A1
Swale Borough Local Plan
Objector Site Fav 9,
Land at Waterham,
near Faversham

Agricultural Land Classification November 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 2011/142/96 MAFF Reference EL 20/0245 LUPU Commission 02563

AGRICULTURAL LAND CLASSIFICATION REPORT

SWALE BOROUGH LOCAL PLAN OBJECTOR SITE FAV 9, LAND AT WATERHAM, NEAR FAVERSHAM, KENT

Introduction

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 9 2 ha of land to the north east of the village of Waterham, near Faversham, Kent The survey was carried out during November 1996
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Swale Borough Local Plan This survey supersedes any previous ALC surveys on this land
- The work was conducted under sub-contracting arrangements by NA Duncan and Associates, and was supervised by the Resource Planning Team in the Guildford Statutory Group in ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- At the time of survey the whole of the site was in permanent grass with the exception of a small area at the southern end which was occupied by an old barn and heaps of sand covered with weeds

Summary

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
3b	8 8	95 7	100 0
Other land	0 4	4 3	
Total surveyed area	8 8		100 0
Total site area	9 2	100 0	

- 7 The fieldwork was conducted at an average density of 1 boring per hectare A total of 9 borings were described which were backed up by data from one soil inspection pit
- All the agricultural land on the site has been mapped as Subgrade 3b moderate quality land. The soils on the site are clays with impeded drainage and therefore the land suffers from a moderately severe wetness and workability limitation.

Factors Influencing ALC Grade

Climate

- 9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor Units Values Grid reference TR 084 628 N/A Altıtude m AOD 15 1479 Accumulated Temperature day°C (Jan June) Average Annual Rainfall mm 595 Field Capacity Days 121 days Moisture Deficit, Wheat mm 127 Moisture Deficit, Potatoes 125 mm

Table 2 Climatic and altitude data

- 11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- Climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. The combination of rainfall and accumulated temperature at this site mean that the area is relatively dry and warm and that the field capacity days are below the average for the south-east of England. This decreases the likelihood of soil wetness limitations. No local climatic factors such as exposure and frost risk, are believed to adversely affect the land quality on the site. This site is climatically Grade 1.

Site

The site lies immediately to the south and slightly higher than the coastal marsh area It is relatively flat and lies at an altitude of 15 m AOD. Nowhere on the site does gradient or micro-relief impose any limitation on the agricultural use of the area.

Geology and soils

- The published geological information for the area (BGS, 1974) shows the whole site to be underlain by Eccene London Clay
- There is no detailed soil survey map for the area but the reconnaissance soil map (SSEW 1983) shows the whole site to comprise soils of the Windsor association. These soils are described as Slowly permeable seasonally waterlogged clayey soils mostly with brown subsoils. Some fine loamy over clayey and fine silty over clayey soils and locally on slopes clayey soils with only slight seasonal waterlogging. (SSEW 1983)

Agricultural Land Classification

- 17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Subgrade 3b

All the agricultural land on the site has been mapped as Subgrade 3b land, moderate quality because of significant soil wetness and workability limitations. Topsoils comprise grey brown clays with common rusty root mottles. These overlie strongly mottled greyish brown clay subsoils which are poorly structured and slowly permeable. In some profiles (see Pit 1), a permeable clay upper subsoil may occur. The lower subsoils typically become browner with less distinct ochreous mottling. The shallow depth to the slowly permeable subsoils and the very dry local climate means that these profiles are assigned to Wetness Class III (see Appendix II). The interaction between the soil drainage status and the heavy textured topsoils is partially offset by the dry prevailing climate such that Subgrade 3b is appropriate. This land has a significant wetness and workability limitation, restricting the versatility of the land principally in terms of the timing of cultivations and stocking if structural damage to the soils is to be avoided.

N A Duncan for the Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1974) Sheet No 273 Faversham BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend.

SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹										
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2										
П	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years										
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years										
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years										
v	The soil profile is wet within 40 cm depth for 211 335 days in most years										
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years										

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map

Soil abbreviations - Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR		Scrub	CFW	Conife	rous Woodland
DCW	Deciduous Wood				
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Cro	ps			

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonines	SS			_

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance, expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an 'S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH g	gravel with non porous (hard) stones
MSST	soft medium grained sandston	GS g	gravel with porous (soft) stones
SI	soft weathered igneous/metamor	phic rocl	ζ

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development WK weakly developed MD moderately developed

ST strongly developed

ped size F fine M medium

C coarse VC very coarse

ped shape S single grain M massive

GR granular AB angular blocky

SAB sub angular blocky PR prismatic

PL platy

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm

EM extremely firm EH extremely hard

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat

APP available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat

MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name SWALE BOROUGH LP FAV 9 Pit Number 1P

Grid Reference TR08106320 Average Annual Rainfall 595 mm

Accumulated Temperature 1479

Field Capacity Level
Land Use

Slope and Aspect

1479 degree days

121 days

Permanent Grass

02 degrees NW

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 27	С	75YR42 00	0	1	HR	С				
27- 40	С	10YR53 00	0	0		M	STCSAB	FM	M	
40- 75	С	10YR62 52	0	0		M	MDCPR	FM	P	
75-120	С	10YR44 54	0	0		C	MDCPR	FM	P	

