A1

Broadwater Farm, Weybridge, Surrey

Agricultural Land Classification June 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 4001/90/96 MAFF Reference EL 40/01469 LUPU Commission 02645

AGRICULTURAL LAND CLASSIFICATION REPORT

BROADWATER FARM, WEYBRIDGE, SURREY

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 78 3 hectares of land on the northern side of Weybridge Surrey The survey was carried out in June 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with an application to the Planning Authority under the Town and Country Planning Act 1990 for an 18 hole golf course All of the site was previously surveyed in May 1983 (ADAS Ref 4001/60/83) However the results of the current survey supersede this previous ALC survey

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the whole of the site was permanent pasture and cutting grass The areas of other land comprise farm tracks and buildings small areas of woodland and areas of open water Three small areas of newly planted trees to the north-east of Broadwater Farm were not mapped at this scale

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of one boring per hectare A total of 69 borings and four soil profile pits were described

8 The area of Subgrade 3b moderate quality agricultural land is limited by soil wetness and droughtiness limitations The land around Greenland Farm and Broadwater Farm has medium sandy loam topsoils over loamy medium sand and medium sand subsoils The combination of these well drained sandy soils and the prevailing climate results in land which cannot meet the potential crop moisture requirements throughout the year

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
3b	33 2	42 4	52 4
4	30 2	38 6	47 6
Other land	14 9	33 2 42 4 52 4 30 2 38 6 47 6 14 9 19 0 - 53 4 81 0 100 0	-
Total surveyed area	63 4	81 0	100 0
Total site area	78 3	100 0	

Table 1 Area of grades and other land

9 The Subgrade 3b land to the north east of Broadwater Farm comprises much heavier soils which have impeded drainage The profiles typically consist of heavy clay loam topsoils overlying slowly permeable clay subsoils which cause waterlogging above them during the wetter part of the year thus inhibiting seed germination and growth

10 The Grade 4 poor quality agricultural land has a severe limitation to its agricultural use from flooding as well as soil wetness The fields are flooded most years for up to three weeks in the winter as part of a long term management operation for the nearby River Thames and Desborough Channel The profiles within this area typically consist of shallow clay topsoils over slowly permeable clay subsoils which will impede soil drainage and not allow flood waters to subside very rapidly There is a small area where medium sandy loam topsoils and river gravel deposits lie over the slowly permeable clay subsoils

Factors Influencing ALC Grade

Chmate

11 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

12 The key climatic variables used for grading this site are given overleaf in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

14 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

Table 2	Climatic	and	altitude	data
---------	----------	-----	----------	------

Factor	Units	Values	Values	Values
Grid reference	N/A	TQ 092 660	TQ 078 656	TQ 085 656
Altitude	m, AOD	10	12	12
Accumulated Temperature	day°C	1506	1504	1504
Average Annual Rainfall	mm	609	624	615
Field Capacity Days	days	127	129	128
Moisture Deficit Wheat	mm	122	121	121
Moisture Deficit Potatoes	mm	119	117	118

15 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However, climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. The crop-adjusted soil moisture deficits at this locality are above the average for the south east of England. This increases the likelihood of soil droughtiness limitations. No local climatic factors such as exposure or frost risk are believed to adversely affect the land quality on the site. This site is climatically Grade 1

Site

16 The site occupies terraces of the River Thames valley and is level apart from an embankment running along Engine River and a couple of hollows in the fields between Greenland Farm and Broadwater Farm Winter flooding occurs on the lower lying land to the north of Engine River and water collects in the hollows of the fields adjacent to the two farmsteads

Geology and Soils

17 The published geological information (BGS 1981) shows that the site has two types of geology To the north of Engine River the land is underlain by alluvium with the rest of the site being underlain by river terrace gravels

18 The published soils information (SSEW 1983) shows that there are two main soil types which follow the geology of the site To the north of Engine River the soils are from the Thames Association and are described as being stoneless mainly calcareous clayey soils affected by groundwater Risk of flooding (SSEW 1983) The rest of the site consists of soils from the Waterstock Association These are described as deep permeable mainly fine loamy soils variably affected by groundwater Some deep well drained fine and coarse loamy soils are also found (SSEW 1983)

