TEST VALLEY LOCAL PLAN REVIEW Sites 64 68 Land North of Sandy Lane Abbotswood Hampshire

Agricultural Land Classification ALC Map and Report April 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number1512/169/96FRCA ReferenceEL 15/00292LURET Job Number02467

A1

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY BOROUGH LOCAL PLAN REVIEW SITES 64 68 LAND NORTH OF SANDY LANE ABBOTSWOOD NEAR ROMSEY HAMPSHIRE SEMI DETAILED SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of 79 4 hectares of land located to the north of Sandy Lane in Abbotswood to the north east of Romsey in Hampshire The field survey work was carried out during January 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Borough Local Plan Review The results of this survey supersede any previous ALC information for this land

3 Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA, Reading) The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the majority of the agricultural land at the site was in permanent grass To the south east of the site there was an area in horticultural production (nursery stock) To the south west there were two former gravel pits either side of a track These have been very poorly restored to a lower level if at all The areas shown as Other Land include a number of private dwellings an area of glasshouses an indoor pig unit cattle buildings a bottled gas storage centre a builders yard a pond and some woodland The area shown as Agricultural Land not Surveyed was a free range chicken and duck enterprise to which access was denied by the owner

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of slightly greater than 1 boring in every 2 hectares A total of 43 borings and two soil pits were described 8 The agricultural land on this site has been classified as Subgrade 3a (good quality) Subgrade 3b (moderate quality) Grade 4 (poor quality) and Grade 5 (very poor quality) Limitations to land quality include soil wetness soil droughtiness and land being disturbed

Grade/Other land	Area (hectares)	/ surveyed area	/ site area
3a	20 6	25 9	34 8
3b	28 6	48 4	36 0
4	50	85	63
5	49	83	62
Agricultural land not surveyed	26	N/A	33
Other land	17 7	N/A	22 3
Total surveyed area	59 1	100	74 4
Total site area	79 4		100

Table 1 Area of grades and other land

9 Subgrade 3a quality land has been mapped across the centre and south east of the site The principal limitations are soil wetness and soil droughtiness The soil profiles in the area which are limited by soil wetness commonly comprise a either medium or coarse loamy topsoil which passes to either a medium loamy upper subsoil over clay or passes directly to clay The profiles show evidence of a drainage impedance sufficient given the local climate to place these soils in Subgrade 3a on the basis of soil wetness (see para 10 for the effect of this limitation) The areas limited by soil droughtiness to Subgrade 3a are located principally towards the south east of the site The soils commonly comprise a coarse loamy or sandy topsoil overlying similar subsoils which were commonly slightly stony and occasionally overlie clay at depth In the local climate these non moisture retentive soils are appropriately placed in Subgrade 3a Soil droughtiness affects plant growth and yield especially in drier years

10 Subgrade 3b quality land has been mapped across the north of the site The principal limitation in this area is soil wetness. The soils commonly comprise a medium loamy topsoil and upper subsoil passing to clay at a shallow depth. The profiles show evidence of drainage imperfections such that Subgrade 3b is appropriate. Soil wetness restricts land utilisation by reducing the number of days when trafficking by machinery or grazing by animals may occur without damaging the soil

11 The area of Grade 4 mapped towards the south east of the site is shown in a location where hydrophilic vegetation is common on a low lying area of land The land in this area is wet for much of the year restricting agricultural land use in this area to a level where Grade 4 is appropriate

12 Other areas of Grade 4 and Grade 5 quality land are shown towards the south west of the site In these areas gravel extraction has occurred The areas shown as Grade 4 have either been partially restored with inert material overlain by a shallow very stony medium loam topsoil or comprise gravel beneath a very stony medium loam topsoil The areas shown as Grade 5 do not appear to have been restored Soil materials in this area comprise very shallow extremely stony medium loam upper horizon overlying a banded sand substrate Without remedial treatment agricultural land uses in these areas are severely restricted

FACTORS INFLUENCING ALC GRADE

Climate

13 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

14 The key climatic variables used for grading this site are given in Table 2 below these were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

15 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Factor	Units	Values									
Grid reference	N/A	SU 362 241	SU 366 240	SU 370 236							
Altitude	m, AOD	25	40	50							
Accumulated Temperature	day°C (Jan June)	1524	1507	1496							
Average Annual Rainfall	mm	800	805	811							
Field Capacity Days	days	174	174	175							
Moisture Deficit Wheat	mm	110	108	107							
Moisture Deficit, Potatoes	mm	105	102	100							
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1							

