A1 Maidstone Borough Local Plan Site 13 The Tynme, Ashford Road Harrietsham Agricultural Land Classification ALC Map and Report July 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

MAIDSTONE BOROUGH LOCAL PLAN SITE 13 LAND AROUND THE TYNME, ASHFORD ROAD, HARRIETSHAM

1 Summary

- 11 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the borough of Maidstone in Kent The work forms part of MAFF's statutory input to the Maidstone Borough Local Plan
- 12 The site comprises approximately 3 hectares of land north of Ashford Road at Harrietsham in Kent An Agricultural Land Classification (ALC) survey was carried out in July 1994 The survey was undertaken at a detailed level of approximately one boring per hectare A total of 4 borings and one soil inspection pit were assessed in accordance with MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long-term limitations on its use for agriculture
- 13 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 14 At the time of the survey the agricultural land on the site was under permanent grassland The land marked as urban includes a private dwelling with garden and a derelict group of workshop buildings Areas marked as non-agricultural include some scrubland with mature trees and a track
- 1 5 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000. It is accurate at this scale, but any enlargement would be misleading.

Table 1 Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site	% of Agricultural Land
3a	19	57 6	100%
Non-agricultural	03	91	
Urban	11	33 3	
Total area of Site	<u>33</u>	<u>100%</u>	

16 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield

17 All of the agricultural land on the site has been classified as Subgrade 3a with soil droughtiness as the main limitation Soils on the site tend to comprise silty clay loams over chalk at varying depths The presence of chalk in the profile directly below the topsoil over much of the site means that there is a restriction on the amount of profile available water for plant growth with a consequent restriction on crop yields Therefore this land can be classified as no better the Subgrade 3a due to a moderate droughtiness limitation

2 Climate

- 21 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 22 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality
- 2.3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site
- 2.4 However climatic and soil factors do interact to influence soil wetness and droughtiness limitations Climatic variables such as field capacity days and moisture deficits are at an average level for this site in a regional context

Table 2 Climatic Interpolation

Grid Reference	TQ 879528
Altitude (m AOD)	115
Accumulated Temperature	1374
°days Jan June)	
Average Annual Rainfall (mm)	748
Field Capacity Days	156
Moisture deficit wheat (mm)	105
Moisture deficit potatoes (mm) 96
Overall Climatic Grade	1

3 Relief

3 1 The site lies at an altitude of about 110-115 m AOD failing gently from north to south

4 Geology and Soils

4 1 The published geological information (BGS 1976) shows the entire site to be underlain by Cretaceous Lower Chalk

4.2 The published soils information (SSEW 1983) shows the site to be underlain by soils of the Coombe 2 association. These are described as well drained fine silty soils over chalk or chalk rubble. Shallow soils in places especially on brows and steeper slopes (SSEW 1983) Detailed field examination broadly confirms this.

5 Agricultural Land Classification

- 51 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

Subgrade 3a

All of the agricultural land on the site has been classified as Subgrade 3a good quality land with soil droughtiness as the main limitation. Soil profiles typically comprise a very slightly stony (2% total flints) medium silty clay loam topsoil and occasionally a similar textured upper subsoil which in turn overlies chalk. A soil inspection pit (Pit no 1) was dug in the north of the site in order to assess the extent of rooting that occurred into the chalk. Evidence of rooting was observed to a depth of 64cm i e 35cm into the chalk. On this basis, the profile available water for other soils over chalk on the site has been calculated. The restricted rooting depths into the chalk and shallow soil depth over the chalk substrate means that there is a moderate droughtiness limitation in these soils which can restrict crop yields. Therefore a classification of subgrade 3a is appropriate. All of the profiles are well drained. Wetness Class I It should be noted that some better quality land is present on the site yet it is not sufficiently extensive to warrant mapping as a separate unit.

ADAS Ref 2007/158/94 MAFF Ref EL20/328 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet 288 Maidstone 1 50 000 Solid and Drift Edition

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatic datasets for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet No 6 Soils of South East England 1 250 000 and Accompanying Legend

Soil Survey of England and Wales (1984) Soils and their use in South East England Bulletin No 15

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hardsurfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply

Woodland

Includes commercial and non-commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes, ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown I

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of Waterlogging ¹								
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²								
п	The soil profile is wet within 70 cm depth for 31-90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years								
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years								
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years								
V	The soil profile is wet within 40 cm depth for 211-335 days in most years								
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years								

Definition of Soil Wetness Classes

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions Database Printout - Boring Level Information Database Printout - Horizon Level Information

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

4 4

S SZL	Sand Sandy Sılt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Sılty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation

6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear

7 STONE LITH Stone Lithology - One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR MSST SI	soft argillaceous or silty rocks soft medium grained sandstone soft weathered igneous/metamo	e GS	gravel with non-porous (hard) stones gravel with porous (soft) stones ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop	ps			

- 3 GRDNT Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			_

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub angular blocky PL platy	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	e MAID	STONE L	.P SITE	13	Pit	Number	- 1	Ρ				
Grid Ref	erence	TQ87805	A F L	verage A ccumulate ield Capa and Use lope and	ed Tempe acity Le	erature	e 137 156 Per	8 mm /4 degree 5 days manent Gr degrees	-			
HORIZON 0- 29 29- 64	TEXTUR MZCL CH	. 10Y)LOUR (R52 00 (R81 00	STONES : 0 0	>2 TOT	STONE 0 0	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
Wetness	Grade	1	G	letness C ileying iPL	lass	I	cm cm					
Drought (Grade	3A		.PW 86 i .PP 90 i			9 mm -6 mm					
FINAL AL	C GRADE	3A										

MAIN LIMITATION Droughtiness

I

program ALCO12

LIST OF BORINGS HEADERS 08/11/94 MAIDSTONE LP SITE 13

	SAMP	LE	ASPECT				WETI	VESS	-WH	EAT-	PO	TS-	м	REL	EROSN	FRO	ST	CHEM	ALC	
	NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	DIST	LIMIT		COMMENTS
	1	TQ87805280	PGR				1	1	86	-19	91	-5	3A					DR	за	
	١P	TQ87805280	PGR				1	1	86	-19	90	-6	3A					DR	3A	JUST 3A
-	2	TQ87905280	PGR				1	1	100	-5	103	7	3A					DR	3A	
_	3	TQ87875273	PGR				1	1	106	1	105	9	3A					DR	3A	IMPEN 80
	4	TQ87805270	PGR		055		1	1	134	29	124	28	2					DR	2	IMPEN100

program ALCO11

SAMPLE	DEPTH	TEXTURE	COLOUR		MOTTLES ABUN	CONT	PED COL				STRUCT/ TOT CONSIST	SUBS STR POR IMP SPL CALC
1	0-30	mzcl	10YR53 00						0	0 HR	2	
	30-65	ch	05Y 81 00						0	0	0	М
_ 1P	0-29	mzcl	10YR52 00						0	0	0	
	29 64	ch	10YR81 00						0	0	0	Μ
2	0-30	mzcl	10YR53 00						0	0 HR	2	
	30-40	mzcl	10YR72 00						0	0	0	м
	40-75	ch	10YR81 00						0	0	0	М
3	0-20	mzcl	10YR53 00						0	0	0	
	20-45	mzcl	10YR73 00						0	0 СН	5	м
	45-80	ch	10YR81 00						0	0	0	м
4	0-30	mzcl	10YR52 00						0	0 HR	2	
	30-55	mzc]	10YR72 00						0	0	0	Μ
	55-70	mzc1	10YR72 00	10YR5	8 00 C			Y	0	0	0	М
	70-105	ch	05Y 81 00					Y	0	0	0	М