Agricultural Land Classification

19 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2

20 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Subgrade 3b

Land mapped as Subgrade 3b moderate quality is subject to either moderate soil 21 wetness or droughtiness limitations The former occur to the north east of Broadwater Farm Topsoils typically comprise non-calcareous heavy clay loams passing to slowly permeable clay subsoils These profiles which are represented by Pit 4 are imperfectly drained as indicated by gleying below the topsoil This drainage impedance is partially offset by the dry local climate such that Wetness Class III is appropriate (see Appendix II) The interaction between the heavy topsoils and drainage characteristics with the local climate means that this land is classified as Subgrade 3b This land is subject to significant restrictions on the timing and type of cropping, stocking and cultivating which can successfully take place Within this mapping unit there are a few profiles with medium clay loam topsoils or permeable subsoils The profiles with medium clay loam topsoils were also assessed as Wetness Class III but because of their slightly lighter topsoil texture they were classified as Subgrade 3a The profiles with permeable subsoils are also classified as better agricultural land However at the level of detail of the survey this better quality land cannot be delineated separately

The land adjacent to Greenland Farm and Broadwater Farm suffers from a moderate droughtiness limitation These profiles have much lighter soil textures than the remainder of the site with medium sandy loam topsoils overlying loamy medium sand and medium sand subsoils The profiles were shown in Pit 1 to be stoneless (less than 1%) throughout The interaction between these soil characteristics and the relatively dry climate results in the amount of soil available water being inadequate to meet crop requirements in most years The resultant soil droughtiness limitation means that this land will suffer from lower and less consistent crop yields Fluctuating groundwater levels mean that some of the profiles particularly those in the hollows mentioned in paragraph 16 have gleyed subsoils but they are assessed as Wetness Class I because of the coarse textures of the subsoil

Grade 4

Grade 4 poor quality land has been mapped in a single mapping unit to the north of Engine River The overall limitation to the agricultural use of this land is winter flooding The fields are flooded for up to three weeks most winters as part of a long term management operation for the nearby River Thames and the Desborough Channel The soils of this area are mainly clay topsoils over slowly permeable clay subsoils as shown in Pit 2 A small area has medium sandy loam topsoils and localised gravel deposits lying over the clay subsoil which was seen in Pit 3 The clayey soils mean that the after-effects of the inundation will be more serious than better draining soils as they will remain saturated for longer This severely limits the type and timing of grazing and cultivation operations which can take place

> Huw Lloyd-Jones Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1981) Sheet No 269 Windsor BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South east England 1 250 000 SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
Π	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
III	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent PastureLEY		Ley Grass	RGR	Rough Grazing
SCR		Scrub	CFW	Conife	rous Woodland
DCW	Deciduous Wood				
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Cro	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonines	SS			

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolomitic limestone
СН	chaik	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH g	gravel with non-porous (hard) stones
MSST	soft medium grained sandstone	GS g	gravel with porous (soft) stones
SI	soft weathered igneous/metamor	phic rocl	K

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
<u>ped size</u>	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub-angular blocky PL platy	M massive AB angular blocky PR prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	VF very friable	FR	friable	FM firm	VM very firm
EM extrem	mely firm	EH	extreme	ly hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

Site Nam	ne BROA	DWATER FM	WEYBRID	3E	Pit	Number	• 1	Ρ				
Grid Ref	erence	TQ08006550	Accum Field Land U	ge Annu ulated Capaci Jse and As	Tempe ty Le	erature	e 150 127 Per	19 mm 16 degree 7 days manent Gr degrees	-			
HORIZON 0- 27	TEXTUR MSL	E COLOUR 10YR31		NES >2 0	тот	STONE 0	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
27- 66	LMS	10YR43		0		0		С	WCSAB	FR	G	
66-120	MS	10YR54	56	0		0		С	WCSAB	VF	M	
Wetness	Grade	1	Wetne: Gleyn SPL	ss Clas ng	s		cm cm					
Drought	Grade	38	APW APP	101mm 86mm	MBF MBF		?1 mm 13 mm					
FINAL AL	.C GRADE	3B										

MAIN LIMITATION Droughtiness

Site Name	BROA	OWATER FM	WEYBRIDGE	Pit Number	2	P				
Grid Refe	rence	TQ08206570	Average Annua Accumulated Field Capaci Land Use Slope and Asp	Temperature ty Level	9 150 127 Per	99 mm 96 degree 7 days manent Gr degrees	-			
HORIZON	TEXTUR	E COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0-13	С	10yr32	00 0	0		F				
13- 38	С	10yr52	00 0	0		С	MCPR	٧M	Р	
38-120	С	25 Y62	00 0	0		м	MCPR	VM	Р	
Wetness G	rade	3B	Wetness Class Gleying SPL	s III 13 13	cm					
Drought G		3A 4	AP₩ 119mm APP 96mm		3 mm 3 mm					