Table 2 Climatic and altitude data

16 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

17 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk, are not believed to significantly affect this area The site is climatically Grade 1

Site

18 The site lies at altitudes in the range 25 50m AOD the highest land being towards the south east The north of the site encompasses two valley features cut back into the main slope separated by a rolling landscape which gently falls to lower ground in the north The south of the site is commonly flatter except towards the east where the landscape is again dissected by valley features None of the slopes on the site are of sufficient gradient to affect land quality

Geology and soils

19 The published geological information for the site (BGS 1974) shows the northern half of the site to be underlain by London Clay The southern half is underlain by Bagshot Sands with an area of plateau gravel drift deposit to the south west

20 The most detailed published soils information for the site (SSEW 1983 and 1984) shows the site to comprise soils of the Windsor and Shirrell Heath 2 associations The Windsor soils are indicated to the north where London Clay is mapped These soils are described as Slowly permeable seasonally waterlogged clayey soils mostly with brown subsoils. Some fine loamy over clayey and fine silty over clayey soils and locally on slopes clayey soils with only slight seasonal waterlogging (SSEW 1983) The Shirrell Heath soil type is mapped towards the south of the site and is described as Well drained sandy soils with a bleached subsurface horizon sometimes over soft rock mainly on heaths and often very acid. Well drained sandy and coarse loamy soils on farmland (SSEW 1983) Soils of the general types described above were found at this site

AGRICULTURAL LAND CLASSIFICATION

The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1

The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix II

Subgrade 3a

Land of good quality has been mapped towards the south and south east of the site in a single mapping unit Principal limitations include soil wetness and soil droughtiness

Two soil types were observed in this area, one principally limited by soil wetness the 24 other by soil droughtiness The area limited by soil wetness is predominantly located towards the north of the mapping unit in the centre of the site In this area the soils comprise a very slightly stony fine or medium sandy silt loam topsoils which was gleyed sometimes This typically passes to a similar or slightly heavier upper subsoil which overlies a gleyed and slowly permeable poorly structured (see 1P Appendix II) clay lower subsoil The drainage impedance caused by the clay horizon leads this land to be placed in Wetness Class IV Consequently given local climatic factors Subgrade 3a is applied when the workability status of the light topsoils is taken into account Occasionally the topsoil comprises medium clay loam and the slowly permeable clay subsoil occurs at a greater depth such that Wetness Class III is appropriate but because the topsoil is less workable. Subgrade 3a is applied Soil wetness restricts land utilisation by reducing the number of days when the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock as well as adversely affecting crop growth and development

The second soil type in this mapping unit is principally located towards the south of the Subgrade 3a map unit and is limited by soil droughtiness Soils in this area are well drained or moderately well drained (Wetness Class I or II) and comprise a very slightly stony (up to 2% v/v total flints) medium sandy loam or loamy medium sand topsoil This passes to similar subsoil horizons which were usually gleyed and considered to be of moderate structure by reference to similar soils in Pit 2 (see Appendix II) On occasion the lower subsoil comprises either medium sand from approximately 85cm or becomes more clayey passing to sandy clay loam and/or clay from between 70 and 95cm These profiles are restricted in terms of their water availability to plants to the extent that moisture balance calculations indicate that Subgrade 3a is the appropriate classification given the local climate Soil droughtiness has the effect of restricting plant growth and yield potential especially in drier years

Occasional observations of a slightly better quality have been mapped in this unit as they were of too few a number and too scattered a distribution to constitute a separate mapping unit at this semi detailed scale of survey

Subgrade 3b

27 Land of moderate quality has been mapped in a single unit towards the north of the site The majority of this area is principally limited by soil wetness although soil droughtiness is limiting in certain areas Soils in this area are characterised by the soil pits 1P and 2P (see Appendix II)

Soils in this area typically comprise a stoneless to slightly stony medium or heavy clay loam topsoil which may be gleyed These may overlie a narrow gleyed medium or heavy clay loam horizon which passes to poorly structured slowly permeable clay or rest directly over the clay The shallow depth to gleying and clayey slowly permeable horizons lead to Wetness Class IV being appropriate which, given the medium textured topsoil leads to Subgrade 3b being applied due to moderate soil wetness limitations The restriction that this causes is described in para 24 but is more severe in this mapping unit