Wetness Grade 38 Wetness Class III

Gleying 027 cm SPL 040 cm

Drought Grade 3A APW 128mm MBW 1 mm

APP 105mm MBP -20 mm

FINAL ALC GRADE 3B

MAIN LIMITATION Wetness

program ALC012

LIST OF BORINGS HEADERS 17/12/96 SWALE BOROUGH LP FAV 9

page 1

S#	MPI	_E	i	ASPECT				WET	NESS	-WHE	AT-	-P0	TS-	м	REL	EROSN	FROS	Т	CHEM	ALC	
NC)	GRID REF	USE		GRDNT	GLE	Y SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	(P	DIST	LIMIT		COMMENTS
	1	TR08206330	PGR	N	01	030	030	3	3B	125	-2	102	-23	3A					WE	3B	
	1P	TR08106320	PGR	NH	02	027	040	3	3B	128	1	105	-20	3A					WE	3B	
	2	TR08106320	PGR	NM	02	027	027	3	3B	125	-2	102	-23	3A					WE	3B	
	3	TR08206320	PGR	N	01	027	027	3	38	125	-2	102	-23	3A					WE	3B	
	4	TR08306320	PGR	N	01	027	027	3	38	123	-4	100	-25	3A					ME	3B	
_	5	TR08106310	PGR	N	01	027	027	3	38	124	-3	101	-24	3A					₩E	3B	
	6	TR08206310	PGR				027	3	38	132	5	109	-16	3A					WE	3B	S1 gleyed 27
	7	TR08306310	PGR	N	01	027	027	3	3B	124	-3	101	-24	3A					WE	3B	
	8	TR08006300	PGR	W	01	028	028	3	3B	125	-2	102	-23	3A					WE	3B	
	9	TR08006290	PGR	SW	01	027	027	3	38	125	-2	102	-23	3A					WE	3B	

				N	OTTLES		PED			ST	ONES-		STRUCT	/ SU	BS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT	CONSIS	r st	R POR	IMP	SPL	CALC		
1	0-30	c	75YR43 00							0	HR	2								
	30-60	С	10YR53 52						0	_		0			Y		Y			
	60-120	C	75YR44 00	75YR55	00 C			S	0	0		0		Р	Y		Y		sl	gleyed
40			75/040 00	05/046					_	_										
1P	0-27 27-40	C	75YR42 00					v		0	нк	1	CTCCAD	FM 14					100	t motts
		c	10YR53 00				100000	Y		0			STCSAB				v			
	40-75 75-120	C	10YR62 52 10YR44 54				10YR62	S		0			MDCPR MDCPR				Y Y		-1	المستوال
	75-120	C	101844 54	101833	, 00 0			3	v	v		U	HUCFR	rn F	,		,		51	gleyed
2	0-27	С	75YR42 00	75YR46	00 C				0	0		0							100	t motts
	27-75	c	10YR53 00	75YR56	M 00			Y	0	0		0		Р	Y		Υ			
	75-120	c	10YR54 00	10YR56	00 C				0	0		0		P	Y		Υ		s٦	gleyed
3	0-27	С	75YR42 00	75YR46	00 C				0	0		0							roo	t motts
	27-70	С	10YR52 00	75YR56	00 M			Y		0		0			Y		Y			
	70-120	С	75YR44 00	75YR46	00 F				0	0		0		Р	Y		Y			
			75.0.1							_		_								
4		С	75YR43 00							0		2		_	.,		.,		r00	t motts
		C	10YR53 00					Y		0	нк	1			Y		Y	v	- 1	- 3
	90-120	C	10YR44 00	IUYKS	, 00 C			S	U	0		0		۲	Ť		Υ	Y	SI	gleyed
5	0-27	С	10YR43 00	10YR46	5 00 C				0	0	HR	2							roo	t motts
-		c	25Y 52 00					Υ		0	• • • •	0		Р	Y		Υ			
	65-120	=	10YR44 00							0		0		Р			Y			
6	0-27	c	10YR42 00	05YR46	00 M				0	0		0							roo	t motts
	27-50	c	75YR44 00	75YR56	00 C			S	0	0		0		M			Υ		s٦	gleyed
	50-120	C	10YR45 00						0	0		0		P			Y			
_			100-10-00						_	_		_								
7		С	10YR42 00							0	HR	2		_	.,		v		100	t motts
		c	10YR52 00					Y		0		0		P			Y			
	6 5–120	C	10YR53 00	TUTKS	, 00 C			Y	U	0		0		Р	Ť		1			
8	0-28	С	75YR43 00	05YR46	00 F				0	0		0							roo	t motts
	28-75	c	25Y 63 62					Υ	0	0		0		Р	Υ		Y			
	75-120		75YR44 00						0	0		0		P	Υ		Υ			
9	0-27	С	10YR43 00	05YR46	00 C				0	0		0							roo	t motts
	27-80	c	25Y 62 00	75YR68	3 00 M			Y	0	0		0		Р			Y			
	80-120	c	75YR44 00	75YR56	00 F		00MN00	00	0	0		0		P	Y		Y			