MAIN LIMITATION

ļ

Site Nam	e 8RC	ADWATE	RFM 1	VEYBRID	GE	Pit	Number	- 2	P				
Grid Ref	erence	TQ082	06570	Accum Field Land	ige Annu wlated Capaci Use and As	Tempe ty Le	erature	9 150 127 Per	99 mm 16 degree 7 days manent Gr degrees	-			
HORIZON	TEXTU	IRE	COLOUR	STO	nes >2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 13	С	1	0YR32 (00	0		0		F				
13- 38	С	1	0YR52 (00	0		0		С	MCPR	VM	P	
38-120	С	2	5 Y62 (00	0		0		М	MCPR	VM	Ρ	
Wetness	Grade	38		Wetne	ess Clas	s	III						
				Gleyı	ng		13	CIII					
				SPL	2		13	cm					
Drought	Grade	3A		APW	119mm	MBH		3 mm					
				APP	96 mm	MBF	° −2	3 mm					
FINAL AL	C GRADE	4											

MAIN LIMITATION

I

Site Nam	ne BROA	DWATER FM	WEYBRI	DGE	Pit Numbe	r :	3P				
Grid Ref	erence	TQ08506590	Aver	age Annu	al Rainfal	1 60)9 mm				
			Acci	mulated	Temperatur	e 150)6 degree	days			
			Fiel	d Capaci	ty Level		days				
			Land	Use	-	Per	manent Gr	ass			
			Slop	we and As	pect		degrees				
HORIZON	TEXTUR	e coloui	R ST	'ONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 24	MSL	10YR32	00	8	52	HR					
24- 40	SCL	10YR53		0	40	HR	С	WACSAB	VM	Р	
40-120	С	10YR51	00	0	10	HR	M	MCPR	FM	Р	
Wetness	Grade	2	Wetr	ess Clas	s II	I					
			Gley	ing	24	cm					
			SPL	-	24	CIII					
Drought	Grade	38	APW	90 mm	MBW -:	32 mm					
			APP	69 mm	MBP -S	50 mm					
FINAL AL	C GRADE	4									

MAIN LIMITATION

Site Nam	e BRO	ADWATER FM	I WEY	BRIDGE	Pit	Number	. 4	IP				
Grid Refe	erence	TQ0900659	0 A	verage Ar	nnual Ri	ainfall	60					
			A	ccumulate	d Temp	erature	150)6 degree	days			
			F	ield Capa	acity L	evel	127	days				
			L	and Use			Per	manent Gr	ass			
			S	lope and	Aspect			degrees				
HORIZON	TEXTU	RE COLO	UR	STONES >	2 TOT	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 26	HCL	10YR4	3 00	0		0		F				
26- 55	С	25Y 6	3 00	0		0		м	WCPR	FM	Р	
55-120	C	10YR7	3 00	0		0		м	MCPR	FM	Ρ	
Wetness (Grade	3B	W	letness Ci	lass	III						
			G	leying		26	cm					
			S	PL		26	cm					
Drought (Grade	3A	A	.PW 127n	nın MBI	4	5 mm					
				PP 104n	nn MBI		5 mm					