Towards the south of the mapping unit a small area is limited by soil droughtiness. The soils in this area are well drained (Wetness Class I) and essentially similar to those described above in para 25 except that the sandy textures have their water retentiveness reduced further by a significant stone content comprising 10% v/v total flints in the topsoil and up to approximately 50% in the loamy medium sand lower subsoil. In other cases the profile is more sandy comprising medium sands throughout the subsoil. The consequence of this is that these profiles are limited by soil droughtiness to a slightly greater degree than those described above (para 25) with moisture balance calculations indicating a Subgrade 3b classification given the local climate

Grade 4

30 The small area of Grade 4 mapped towards the south east of the site is shown in the vicinity of a wet flush where hydrophilic vegetation is common. The land here is wet for much of the year restricting agricultural land use in this area, due to a severe soil wetness limitation.

31 Towards the south west of the site the land has been disturbed by gravel extraction To the east the land has been restored to some extent but is still at a lower level than the undisturbed land comprising the remainder of the site The principal limitation on the land mapped as Grade 4 is soil droughtiness

32 Soils in this area are highly variable The topsoil comprises either a medium sandy loam or medium clay loam which is slightly to moderately stony (up to 40% v/v total flints including up to 25% > 2cm) In some cases this was impenetrable to the soil auger at 25 30cm Towards the west some profiles were exposed and these have gravel subsoil horizons overlying a poorly structured heavy clay loam lower subsoil at 95cm Other profiles comprise a stone free poorly structured heavy clay loam upper subsoil passing to stoneless moderately structured medium sand to depth In the local climate these well drained (Wetness Class I) profiles are severely limited by soil droughtiness to the extent that Grade 4 is most appropriate Severe soil droughtiness leads this area to be prone to poor plant growth and yield potential in most years Due to the restricted quality of this land it is best suited to grazing use at a low density of stocking

Grade 5

33 To the west of the area disturbed by gravel extraction, the land does not appear to have been restored after extraction This area is at a lower level than that mapped as Grade 4 Here the soil materials comprise a moderately stony (20% v/v total flints) clay or heavy clay loam upper horizon which was on occasion very shallow (10cm) This overlies a very stony (40% v/v total flints) clay substrate impenetrable to the soil auger and spade at 25 35cm The disturbed nature of this area in combination with the lack of soil resources lead this area to have very severe limitations in terms of agricultural potential such that at the time of survey Grade 5 was the appropriate classification the land being suited to rough grazing use only With remedial work the agricultural potential of this land may be increased

> M Larkin Resource Planning Team Eastern Region FRCA, Reading

SOURCES OF REFERENCE

British Geological Survey (1974) Sheet 299 Winchester Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

I

Sample location map Soil abbreviations explanatory note Soil pit descriptions Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Asıde
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 669 fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2/ C common 2 20% M many 20-40% VM very many 40/6+

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft, fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	М	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR fnable	EM extremely firm	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5 % biopores >0.5 mm, a 'Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations
 - APW available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site	Nam	e TESTVA	LLEYLP SIT	ES64 68		Pit	N mbe	1	Ρ				
Gid	Rf	erence SU	36502410	Aver g									
				Accumu 1		•			17 degree	days			
				Field C		ity Le	wel		days				
				Land Us	8			Per	manent Gr	a			
				Slope a	nd As	pect		2	degrees N	E			
HORI	ZON	TEXTURE	COLOUR	STONE	S 2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	22	MCL	10YR41 5	51 0			3	HR	С				
22	60	с	25Y 61 5	51 0			0		M	MDCAB	FM	Ρ	
Wetn	ess	Gade 38	ł	Wetness	C1 5	5	IV						
				Gleying			0	cm					
				SPL			22	CITI					
Drou	ght	G ade		APW	an.	MBin	1	0 mm					
				APP	Ш	MBP	•	0 mm					
FINA	L AL	C GRADE	38										
MAIN	LIM	ITATION	Wetnes										

