay": 3.45674e-7,  "eps": 1.21252e-7}. 

Due to an error in inference, the hagg model was trained on images padded with a 
reflection, yet the inference was carried out with a padding of a constant value of 0. This 
lead to the hag outputs having a distinct edge effect. This has meant we have had to 
revert to using the August model outputs instead, though this could change if we have time 
to rerun the model correctly. 

Dams  

The best performing model based on the mAP50 metric was a YOLOv8 model, trained for 
53 epochs with: 

• A batch size of 8 
• A learning rate l0 of 0.00012 
• Adam optimiser with weight decay =1.39e-3 and momentum=0.90969 

4.3. Post processing 
The post-processing steps involve first buffering all polygons outwards by 1 m (equivalent 
of 8 pixels) and unioning all polygons that overlap within a 1 km grid. This step merges 
polygons cut by the 50 m tile edges and any polygons separated by distances less than 2 
m. The merged polygons are then buffered back in by 1 m. To smooth the pixelated 
edges, shapely’s simplify function returns a subset of the polygon coordinates making sure 
all new points are located within 0.5 m of the original points (Figure 4-5). The resulting 
polygons were filtered by area to clean the datasets. Any haggs less than 1 m2 any grips 
less than 50m2 and any gullies less than 500m2 were removed. The feature polygons were 
grouped based on the 100km British National Grid index and written out as GeoJSON 
before being converted to geopackage format. Features mapped outside of the peat extent 
were then removed from the dataset.  
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Figure 4-5 Example of a gully polygon before post-processing methods are applied 
(red) and after it has been buffered and unioned and then simplified (blue). 

4.4. Dimensions 
Width  

For the width, we assume the polygon can be represented as a rectangle with width: W 
and length: L. The area of this rectangle will be 𝐹𝐹 = 𝑆𝑆𝐿𝐿 , and the perimeter will be 𝑃𝑃 =
2𝑆𝑆 + 2𝐿𝐿 . Since area and perimeter are values we can calculate for our polygons, we can 
use those to work out the width and length of this hypothetical rectangle. Solving the two 

equations for the two unknowns yields: 𝐿𝐿 = 𝑇𝑇 + √𝑇𝑇2 − 16𝐴𝐴
4

, 𝑆𝑆 = 𝐴𝐴
𝐿𝐿
. These equations give the 

dimensions of a hypothetical rectangle with area and perimeter equal to that of the 
polygon in question. 

One of the only obvious downsides to this method is that it fails when the section within 
the square root is negative since this produces an imaginary number. Solving 𝑃𝑃2  −  16𝐹𝐹  <

 0 gives 𝑇𝑇
2

𝐴𝐴
  <  16. If the ratio of the square of the perimeter to the area is too small, then 

there is no rectangle that has the same area and perimeter. This appears to happen when 
the polygon is more circular, with a square being the cut-off point. Anything more circular 
than a square i.e. pentagon, octagon, circle etc. will fail. This can mean that the method 
fails for small, rounded features. 

Depth  

Depth attributes for each grip and gully polygon are assigned by extracting the detrended 
LiDAR pixels that overlap with the modelled feature polygon. The minimum, mean and 
maximum detrended elevation pixel values within each feature are assigned as an 
attribute. In the rare instances where a negative depth value is returned (i.e. the feature 
overlaps positive LiDAR elevation values) the depth attribute is assigned 0 to avoid 
confusion. 
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Slope 

A slope value is assigned to all grip and gully polygons that have a perimeter greater than 
100 m. Slope is calculated as the elevation difference between the top and bottom of a 
feature divided by the length (m/m or %). To calculate an elevation difference and length 
along a modelled feature polygon a minimum rotated rectangle is fit around each 
qualifying feature (magenta polygon, Figure 4-6). The length from the top to the bottom of 
the feature is the longest edge of this rectangle. The longest edge of the rectangle is 
divided into 15 equal segments (black points, Figure 4-6) and the first and last segment is 
used to clip the top and bottom of each feature (orange filled polygons, Figure 4-6). The 
original (un-detrended) LiDAR layer is clipped to these top and bottom segments and the 
minimum elevation pixel is selected. The absolute difference between these minimum 
elevation values is calculated and divided by the length.  

