TUNBRIDGE WELLS LOCAL PLAN

Site 13 Land south of Chapel Lane Iden Green

TUNBRIDGE WELLS LOCAL PLAN

SITE 13 - LAND SOUTH OF CHAPEL LANE, IDEN GREEN

1 SUMMARY

- 1 1 In June 1992 an Agricultural Land Classification (ALC) survey was carried out on 1 01 ha of land at Iden Green Kent ADAS was commissioned by MAFF to determine land quality affected by the proposal to include this site for development as part of the Tunbridge Wells Local Plan
- The survey work was carried out by members of the Resource Planning
 Team within the Guildford Statutory Group at a detailed level of
 approximately 4 borings per hectare. A total of 4 auger borings were
 made and the site was graded using MAFF s revised guidelines and
 criteria for grading the quality of agricultural land (MAFF 1988)
 These guidelines provide a framework for classifying land according to
 the extent to which its physical and chemical limitations impose long
 term limitations on its agricultural use. At the time of survey the
 site was in permanent pasture which was rather overgrown
- 1 3 The distribution of the grades is shown on the attached ALC map and the area and extent is given in the table below. The map has been drawn at a scale of 1 5000 any enlargement of this would be misleading.

Distribution of Grades and Subgrades

<u>Grade</u>	Area (ha)	<pre>% total agricultural area</pre>
2 3a	0 51 <u>0 50</u>	50 <u>50</u>
Total Area of site	<u>1 01</u>	<u>100</u>

1 4 Land on the site has been graded 2 and 3a The grade 2 land has soils developed from Tunbridge Wells Sands with minor wetness and/or droughtiness limitations. The grade 3a areas are similar in character but contain some heavier subsoil horizons which give rise to an increased wetness limitation.

July 1992 ADAS Ref 2014/999/91 Resource Planning Team ADAS Reading

SAMP	LE	ASPE	T		WET	NESS	WHE	ΑT	PC	TS	M	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	EX	P DIST	LIMIT		COMMENTS
1	TQ80443180	GRA SE	03	035	2	2	144	36	139	36	1				WE	2	
2	TQ80433185	GRA E	01	035 060	3	3A	147	39	134	31	1				WE	3A	
3	TQ80493187	GRA E	01	035 050	3	3A	109	1	112	9	3 A				WE	3A	
4	TQ80383186	GRA S	01	015	1	1	183	75	136	33	1					1	

				-1	10TTLES		PED			STONES	S	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH	TOT C	CONSIST	STR POR	IMP :	SPL CALC	
1	0 20	zl	10YR42 00						0	0	0					
ı													м			
	20 35	zì	25Y 44 00	10,05					0	=	0		M 			
	35 60	1	25Y 64 66	TUYRS	5 00 C			Υ	0		0		M			Imp 60+ fsst
	60 120	fsst						γ	0	0	0		Р			
2	0 20	zl	10YR53 00						0	0	0					
	20 35	zl	10YR53 00						0	0	0		M			
	35 60	mzcl	10YR53 00	10YR46	5 00 C			Υ	0	0	0		M			
	60 90	hzcl	10YR64 00	10YR68	3 00 M			Υ	0	0	0		Р		Y	
	90 120	lms	10YR64 00	10YR68	3 00 C			Υ	0	0	0		M		Υ	
3	0 15	mzcl	10YR52 53						0	0	0					
	15 35	mzcl	10YR53 00		F				0	0	0		M			
	35 50	mzcl	10YR53 00	10YR56	5 00 C			Υ	0	0	0		M			
	50 80	С	10YR73 00					Υ	0	0	0		P		γ	
4	0 15	1	10YR42 00						0	0	0					
	15 50	fszl	10YR53 54					Υ	0	0	0		М			
	50 110	fs	10YR82 68					Ý	0		0		M			Imp 110+ fsst
	110 120							· V	0	0	0		P			2
		. 550						'	•	~	J		•			