SOIL PIT DESCRIPTION

Site Nam	me TES	TVAL	LEYLP SIT	ES64	68		Pit	Numbe	2	P				
G id Ref	ference	SU3	6602390	Average A nual Rai fall Accumul ted Temperature Field Capacity Level Land Use Slope and Aspect						15 mm 17 degree 1 days 7 degrees	days			
HORIZON	TEXTU	RE	COLOUR			z	тот	STONE		MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 23			10YR42 0		2			2	HR					
23- 59	LMS		10YR44 5	;4	0			2	HR	С	WKCAB	VF	м	
59 75	LMS		10YR54 5	2	0			0		С	WKCAB	VF	M	
75- 85	MSL		10YR56 6	3	0			0		С	MDCAB	FR	м	
85-120	HCL		25Y 62 0	0	0			0		м	MDCPL.	FR	P	
Wetnes	G ade	1		Wetr	nes (21		I						
				Gley	/ing			23	cm					
				SPL				85	cm					
Drought	Grade	3B		APW	105	imm	MB	1	5 mm					
				APP	72	2mm	MBF	> 3	33 mm					

FINAL ALC GRADE 3B MAIN LIMITATION Droughtiness

2

-

	Y F	A	SPECT				WFT	NESS-	-ખાન	FAT	PO	TS-	м	REL	EROSN	FR	DST	CHEM	ALC	
NO	GRID REF			GRDNT	GLEY	SPI		GRADE		MB		MB	DRT	FLOOD		XP	DIST			COMMENTS
		002				.					P 4.		0.01		-					GUTIENTO
1	SU36402420	PGR	N	3	0	35	4	38		0		0						WE	38	
1P	SU36502410	PGR	NE	2	0	22	4	38		0		0						WE	3B	PIT 60 NR7
2P	SU36602390	LEY			23	85	1	1	105	5	72	33	38					DR	3B	PIT105 AUG120
3	SU36032416	PGR	SE	5	15	35	4	38		0		0						WE	3B	
4	SU36172412	PGR	Ε	4	26	26	4	38		0		0						WE	3B	
5	SU36302410	PGR	N	3	20	38	4	38		0		0						WE	3B	
7	SU36482410	PGR	Ε	2	0	35	4	38		0		0						WE	38	SEE 1P
9	SU36702410	PGR	N	3	25	35	4	38		0		0						WE	3B	
13	SU36402400	PGR			0	35	4	3B		0		0						WE	38	
1 5	SU36602400	PGR	NE	2	25	25	4	38		0		0						WE	38	
• 17	SU36802400	PGR	N	3	0	15	4	38		0		0						WE	38	
_ 19	SU37002400	RGR	N	1	20	20	4	38		0		0						WE	38	
21	SU36302388	PGR			0	20	4	3B		0		0						WE	3B	
E 23	SU36502390	PGR	SW	2	35	70	3	2	125	15	94	11	3A					DR	3A	BORDER G2 DR
24	SU36602390	PGR	N	1	28	85	1	1	116	6	82	23	3A					DR	38	SEE 2P
25	SU36702390	PGR	NF	2	20	35	4	38		0		0						WE	38	
	SU36902390			3	0	28	4	38		ŏ		ŏ						WE	38	
3 3	SU35402380			•	25	70	3	2	143	-	120	15	1						2	
	SU36602375		NM	2	50	70	2	1	140		117	12							1	SL GLEY 25
	SU36742383			4	0	35	4	38		ō		0	•					WE	38	
•.				•	•		•			•		Ť								
38	SU36852380	RGR	NW	5	25	25	4	3B		0		0						WE	38	
39	SU37002380			3	25	35	4	 3B		0		Ō						WE	38	
41					0	10	4	4	39	71	39	66	4				Y		5	IMP 25 V POOR
43	SU36252374	PGR			25	40	4	3A		0		0						WE	3A	
44	SU36302367	PGR			25	40	4	3A		0		0						WE	3A	IMP FLINTS 75
-																				
4 5	SU36402371	PGR			22	45	4	3A		0		0						WE	3A	
46	SU36502370	PGR	N	1	60	95	1	1	192	82	149	44	1						1	
4 8	SU36702370	PGR	NW	2	0	28	4	3A		0		0						WE	3A	
50	SU36902370	HRT	S	2	50	50	3	3A	136	26	113	8	2					WE	3A	SL GLEYED 25
54	SU36052358	rgr			0	0	4	4	36	74	36	69	4				Y		5	IMP 35 V POOR
55	SU36202360	RGR			110	110	1	1	53	57	44	61	4				Y	DR	4	PIT FACE
57	SU36402360	RGR					1	1	86	24	91	14	3B					DR	38	IMP 70 Q3A
59	SU36602360	PGR	W	2	43		1	1	88	22	93	12	38					DR	38	IMP 90 Q3A
61	SU36852360	HRT	W	2			5	4	147	37	111	6	2					WE	4	WET FLUSH
6 3	SU37002360	HRT	W	2	35	95	1	1	91	19	66	39	38					DR	3B	
65	SU36152353	PIT			5	5	2	34	66	44	49	56	4				Y	DR	4	TRENCH
66	SU36302357						1	1	28	82		77					Y	DR		IMP FLINTS 25
67							1	1	43	67		62					Y		4	IMP FLINTS 30
69	SU36532356		W	2		90	1		142	32		6							2	
71	SU36702350	PGR	NH	2	70		1	1	119	9	94	11	3A					DR	3A	
72	SU36802350	PGR	NE	6			1	1	157	47	110	5	2					DR	2	SL GLEYED 25
	SU36902350			2	85		1		119		105	Ō							2	
			••	-			•	•		-		-	-					÷.,	-	