MAIN LIMITATION Wetness

1

ł

SAMP	LE	ASPECT				WETI	NESS	-Wit	IEAT-	-P(DTS-	м	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EXF	DIST	LIMIT		COMMENTS
1	TQ09006610	PGR				1	1	87	-35	90	-29	3B				DR	38	IMP 55
1P	TQ08006550	PGR				1	1	101	-21	86	-33	3B				DR	3B	
2	TQ09106610	PGR		25	45	3	3B	133	11	110	-9	2				WE	3B	
	TQ08206570			13	13	3	3B	119	-3	96	-23	3A	Y			FL	4	
3	TQ09206610	PGR		30	45	3	3B	131	9	108	-11	3A				WE	3B	
-																		
	TQ08506590			24	24	3	2	90	-32		-50	38	Ŷ			FL	4	
	TQ09006590			26	26	3	3B	127		104	-15	-				WE	3B	
	TQ08606600								-108		-105		Y			FL	4	IMP 15
	TQ08706600						•		-108		-105		Ŷ			FL	4	IMP 15
	TQ08806600	PGR				1	2	54	-68	54	65	4				DR	3B	IMP 30
	T0000000000	000					^											THD 20
	T008906600			A E		1	2	54	-68		-65					DR	3B 20	IMP 30
9	TQ09006600			25	50 25	3	3B	106	-16		-8					WE	3B	AGD 80
10	TQ09106600			35	35	3	3B	97		109	-10	38				WE	3B	AGD 70
— 11	TQ09206600			30 20	30 20	3	3B 2P	94 07		106	-13	38 20	Y			WE	3B	AGD 70
	TQ08006590	PGK		20	20	3	3B	87	-35	33	-20	3B	T			FL	4	AGD 70
13	T008106590	DCD		0	20	3	3B	87	-35	00	-20	3B	Y			FL	4	AGD 70
-	TQ08206590			20	20	3	3B	101	-21		-20	3B	Ŷ			FL	4	AGD 90
	TQ08200590			20	20	2	3B 3B	67	-55		-52		Ŷ			FL	4	IMP 45
	TQ08406590			20	20	1	1				-105		, Y			FL	4	IMP 15
	TQ08506590					1	i				-105		Ŷ			FL	4	IMP 15
	1400000000					•	•	• •			,	•	•				•	
18	TQ08606590	PGR				1	1	14	-108	14	-105	4	Y			FL	4	IMP 15
19	TQ08706590			0	20	3	3B	87	-35		-20		Y			FL	4	AGD 70
20	TQ08806590					1	1	152		112	-7					DR	2	3B MAP UNIT
21	TQ08906590			30	30	3	3A	124		106	-13	3A				WE	3B	IMP 90
22	TQ09006590	PGR		30	30	3	3A	129	7	106	-13	3A				WE	3A	38 MAP UNIT
-																		
23	TQ09106590	PGR		30	30	3	3B	130	8	106	-13	3A				WE	3B	
25	TQ07906580	PGR		30	30	3	3B	126	4	103	-16	3A	Y			FL	4	
26	TQ08006580	PGR		25	25	3	3B	82	-40	88	-31	3B	Y			FL	4	AGD 60
_ 27	TQ08106580	PGR		18	18	3	3B	86	-36	98	-21	3B	Y			FL	4	AGD 70
28	TQ08206580	PGR		20	20	3	3B	87	-35	99	-20	3B	Y			FL	4	AGD 70
29	TQ08306580					3	3B	89		101	-18		Ŷ			FL.	4	AGD 70
30	TQ08406580			20	20	3	3B	87	-35		-20	3B	Ŷ			FL	4	AGD 70
31	TQ08506580			0	18	3	3B	86	-36		-21	3B	Ŷ			FL	4	AGD 70
32	TQ08606580			0	15	3	3B	85	-37		-22		Ŷ			FL	4	AGD 70
3 3	TQ08706580	PGR		20	20	3	3B	87	-35	99	-20	3B	Ŷ			FL	4	AGD 70
		202			~~	^	25	<u>.</u> .	~*									400 70
- 34	T008806580			30	30	3	38 20	94		106						WE	3B 20	AGD 70
35	T008906580			35	35	3	38	97 04		109	-10					WE	38 24	AGD 70
36	TQ09006580 TQ07906570			30 25	30 25	3	3A 20	94 125		106 101	-13		v			WE	3A 4	AGD70-3B UNIT
3 8 39	TQ07906570 TQ08006570			25 20	25 20	3 3	3B 3B	125 80	د 42-		-18 -33		Y Y			FL FL	4 4	AGD 60
	100000370	FUR		20	20	3	30	90	-42	00	-33	20	Ŧ			ΓL	•	
40	TQ08106570	PGR		20	20	3	3B	87	-35	gq	-20	3B	Y			FL	4	AGD 70
40	TQ08106370			20	20	3	38	80	-42		-33		Ý			FL	4	AGD 60
-71	, 400200070			20	20	9			76		-55		•			(6	-	

