A1

.

.

Aylesbury Vale Local Plan Land around Aylesbury -Option A (west), Berryfield Agricultural Land Classification Semi-detailed Survey ALC Map and Report July 1996

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference: 0301/038/96 MAFF Reference: EL 03/01385 LUPU Commission: 02511

AGRICULTURAL LAND CLASSIFICATION, REPORT

AYLESBURY VALE LOCAL PLAN LAND AROUND AYLESBURY - OPTION A (WEST), BERRYFIELD.

Introduction

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 151.2 hectares of land to the north west of Aylesbury in Buckinghamshire. The survey was carried out during May 1996.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Aylesbury Vale Local Plan. The results of this survey supersede any previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey, the agricultural land on this site was either in arable crops or permanent grass. The areas of the site shown as Other Land include domestic dwellings towards the east, various tracks and roadways and horse stabling towards the centre of the site.

Summary

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below.

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
3a	22.9	15.2	15.5
3b	124.8	82.5	84.5
Other land	3.5	2.3	-
Total surveyed area	147.7	-	100
Total site area	151.2	100	-

Table 1: Area of grades a	and other land
---------------------------	----------------

7. The fieldwork was conducted at an average density of slightly less than 1 boring per hectare. A total of 99 borings and five soil pits were described.

8. The land at this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality) on the basis of soil wetness, soil workability and soil droughtiness limitations.

9. There are two soil types represented at this site. Over the majority of the site, soil wetness and/or workability are the principal limitations. In these areas, medium to heavy loamy and clayey topsoils and thin upper subsoils overlie slowly permeable clays at shallow to moderate depths in the profile. Slowly permeable horizons cause drainage to be impeded so that land utilisation is restricted. The depth at which these horizons occur determines the severity of the soil wetness restrictions and therefore the ALC grade. In addition, the heavy loam and clay topsoils encountered over much of the site cause soil workability problems insofar as they further restrict the number of days when field working is possible without causing structural damage to the soil.

10. Towards the east and south east of the site, soil wetness and soil droughtiness are equally limiting. The soils commonly comprise medium loamy topsoils and upper subsoils over slowly permeable clays as above, but the lower subsoils become moderately stony. The stone contents of these profiles cause them to be restricted by soil droughtiness as well as soil wetness to Subgrade 3a. Soil droughtiness may affect plant growth and yield in some years.

Climate

11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

12. The key climatic variables used for grading this site are given in Table 2 below and were obtained from the published 5km grid datasets using standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values	
Grid reference	N/A	SP 790 156	SP 785 163
Altitude	m, AOD	75	80
Accumulated Temperature	day°C	1417	1411
Average Annual Rainfall	mm	637	640
Field Capacity Days	days	134	134
Moisture Deficit, Wheat	mm	111	110
Moisture Deficit, Potatoes	mm	104	102

Table 2:	Climatic ar	nd altitude data
----------	-------------	------------------

13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Local climatic factors, such as exposure and frost risk, are not believed to significantly affect the site. The site is climatically Grade 1.

Site

16. The site lies at an altitude between approximately 75 and 80m AOD. The majority of the site is relatively flat. However towards the north west of the site, the land rises slightly. There are no gradients on the site sufficient to affect agricultural land quality.

Geology and soils

17. The published geological information for the site (BGS, 1865) shows the majority of this area to be underlain by Jurassic Kimmeridge Clay. Along the course of the River Thame, which runs close to the south-eastern boundary of the site, river alluvium is mapped as a drift cover. In addition, a band of valley gravel drift deposits is shown passing through part of the eastern section of the site.

The published soils information for the site (SSEW, 1983) shows it to be underlain by 18. soils from the Denchworth and Fladbury 1 associations. The Denchworth association, which covers the majority of the site, is described as having, 'slowly permeable seasonally waterlogged clayey soils with similar fine loamy over clayey soils. Some fine loamy over clayey soils with slight seasonal waterlogging and some slowly permeable calcareous clayey Landslips and associated irregular terrain locally.' (SSEW, 1983). soils. The Fladbury association soils which are mapped towards the south east of the site, in a similar location to the river alluvium on the geology map are described as, 'stoneless, clayey soils, in places calcareous, variably affected by groundwater. Flat land. Risk of flooding.' (SSEW, 1983). Soils similar to those described above were encountered over the majority of the site, however towards the east and south east, significant stone contents in the subsoil were found which are approximately coincident with the mapped band of valley gravel. These affect the land quality assessment in these parts of the site.

Agricultural Land Classification

19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.

20. The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III.

Subgrade 3a

21. Land of good quality has been mapped in two units towards the east and south east of the site. Land in these areas is commonly equally limited by soil droughtiness and soil wetness.