SAMP	LE	A	SPECT				WET	NESS	WHE	AT	PO	TS	M	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
75	SU37102350	HRT	N	1	37	37	4	38		0		0					WE	38	
76	SU37002340	HRT	E	1	25	63	3	3A		0		0					WE	3A	
77	SU36842341	HRT	Ν	2	0		2	1	82	28	61	-44	38				DR	3B	

rog am ALCO11

					-MOTTLES-	PED		STONES	_	STRUCT/	SUBS		
SA	MPLE	DEPTH	TEXTURE	COLOUR	COL ABUN CONT		EY 2					IMP SPL CALC	
_													
	1	0 15	mcl	10YR41 51	10YR46 56 C	١	Y 0	0 HR	5				
		15-35	hc1	10YR51 53	10YR56 00 C	١	Y O	O HR	5		м		
		35-70	с	25Y 61 00	10YR66 00 M	۱	r 0	0	0		ρ	Y	
		•	_						_				
	1P	0 22	mcl		10YR46 56 C		/ 0		3				
		22 60	с	25Y 61 51	10YR68 58 M 2	25Y 52 00 1	/ 0	0	0	MDCAB FI	M P Y	Ŷ	TENDS MDCPR
	2P	0.22		100042 00			•	0.00	~				
	25	023 23-59	msl Ims	10YR42 00	10YR56 00 C			OHR OHR	2	WKCAB VI	- M		
		59 75	lms		10YR58 00 C	1		0		WKCAB VI			
		75-85	msl		75YR56 00 C		/ 0	0		MDCAB F			
		85-120	hcl		10YR58 00 M			ů 0		MDCPL FI		Y	
-		/=•				•	•	•	-		•••		
	3	0 15	mcl	10YR42 00			0	0 HR	2				
		15-35	hc1	10YR51 00	10YR56 00 M	١	r 0	0 HR	5		м		
-		35-70	с	25Y 61 00	10YR58 00 M 0	0 MINO O 00 Y	r 0	0 HR	5		P	Y	
	4	0 26	mcl	10YR42 00			0	0	0				
		26 70	с	25Y 52 00	10YR58 00 M	Y	0	0	0		P	Y	
_													
	5	0 20	ແຕ່	10YR42 00				0	0				
		20 38	hc1		10YR56 00 C			0	0		M		
_		38-70	с	25Y 61 00	10YR68 00 M	Y	0	0	0		P	Ŷ	
	7	0.00		100042 52	100046 56 0			•	~				
	'	023 2335	mcl hcl		10YR46 56 C 10YR56 00 C	Y		0	0 0		м		SEE 1P
		25 35 35-70	c		107R58 00 C		-	0 0	0		M P	Ŷ	
		55-70	ç	231 01 00		ſ	U	v	Ŷ			•	
	9	0 25	mcl	10YR42 00			0	0	0				
		25-35	mcl		10YR56 00 C	γ		0	0		м		
		35 70	с	25Y 61 51	10YR68 00 M	Y	0	0	0		P	Y	
	13	0 20	mcī	10YR41 51	10YR46 56 C	Y	0	0	0				
		20 35	hc1	10YR51 00	10YR56 00 C	Y	0	0	0		м		
		35-70	c	25Y 61 00	10YR68 00 M	Y	0	0	0		Р	Y	
_		•					_		-				
	15	0 25	ണടി	10YR42 00				0	0				
		25-70	с	25Y 61 00	10YR68 00 M	Ŷ	0	0	0		P	Ŷ	
	17	0 15		100042 53	104956 00 0		•	0	0				
-	17	0 15 15 70	mcl c		10YR56 00 C 10YR68 00 M	Y		0 0	0 0		Р	Y	
		15 70	~			ť	U	U I	5		r	T	
	19	0 20	hc]	10YR42 00			0	0	0				
_	-	20-40	hcl		10YR58 00 C	Y		0 HR	2		P	Y	
		40 55	hcl		10YR58 00 C	Y	-		0		P	Y	
		55 70	с		10YR56 58 M	Y			0		Р	Y	
_													
	21	0 20	hcì	10YR42 52	10YR46 56 C	Ŷ	0	0 HR	5				
		20 35	c	10YR53 52	10YR56 00 C	Y	0		0		Р	Y	
		35-70	c	25Y 51 52	10YR58 00 M	Y	0	0	0		Ρ	Y	