program ALCO12 LIST OF BORINGS HEADERS 16/07/96 BROADWATER FM WEYBRIDGE

		ASPECT				WETN	NE22	- WH	EAI-	-P0	TS-	M	REL	EROSN	FROST	CH	EM	ALC	
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	Ð	P DIS	т	LIMIT		COMMENTS
4 2	TQ08306570	DCP		25	25	3	3B	82	-40	88	-31	3B	Y				FL	4	AGD 60
43	TQ08406570			25	25	3	3B	89	-33		-18	3B	Ŷ				FL	4	AGD 70
44	TQ08506570			0	22	3	3B	88	-34		-19	3B	Ŷ				FL	4	AGD 70
— 45	TQ08606570			õ	25	3	3B	89		101	-18	3B	Ŷ				FL	4	AGD 70
46	TQ08706570			20	50	3	2	112	-10		-30	3A	Ŷ				FL	38	
						_						-	·				• =		
_ 47	TQ08806570	PGR		30	30	3	3A	94	-28	106	-13	3B					WE	3A	AGD70-38 UNIT
48	TQ08906570	PGR		35	35	3	3B	97	-25	109	-10	3B					WE	3B	AGD 70
50	TQ07806560	PGR		30		1	1	127	5	96	-23	3A					DR	3A	3B MAP UNIT
51	TQ07906560	PGR		60		1	1	153	31	112	-7	2					DR	2	3B MAP UNIT
52	TQ08006560	PGR				1	1	51	-71	51	-68	4					DR	3B	IMP 30
[—] 54	TQ08206560	PGR		0	20	3	3B	87	-35	99	-20	3B	Y				FL	4	AGD 70
5 5	TQ08306560			0	20	3	3B	87	-35		-20	3B	Y				FL	4	AGD 70
56	TQ08406560	PGR		0	20	3	3B	87	-35		-20	3B	Y				FL	4	AGD 70
5 7	TQ08506560			0	20	3	3B	87	-35		-20	3B	Y				FL	4	AGD 70
_ 58	TQ08606560	PGR		25		1	1	99	-23	84	-35	3B					DR	3B	
		_				-	_												
59	TQ08706560			20		1	1	97	-25		-37	3B	Y				FL	4	
60	TQ08806560			25		1	1	117	-5		-33	3B					DR	3B	
61	TQ07806550					1	1	105	-17		-30	3A					DR	3A	38 MAP UNIT
63	TQ08006550					1	1	101	-21		-34	3B					DR	3B	
64	TQ08106550	PGR				1	1	101	-21	85	-34	3B					DR	38	
65	TQ08206550	000				1	1	102	-19	07	-32	20					00	20	
66	TQ08206550			60	60	2	1	103	-13		-32 -23	38 38					DR DR	38 3A	AGD100-38 UNIT
- 00 67	T008406550			00	00	1	1	105	-17		-30	34					DR	34	3B MAP UNIT
68	T008506550			30		1	1	90	-32		-46	3B	Y				DR	38	30 PAR ONT
69	TQ08606550					1	1	101	-21		-34	3B	•				DR	3B	
							•				•							00	
71	TQ07806540	PGR				1	1	101	-21	85	-34	3B					DR	38	
74	TQ08106540	PGR		50		1	1	98	-24	81	-38	3B					DR	3B	
75	TQ08206540	PGR				1	1	121	-1	89	-30	3A					DR	3A	3B MAP UNIT
_ 76	TQ08306540	PGR		30		1	1	101	-21	85	-34	38	Ŷ				DR	38	
77	TQ08406540	PGR				1	1	100	-22	83	-36	3B					DR	38	
78	TQ08506542	PGR				1	1	121	-1	89	-30	3A					DR	3A	3B MAP UNIT