 

Figure 4-6 Example of the methodology used to calculate the slope of modelled grip 
and gully features (blue polygons). The magenta polygon is a minimum rotated 
rectangle fitted to individual features. Black points are the coordinates of equal 
divisions along the longest edge of the rectangle used to segment the feature and 
the yellow filled polygons are the top and bottom segments of the polygons where 
elevation values are extracted from to calculate elevation differences.   

There are instances where the slope attribute assigned to individual polygons will not be 
meaningful. For example, features that have extensive branching (e.g. Figure 4-7) will 
have one slope value for the whole network rather than for individual linear sections. 
Merging polygons to avoid breaks at every 50 m image chip boundary also exacerbates 
this issue. We have attempted to remove the slope attribute from these features by filtering 
the polygons based on perimeter and removing the slope from those with a perimeter to 
bounding box area ratio greater than 0.5. 
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Figure 4-7 Example of complex gully polygons.  Contains OS data © Crown 
Copyright and database right 2025. Contains data from OS Zoomstack.   

In future, methods to split polygons should be explored, for example using tools aimed at 
hydrological analysis such as stream order 

4.5. Grid based accuracy metrics 
In an attempt to overcome the limitations imposed by the ground truth labels on accuracy 
metrics, a grid based approach was implemented. To do this we divide the region covered 
by the digitised ground-truth polygons into grids of a resolution that is within a tolerated 
distance of model-feature offset. In each grid the presence or absence of modelled and 
ground-truth polygons allows us to assign a score corresponding to either true positive 
(both model and ground-truth features exist in the grid), true negative (neither model or 
ground truth polygons are present in the grid), false positive (a modelled polygon is 
present but a ground-truth polygon is absent from the grid) and false negative (a ground-
truth polygon is present in the grid but a modelled polygon is absent) (Figure 4-8). With 
these scores we calculate accuracy, precision, recall and the F1-score for the final 
outputs.  



Page 31 of 37 England Peat Map Technical Supplement to the Final Report, NERR149, Annex 6 

 
Figure 4-8 Example of the methodology used for grid-based model accuracy 
metrics. The blue polygon in the left image is a digitised ground-truth gully and the 
red polygons are modelled gully feature. The area covered by the left image is 
divided into 36 10 m x 10 m grids (this coarse resolution is for visualisation 
purposes only) and the score awarded to each grid is shown in the right image. 
Aerial imagery © 2015 Getmapping plc and Bluesky International Ltd. 

Accuracy, precision, recall and the F1 scores are calculated for the grip and gully outputs 
using the improved ground-truth data located in the West Pennines (Table 4-1). The West 
Pennine dataset used both aerial imagery and LiDAR to manually digitise feature outlines. 
This differs from the line data provided by peat partnerships, which after buffering to 
convert to polygons are likely to be less faithful to the features on the ground (see section 
7.6 of the main report). We calculate accuracy metrics for all 50 m BNG squares that 
include a ground-truth polygon in the West Pennine dataset (matching the training chip 
sizes). We then provide scores at both a 1 m and 5 m resolution for these regions. 

The improved West Pennine ground-truth dataset does not include hagg data. For the 
hagg metrics we use the buffered line data provided by peat partnerships. The accuracy 
metrics are calculated using all hagg polygons in the SD 100km2 BNG region (Table 4-1). 

The metrics imply that the gully outputs are more reliable than the hagg and grip outputs 
with F1 scores of 79.86, 58.76 and 58.80 respectively for a 5m resolution. However, for 
the reasons explained above, and also highlighted by other studies (Dadap et. al., 2021, 
Robb et. al., 2023), we urge caution in using these metrics alone to determine the quality 
of the outputs.  