page 1

				-MOTTLE	S PED			STON	ES STRUCT,	/ SUBS		1
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT COL	GLEY	(2	6 LI	TH TOT CONSIS	T STR POR	IMP SPL CALC	
23	0 25	ans l	10YR41 00				0	0	0			1
	25-35	ms l	10YR44 54				0	0	0	M		
	35-50	ms I	10YR53 51	10YR56 00 C		Y	0	0	0	М		-
	50 70	lms	25Y 62 00	10YR58 00 M		Y	0	0	0	M		
	70 120	c	25Y 61 00	10YR68 00 M		Y	0	0	0	Р	Y	
24	0 28	msl	10YR42 00				0	0	0			SEE 2P
	28-65	ໄທຮ	10YR54 00	10YR56 00 C		S	0	0	0	м		
	6575	ms l	10YR53 00	10YR58 00 C	OOMNO	0 00 Y	0	0	0	м		
	75-85	scl	10YR62 00	10YR68 00 M		Y	0	0	0	M		
	85-120	c	25Y 61 00	10YR68 00 M		Y	0	0	0	P	Y	1
25	0 20	mcl	10YR42 00				0	0	0			
	20 35	mcl	10YR52 00	10YR56 00 C		Y	0	0	0	M		
	35-70	c	25Y 61 00	10YR68 00 M		Y	0	0	0	Ρ	Y	
27	0 28	hc1	10YR52 53	10YR58 00 C		Y	0	0	0			-
	28 50	ç	10YR71 62	10YR58 00 M		Y	0	0	0	Ρ	Y	
33	0 25	msz 1	10YR42 43				0	0	0			
	25 43	mcl	10YR53 54	10YR56 00 C		Y	0	0	0	M		
	43 70	mcl	10YR53 52	10YR56 58 C		Y	0	0	0	M		
	70 120	c	25Y 52 00	10YR58 00 M		Y	0	0	0	Р	Y	•
35	0 25	mszl	10YR42 00	10YR46 00 C			0	0	0			ROOT MOTTLES
	25-50	msl	10YR54 56	10YR56 00 C		S	0	0	0	м		
	50 70	mcl	10YR53 56	10YR58 00 C		Y	0	0	0	м		
	70 100	hc1	10YR53 00	10YR58 00 C		Y	0	0	0	Ρ	Y	
	100 120	กсไ	10YR53 00	10YR58 00 C		Ŷ	0	0	0	м		
37	0 35	mcl	10YR43 53	10YR56 00 C		Y	0	0	0			
	35-50	c	25Y 72 76	10YR56 00 M		Ŷ	0	0	0	Ρ	Y	
38	0 25	mzcl	10YR42 00				0	0	0			
	25 60	c	10YR53 54	10YR58 00 C		Ŷ	0	0	0	P	Y	
39	0 25	mzcl	10YR54 00				0	0 HR	2			•
	2535	hc1		75YR44 00 C		Y	0	0	0	M		
	35-80	c	25Y 72 00	10YR66 00 M		Y	0	0	0	Ρ	Ŷ	
41	0 10	ohcl	10YR42 00				0	0 HR	5			HUMIC TOPSOIL
	10 25	¢	25Y 52 00				20	0 HR	40	Р	Y	
43	0 25	ms 1	10YR42 00				0	0 HR	5			_
	25-40	scl		10YR56 00 C	OOMNOO	Y 00 Y	0	0 HR	5	м		
	40 70	c	10YR62 00	10YR58 68 M		Y	0	0 HR	10	Ρ	Y	SLSANDY IMPFLINTS70
44	0 25	mszl	10YR42 00				0	0	0			
	25 35	ancl		10YR56 00 C		Y	0	0	0	Μ		
	35 40	hc1		10yR56 00 C		Y	0	0	0	м		•
	40 75	c	25Y 52 00	10YR58 00 M		Y	0	0 HR	5	Р	Y	IMP FLINTS 75