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC MPLE DEPTH 0 0 HR 0-30 10YR43 00 5 hc] 1 10YR54 00 00MN00 00 C 0 0 HR 5 30-55 м hc1 1P 0-27 10YR31 00 0 0 0 msl 0 0 0 WCSAB FR G 27-66 10YR43 00 10YR58 00 C lms O WCSAB VF M 66-120 ms 10YR54 56 75YR58 00 C 0 0 0 0 ۵ 0-25 hc1 10YR42 00 2 00MIN00 00 Y 0 0 25-45 hc1 10YR63 00 10YR58 00 C 0 м Y 0 0 45-120 c 10YR51 00 10YR58 00 M 0 Ρ Y Y 0-13 c 10YR32 00 10YR56 00 F 0 0 0 2P 13–38 с 10YR52 00 75YR56 00 C Y 0 0 0 MCPR VM P Y ٧ Y 0 0 0 MCPR 38-120 c 25 Y62 00 05YR46 00 M VMP Y Y 0-30 hc1 10YR43 00 0 0 HR 5 3 00MN00 00 Y 0 0 30 45 hc1 10YR53 00 10YR58 00 C 0 Μ 45-120 c 10YR51 00 10YR58 00 M Y 0 0 0 Ρ Y Y RР 024 ms1 10YR32 00 8 0 HR 52 24 40 sc1 10YR53 63 10YR68 72 C COMNOO OO Y O O HR 40 WACSAB VM P Y Y 10YR51 00 10YR58 00 M Y 0 0 HR 10 MCPR FM P Y 40-120 c ٧ 4P 026 hc1 10YR43 00 10YR66 00 F 0 0 0 25Y 63 00 75YR58 00 M 00MN00 00 Y 0 0 0 WCPR 26-55 с FM P Y ۷ 10YR73 00 10YR58 72 M 0 0 0 MCPR FM P Y 55-120 c Y Y 10YR32 00 0 0 HR 50 5 015 ms1 0 0 HR 50 015 ms1 10YR32 00 6 7 0 30 10YR42 00 0 0 0 hc1 0 0 8 0-30 hc1 10YR42 00 0 0 0 q 0-25 10YR43 00 0 hc1 10YR53 00 10YR68 00 C 00MN00 00 Y 25-50 hc1 0 0 0 10YR51 00 10YR58 00 M 0 0 50-80 c Y 0 ۷ 10YR32 00 75YR58 00 C 0 0 10 0-35 hc1 0 10YR52 00 10YR56 00 M Y 0 0 3570 c 0 Ρ Y Y 0 0 0-30 hc1 10YR54 00 75YR58 00 C 0 11 30-70 10YR52 00 10YR58 00 M Y 0 0 0 Y с Ρ Y 12 0-20 c 10YR32 00 10YR58 00 C 0 0 0 20-70 c 10YR52 00 10YR58 64 M Y 0 0 0 Ρ Y Y

1				M OT	TLES		PED			-S1	ONES-		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	UN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR	POR	IMP	SPL	CALC
									_	_								
13	0-20	c	10YR42 00					Ŷ	0			0		n	v		Y	
	20-70	с	10YR52 00		JU M			Ŷ	U	0		0		Ρ	Y		Ŧ	
— 14	0-20	с	10YR32 00	10YR66 0	0 C				0	0		0						
	20-90	c	10YR52 00	10YR58 0	M 00			Y	0	0		0		Ρ	Y		Y	
•																		
15	0-20	с	10YR32 00						0	0		0						
	20-45	с	10YR52 42	10YR58 0	M 00			Ŷ	0	0		0		Ρ	Y		Y	
16	0.15		10YR43 00						•	•	HR	50						
16	0-15	msl	101843 00						U	U	TIK.	50						
17	0-15	msl	10YR43 00						0	0	HR	50						
-																		
18	0 15	ms]	10YR32 00						0	0	HR	50						
									_			_						
19	0-20	с	10YR42 00					Ŷ	0	0		0		-				
-	20-70	c	10YR51 00		JU M			Ŷ	U	0		0		Ρ	Y		Y	
20	0-30	hc1	10YR42 00						0	0	HR	5						
	30-55	hcl	10YR54 00	10YR58 (00 F		0011100	00	0		HR	5		м				
-	55-120	scl	10YR56 00						0	0		0		м				
21	0-30	hc1	10YR43 00						0	0		0						
•	30-80	с	10YR53 64					Y	_	0		0		P	Y		Y	
	80-120	lms	10YR63 00	75YR58 (00 M			Y	0	0	HR	20		G				
22	030	mcl	10YR43 00	10YR66 ()0 F				0	0		0						
	30-60	c	25Y 53 00					Y		0		0		Р	Y		Y	
	60-120	с	10YR63 00	10YR58 (M 00			Y	0	0		0		Ρ	Y		Y	
-																		
23	0-30	hc1	10YR43 00							0		0						
	30-70	С	10YR63 00					Y		0		0		P	Y		Y	
—	70-120	lms	10YR64 00	10YR58 (M 00			Y	0	0		0		G				
25	030	с	10YR32 00	10YR58 (00 C				0	0		0						
	30-60	c	25Y 52 00					Y	-	Ō		Ō		ρ	Y		Y	
_	60 120		25Y 62 00					Y	0	0		0		Ρ	Y		Y	
26	0-25	с	10YR33 00							0		0						
	25-60	с	25Y 52 00	10YR58 (00 C			Y	0	0		0		Ρ	Y		Y	
27	0-18	с	10YR32 00	757066 0	n c				٨	0		0						
	18-70	c	10YR52 00					Y		0		0		Р	Y		Y	
		-						•	-	-		•			•		•	
28	0-20	c	10YR32 00						0	0		0						
4	20-70	c	10YR62 00	10YR58 (M 00			Y	0	0		0		P	Y		Y	
				1000000					•	~		~						
29	0-25	c	10YR32 00 10YR52 00					v		0		0		D	v		Y	
	25-70	с	101432 00	101K38 L	NO M			T	0	U		0		Ρ	Ŷ		T	