Table 4-1 Performance metrics for the post-processed, surface feature model 
outputs (all in BNG 100km grid region SD) for different features.  Ground truth 
datasets are as follows: West Pennine improved labels for gullies and grips, Peat 
partnership line labels buffered by 1 m for haggs.   
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Metric Score (5m resolution) Score (1m resolution) 

Gullies   

Accuracy 90.06 92.36 

Precision 73.45 68.56 

Recall 87.48 83.52 

F1 score 79.86 75.30 

Grips   

Accuracy 82.77 91.67 

Precision 80.87 58.53 

Recall 46.14 35.55 

F1 score 58.76 44.24 

Haggs   

Accuracy 85.67 92.35 

Precision 58.95 45.21 

Recall 58.64 51.64 

F1 score 58.80 48.21 

 
Figure 4-9 Example of the pixel-based method of calculating accuracy metrics for 
gullies at a 5 m resolution for a 1 km2 region (SD6420) of the West Pennine ground-
truth dataset.  



Page 33 of 37 England Peat Map Technical Supplement to the Final Report, NERR149, Annex 6 

4.6. AI and Quality Assurance 
The use of AI and machine learning in the public sector is still in its early stages, and 
standardized guidance on how to apply these technologies effectively is evolving. This 
project has followed established scientific practices, such as thorough model validation, 
data quality assurance, and sound data management. 

We also engaged with end users to ensure the outputs align with practical needs and 
expectations. However, there are inherent challenges when deploying AI in this context: 

1. Transparency and Explainability: AI models, especially those based on machine 
learning, often operate as "black boxes," meaning it can be difficult to understand 
why a particular decision or classification was made. This lack of transparency can 
reduce trust in the outputs, especially for non-technical stakeholders. 

2. Ethical and Responsible Use: The potential for misclassification or bias in model 
predictions raises ethical concerns. For instance, misidentified features could lead 
to inappropriate restoration actions or misallocation of resources. As clear 
guidelines for ethical AI use are still under development, we relied on general 
principles of fairness, accuracy, and accountability to guide our work. 

3. Uncertainty and Communication: Despite best efforts, no AI model is perfect, and 
it is crucial to communicate the uncertainty in the results. Users should interpret 
outputs cautiously, especially in regions where training data is sparse or 
environmental conditions are atypical. 

Recommendations  

Guidance and Transparency 
To maximise the usability of the mapping datasets, clear guidance that includes 
accountability should be provided to explain how end-users should interpret and apply the 
data. This should include practical use cases, limitations (e.g., accuracy issues), and 
instructions for restoration teams.  

Accountability and Feedback 
Establish robust feedback mechanisms, allowing users to report inaccuracies or concerns 
easily. A dedicated contact or role such as a change manager may look to oversee user 
queries and dataset updates after the tool is deployed. This would allow for further 
improvements to be made, enhancing the usability and user experience 

Misuse Mitigation 
Regularly updated maps can support environmental benefits, including restoration 
tracking, carbon offset estimation, and flood management. However, this may lead to 
potential misuse of the tool, such as a valuation tool in carbon offset markets. 
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4.7. Future Work 
There are several areas in which more work could improve and expand the results 
presented here. 

Accuracy improvements 

As discussed previously, there is the potential to further improve on the surface feature 
datasets in several ways: 

1. Including more high quality and more varied training data to improve performance 
for all features. 

2. For dams, including additional training data with separate categories such as stone 
dams and bunding to allow the model to detect a wider range of dams and 
distinguish between them. 

3. Including aerial imagery from previous years in the training data to allow the model 
to understand a wider variety of environmental conditions such as differing 
vegetation and light conditions.  

4. Exploring other remote sensing datasets. For example, some initial exploratory 
work suggests that using data from Airbus may improve performance due to the 
more detailed colour information provided. In addition, using LIDAR point cloud data 
rather than 1m resolution gridded data may also improve the quality of the outputs.  

Extending spatially and temporally 

A key advantage of the modelling approach used is that the established methodology and 
quick run times mean new outputs can be generated relatively quickly. This opens up 
opportunities to extend spatially, for example to the Devolved Administrations, and also 
extend temporally by applying the models to previous years of aerial imagery and looking 
at changes over time.  

Extending to lowland peat would also be beneficial to map lowland drainage. The different 
landscape may mean the models would need to be re-trained or the outputs filtered to 
remove grip-like linear infrastructure such as roads and paths which may confuse the 
model and are more common in the lowlands.  
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