page 2

prog am ALCO11

page	3

					M	OTTLES	PED			STO	NES	ST	RUCT/	SUBS		
SAMD	LE D	FDTH	TEXTURE	COLOUR	COL .		COL	GLEY	2						IMP SPL CALC	
John H			I LATONE						-					-		
4	5 (0 22	fszl	10YR42 00					0	0	c	5				
		2 45	fszl	10YR53 00	10YR56	00 C		Y	0	0	C)		M		
—	4	5-90	с	25Y 61 00	10YR58	00 M		Y	0	0	C)		P	Y	05YR58 MOTTLES ALSO
4	6 (0 23	fszl	10YR43 00		F			0	0	C)				
-	2	3-60	fszl	10YR44 00		F			0	0	C)		M		
_	6	0 95	fszl	10YR53 00	10YR56	00 C		Y	0	0	C)		M		
	9	5-120	hcl	10YR62 00	10YR56	00 M		Y	0	0	C)		Ρ	Y	
4		0-28	fszl	10YR43 00				Y	0	0	C			-		
		8-85	с	25Y 72 76				Y	0	0	0			P	Ŷ	
	8	5-120	ms)	25Y 72 76	10YR56	00 M		Y	0	0	C)		M		
-	•	A A-	. •	100040 00					~	<u>.</u> ,	10 7	5				
5		0 25	mcl	10YR42 00	100050	00 C		c	_	0 F 0 F				м		SLIGHTLY GLEYED
		5-50	hc]	10YR66 00				S	0					M	Y	
		0 60	hc1	10YR56 63				Y Y	0	0 1	ик с С			P	Y	
	6	0 120	с	101630 03	/31636	00 0		T	U	U	Ľ	,		F	r	
5		0 30		25Y 52 61	107058	00 M		v	10	0 1	IR 20	3			Y	
	-	035	c c	25Y 51 61				Ý	0	0 }				Ρ	Ŷ	IMP FLINTS 35
		0 33	C	201 01 01	791830			•	Ť	• ·	IX -X	•		•	·	•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5	5	0 30	mcl	10YR41 00					20	0 }	IR 35	5				
		0 78	gh	10YR56 00					0	0	C)		Ρ		75% FLINTS C MATRIX
_		8 95	- gh	75YR58 00					0	0	C)		Р		75% FLINTS C MATRIX
	9	5 110	gh	75YR46 00					0	0	(2		Р		75% FLINTS C MATRIX
	11	0 120	hcl	05Y 61 00	75YR68	00 M		Y	0	0	C) MDI	CPL F	RP	Y	BORDER CLAY
5	7	0 25	ms 1	10YR41 42					0	0 ł	IR 10)				
	2	5-35	ms i	10YR43 00					0	0 1				M		
	3	5-55	ms]	75YR56 00					0	0 1				M		
		5-65	ms l	10YR54 00					0	0 1				M		
	6	5-70	lurz	10YR56 00					0	0	ir 50)		M		IMP FLINTS 70
-	•			100022 00						•	ID 10					
5		0-25	msl	10YR32 00						0 1				м		
		5-43 2.60	lms l	10YR62 00 25Y 52 31		00 C		Ŷ		0 H 0	KR 15 C			M		
-		360 070	ສດໄ ຫລ່	251 52 31 257 62 32				Ý		0	0			M		
		0 90	ms	25Y 74 00				Ý		0 1				M		IMP FLINTS 90
		0 30	105	23, 74 00	10110.50			•	Ŭ	÷.		•				
6	1	0 30	msl	10YR42 53	10YR56	00 C		Y	0	0 +	IR 2	2				
		0 45	ms l	10YR42 53				Y		0 +				м		
		5-75	mcl	10YR56 64				Ŷ	0	0 F	ir 2	2		м		
		5-110	mzcl	10YR56 64				Y	0	0	0)		M		
_		0 120	hc1	10YR56 64	10YR58	00 C		Y	0	0	C)		Ρ		
6	3 (028	ากร	10YR32 00					0	0 H	IR 1	Ì				
	2	8 35	lms	10YR42 00					0	0 F	ir 1	Ì		М		
	3	5-65	lms	10YR53 54				Y	0	0	0)		м		
		5-95	lms	25Y 63 00				Y	0	0	0)		м		
	9	5-120	с	25Y 63 00	10YR58	00 C		¥	Ð	Ð	C)		Р	Y	