				MOT	TLES		PED			-STC	NES	STRUCT/	SUBS	5			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	IUN C	ONT	COL	GLEY	>2	>6 L	ITH TOT	CONSIST	STR	POR	IMP	SPL C	ALC
30	0-20	с	10YR32 00	10YR66 0	0 C				0	0	0						
	20-70	с	10YR51 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		۷	
31	0-18	c	10YR42 00	75YR58 0	0 C			Y	0	0	0						
	18-70	c	10YR52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
32	0-15	с	10YR42 00	10YR66 0	0 C			Y	0	0	0						
	15-70	c	10YR61 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
33	0-20	c	10YR32 00	10YR66 0	0 C				0	0	0						
	20-70	c	10YR61 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
34	0-30	hc1	10YR32 00	75YR58 0	0 C				0	0	0						
8	30-70	с	10YR52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
35	0-35	hc1	10YR43 00	75YR58 0	0 C				0	0	0						
	35-70	c	10YR62 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
36	0 30	mcl	10YR32 00	75YR56 0	0 C				0	0	0						
-	30-70	c	10YR52 00	10YR58 0	0 M			Y	0	0	0		P	Y		Y	
38	0-25	с	10YR33 00	10YR58 0	0 C				0	0	0						
-	25-50	с	25Y 52 00	10YR58 0	0 C			Y	0	0	0		Ρ	Y		Y	
	50-70	¢	25Y 62 00	75YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
	70-120	lms	10YR62 00	10YR68 0	0 C			Y	0	0	0		G				
39	0-20	с	10YR33 00	10YR56 0	0 C				0	0	0						
	20 60	c	25Y 52 00	10YR58 6	4 M			Y	0	0	0		Ρ	Y		Y	
40	0 20	с	10YR32 00	10YR66 0	0 C				0	0	0						
	20 70	с	10YR52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
41	0 20	с	10YR32 00	10YR66 0	0 C				0	0	0						
8	20 60	с	25Y 52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Ŷ	
42	0 25	с	10YR32 00	75YR58 0	0 C				0	0	0						
•	25 60	c	10YR52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
43	0-25	с	10YR32 00	10YR66 0	Q F				0	0	0						
	25-70	c	10YR52 00	10YR58 0	0 M			Y	0	0	0		P	Y		Y	
44	0-22	с	10YR42 00	75YR58 0	0 C			Y	0	0	0						
-	22-70	с	10YR52 00	10YR58 6	6 M			Y	0	0	0		Ρ	Y		Y	
45	0-25	c	10YR42 00	10YR66 0	0 C			Y	0	0	0						
	25-70	c	10YR41 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	
46	0 20	msì	10YR43 00						0	0	0						
	20 50	lms	10YR63 00	10YR56 0	0 C			Y	0	0	0		G				
	50 120	c	10YR52 00	10YR58 0	0 M			Y	0	0	0		Ρ	Y		Y	