prog am ALCO11

COMPLETE LIST OF PROFILES 03/04/97 TESTVALLEYLP SITES64 68

pag 4

				_	MOTTLES		PED			STO	NES	STRUCT	7 S	UBS					•
SAMPLE	DEDTU	TEXTURE	COLOUR		ABUN	CONT		GI EV	2			T CONSIS	•		NR.	TMP	SPI	CALC	
SAMPLE	DEFIN	ILA I VAL	002001			00111	001		•	0 2					•				_
65	0-5	ms]	10YR44 00	l					10	0 н	R 25								PRE DUG TRENCH
	5-15	hc1	05Y 61 00	10YR6	8 00 M			Y	0	0	0	MDCPL	FR	P	Y				
	15-70	ms	25Y 63 54	75YR5	8 66 M			Y	Û	0	0	WKCAB	VF	M					BANDED COLOURS
	70 120	ms	25Y 61 00	75YR5	8 00 M			Y	0	0	0	WKCAB	VF	М					
66	0 25	mc]	10YR44 00	I					25	0 H	r 40								IMP FLINTS 25
																			-
67	0 20	wcj	10YR42 00							ОН									
	20 30	mcl	10YR44 54						0	0 н	r 40			M					IMP FLINTS 30
	_								_	-									
69	0 15	mcl	10YR42 00							0 H									
	15-30	ແຕ່	10YR43 00							0 H				M				Ŷ	
	30 90	mzc1	10YR53 00		~ ~ ~ ~					00				M			v	Y Y	+5% FLINTS
	90 120	hc1	10YR53 00	IUYKS	6 UU C			Ŷ	U	0 н	R 20			M			Y	Y	
71	0 25	ศรไ	10YR42 00	ł					0	он	R 2								
71	25-50	nnsi nnsi	10YR42 00						ō	0	0			м					
	23-30 50 70	nns Ims	10YR43 00						ō	_	0			M					
	30 70 70-85	ണടി	25Y 63 73		а оо с			Y	õ	-	0			M					
	85-120	as i	10YR68 62					, Y	õ	-	0			M					•
	05 120								-	-	-								
72	0 25	ms 1	10YR43 00)					0	0	0								
	25-120	-	10YR44 00	10YR5	6 00 C			S	0	0	0			M					SLIGHTLY GLEYED
73	0 30	msl	10YR42 00)					0	0 н	R 2								
	30 55	ms1	10YR42 00)					0	0 н	r 2			М					
	55 -6 5	ms l	10YR54 44	ļ					0	0 н	R 2			M					
	65–85	lms	10YR56 00)					0	0	0			М					
	85-120	ms	25Y 64 00) 10YR5	6 00 C			Y	0	0	0			М					
75	0 37	mcl	10YR44 00						2	0 H									
	37 56	hc1	10YR63 66					Y	0	0 8				M			Ŷ		
	56-85	mzcl	10YR63 00					Ŷ		0 H				M					•
	85-120	c	10YR82 63	TUYR5	ю 00 M			Ŷ	0	0	0			٢			Y		
-6	0.05		104043 00						~	۰. ۱۰	0 7								
76	0 25	mcl	10YR43 00		c 00 0			v		0 H				м					
	25-45	ສດີ	10YR44 52 10YR66 00					Y Y	0 0	0 H 0 H				M					-
	45-63	mcl	107R66 62					Y	0					P			Y		
	63-90	С	101600 02	USTRO				1	U	υn	K 10			r			r		
77	0 30	lms	10YR41 51	10YR4	16 00 C			Ŷ	0	0	0								BORDER MEDIUM SAND
	30 50	ms	10YR41 42					Ŷ	Ō		C			M					
	50 70	ms	10YR31 41					Ŷ	0		0			M					
	70 90	ms	25Y 74 00					Ý	0	-	0			M					
	90 115		10YR71 00					Ŷ	0	0	C	i		M					
	115-120		25Y 73 00					Y	0	0	C	1		м					
		-																	-