				MOTTL	_ES	PED			-sto	NES	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	I CONT	COL	GLEY	>2	>6 L	ITH TOT	CONSIST	STR	POR 1	MP SPL	CALC
47	0-30	mcl	10YR43 00	10YR56 00	С			0	0	0					
	30-70	с	10YR52 00	10YR58 00	M		Y	0	0	0		Ρ	Y	Y	
4 8	0-35	hc1	10YR43 00	75YR58 00	с			0	0	0					
	35-70	с	10YR52 00	10YR58 00	M		Y	0	0	0		Ρ	Y	Y	
50	0 30	msl	10YR33 00	10YR66 00	с			0	0	٥					
	30-50	ms]	10YR42 00	10YR58 00	С		Y	0	0 H	R 15		м			
	50-120	lms	10YR42 00	75YR58 00	M		Y	0	0	0		G			
51	0-35	msl	10YR31 00					0	0	0					
	35-60	msl	10YR54 00					0	0	0		м			
_	60 120	scl	10YR53 43	10YR56 00	с		Y	0	0	0		м			
52	0-30	msl	10YR31 00					0	0	0					
54	0-20	c	10YR42 00	10YR66 00	С		Y	0	0	0					
	20-70	с	10YR52 00	10YR58 00	М		Y	0	0	0		Ρ	Y	Y	
	0-20	с	10YR42 00	10YR66 00	с		Y	0	0	0					
8	20-70	с	10YR52 00	10YR58 00	м		Y	0	0	0		Ρ	Ŷ	Y	
56	0-20	с	10YR42 00	10YR66 00	с		Y	0	0	0					
_	20-70	c		10YR58 00			Ŷ	0		0		Ρ	Y	Ŷ	
57	0-20	с	10YR42 00	75YR58 00	с		Y	0	0	0					
	20-70	с	10YR52 00	10YR58 00	м		Y	0	0	0		Р	Y	Y	
58	0 25	ms]	10YR42 00					0	0	0					
-	25-65	lms	10YR63 53	10YR58 00	с		Y	0	0	0		G			
8	65-120	ms	10YR73 00				Y	0	0	0		M			
59	0-20	msl	10YR32 00	75YR58 00	с			0	0	0					
	20-70	lms	10YR63 00	10YR56 68	м		Y	0	0	0		G			
	70-120	ms	10YR62 00	75YR58 00	м		Y	0	0	0		M			
60	0-25	msl	10YR54 00	75YR58 00	с			0	0	0					
	25-120	lms	10YR62 64	10YR58 00	м	00mn00 (Y 00	0	0	0		G			
61	0-30	msl	10YR31 00					0	0	0					
-	30-70	lms	10YR43 00					0	0	0		G			
	70-120	ms.	10YR54 00					0	0	0		м			
63	0-30	msl	10YR31 00					0	0	0					
	30-60	ากร โกร	10YR43 00					õ	õ	ŏ		G			
	60-120	тs	10YR44 00					0	0	0		M			
64	0-30	me 1	10YR31 00					0	0	0					
04	30 60	msl lms		10YR56 00	с			0 0	0	0		G			
	50-00 60-120	ms		00MN00 00				0		0		M			
					-			-	•	~		••			

					OTTLE	s	PED			sto	NES	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN			GLE	Y >2	>6 L	тот нта	CONSIST	STR	POR	IMP	SPL	CALC
65	0-30	msl	10YR32 00						0	0	0						
	30-65	lms	10YR54 00						0	0	0		G				
-	65-120	ms	10YR73 00						0	0	0		М				
•																	
66	0-30	สรไ	10YR32 00						0	0	0						
	30-60	lms	10YR64 00						0	0	0		G				
_	60-100	с	10YR52 73	10YR5	8 00 C		000000	00 Y	0	0	0		Ρ	Y		Y	
67	0-30	ms l	10YR32 00						0	0	0						
	30-70	lms	10YR64 00						0	0	0		G				
	70-120	ms	10YR73 00						0	0	0		Μ				
68	0-30	ms]	10YR44 00	75YR5	B 00 C				0	0	0						
•	30-120	ms	10YR63 54	75YR5	8 00 C			Y	0	0	0		Μ				
69	0 30	ms]	10YR42 00						0	0	0						
	30 58	las	10YR44 00						0	0	0		G				
	58 120	ms	10YR63 54	OOMNO	0 00 C				0	0	0		Μ				
71	0 30	msl	10YR31 00						0	0	0						
	30-60	lms	10YR43 00						0	0	0		G				
	60 120	ms	10YR56 00						0	0	0		М				
-																	
- 74	0-30	msl	10YR31 00						0	0	0						
	30-50	lms	10YR43 00						0	0	0		G				
-	50-120	ms	10YR54 53	75YR5	5 00 C		00MN00	00 Y	0	0	0		M				
											_						
75	0-30	msl	10YR43 00							0	0		-				
	30-120	lms	10YR64 00						U	0	0		G				
76	0.00	-	10/022 00						~	•	•						
76	0-30	msl J	10YR32 00							0	0		~				
	30-60	lms 	10YR64 00					Ŷ		0	0		G				
	60-120	ms	10YR73 00	IUTRO	5 UU C			Ŷ	U	0	0		M				
77	0-30	การไ	10YR43 00						0	0	0						
· · · ·	30-55	ศาร เ ไพร	10YR54 00						0		0		G				
	55-120	ms	10YR63 00						0		0		M				
•	00-120	1163	. UTROJ 00						5	5	Ŭ		.1				
78	0-30	msl	10YR43 00						0	0	0						
	30-120	lms	10YR64 44							õ	0		G				
										-	-		-				