22. Soils in these areas are of two main types. The most common, which occurs over the majority of the area mapped as Subgrade 3a comprises a stoneless to very slightly stony (up to 5% v/v total flints) medium clay loam topsoil, which passes to slightly or moderately stony (up

to 25% v/v total flints), gleyed, permeable medium or heavy clay loam, occasionally clay upper subsoil horizons. From between 50 and 75cm these overlie a moderately or very stony (up to 40% v/v total flints) clay or heavy clay loam horizon which was often impenetrable to the soil auger. The pit observation 5p revealed that clays at this depth were slowly permeable. In the same pit observation, the profile became calcareous from 56cm and passed to a moderately stony (25% v/v total flints), calcareous sandy clay loam lower subsoil horizon. This combination of textures and the stone content present in the profile causes these soils to have restricted water availability, such that in the prevailing local climate Subgrade 3a is appropriate on the basis of a soil droughtiness limitation which can affect plant growth and yield. In addition the presence of gleyed and slowly permeable horizons indicates that a drainage impedance is present in these soils. This is sufficient for them to be placed in Wetness Class III given the local climate. Subsequently Subgrade 3a is assigned when the workability of the medium topsoils is taken into account. Soil wetness causes land utilisation to be restricted as it affects the number of days when land work or grazing may occur without causing damage to the soil. It also adversely affects crop growth and development.

23. The second soil type is essentially similar to that described below (para. 25), except that the topsoil is always a medium clay loam and the upper subsoil is a heavy clay loam or non-slowly permeable clay as in the pit observations 1p and 3p. This passes to a slowly permeable clay horizon at or below 38cm which was not the case in the pit observations. In the prevailing local climate these profiles are principally limited by soil wetness to Wetness Class III and subsequently Subgrade 3a when the workability of the medium clay loam topsoils is taken into account: As above soil wetness affects land utilisation.

Subgrade 3b

24. Land of moderate quality has been mapped over the majority of the site in a single mapping unit. Principal limitations to land quality include soil wetness and topsoil workability.

25. The soil profiles in this area commonly comprise a stoneless to very slightly stony (up to 5% v/v total flints), medium or heavy clay loam or clay topsoil which was occasionally gleyed. This commonly passes to a thin, gleyed, similarly stony heavy clay loam or non-slowly permeable clay upper subsoil. This overlies a gleyed and slowly permeable clay which was commonly very slightly stony (up to 5% v/v flints). Pits 1-4 are representative of the Subgrade 3b unit as a whole and show the variability encountered over the site. In the prevailing local climate these soils are principally limited by soil wetness to the extent that Wetness Classes III and IV are appropriate. Where Wetness Class III is assigned, the less workable heavier topsoils (heavy clay loam and clay) mean that these areas are appropriately placed in Subgrade 3b. Where Wetness Class IV is appropriate topsoil workability is less significant as Subgrade 3b is applied in the prevailing local climate with all the topsoils encountered on this site. Soil wetness causes land utilisation to be restricted as described in paragraph 22.

M Larkin Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

Geological Survey of Great Britain (1865) Sheet 46 s.w, Aylesbury. Solid Edition. 1:63 360 Scale.

Ordnance Map Office: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land.

MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils of South East England. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No. 15. SSEW: Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

ΑΡΡΕΝΟΙΧ Π

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
II	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
III	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

l

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	ELEY:	Ley Grass	RGR:	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW:	Fallow
PLO:	Ploughed	SAS:	Set aside	OTH :	Other
HRT:	Horticultural Crop)S			

- 3. **GRDNT**: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land CHEM: Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC :	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
ST:	Topsoil Stonines	SS			

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations.

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC :	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- **F**: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast
 - F: faint indistinct mottles, evident only on close inspection
 - **D**: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. **STONE LITH**: Stone Lithology One of the following is used.

HR:all hard rocks and stonesSLST:soft oolitic or dolimitic limestoneCH:chalkFSST:soft, fine grained sandstoneZR:soft, argillaceous, or silty rocksGH:gravel with non-porous (hard) stonesMSST:soft, medium grained sandstoneGS:gravel with porous (soft) stonesSI:soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

degree of development	WK: weakly developed ST: strongly developed	MD: moderately developed
<u>ped size</u>	F: fine C: coarse	M: medium VC: very coarse
<u>ped shape</u> .	S: single grain GR: granular SAB: sub-angular blocky PL: platy	M: massive AB: angular blocky PR: prismatic

9. CONSIST: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extre	mely firm	EH: extremel	y hard	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

I

Grid Refe	rence: SP7	78701640	Avera	age Annu	al Rainfall	1: 63	7 mm				
				-	Temperature			days			
			Field	d Capac	ity Level	: 134	days				
			Land	Use		: Pea	5				
			Slop	e and As	spect	: 2	degrees S	É			
HORIZON	TEXTURE	COLOUR	ST	DNES >2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CA
0- 24	С	10YR42 (00	0	3	HR	F				١
24- 37	С	10YR42 (00	0	3	HR	С	MDCSAB	FR	м	Y
37- 60	С	25Y 53 (0	10	HR	С	MDCAB	FM	Р	Y
60- 80	с	25Y 51 (00	0	3	HR	M	WKCAB	FM	Р	١
Wetness G	irade : 3A		Wetn	ess Clas	s:II	t					
			Gley	ing	: 24						
			SPL		: 37	cm					
D roug ht G	rade :		APW	: 111	MBW :	0 mm					
			APP	: 1111	MBP :	0 mm					
	GRADE : 3 TATION : N	l etness	L PIT	DESCRIP	TION						
MAIN LIMI	TATION : N	Wetness SOI URY VDLP,	OPTION	AW	Pit Numbe		P				
MAIN LIMI	TATION : N	Wetness SOI URY VDLP,	OPTION Aver	i AW age Anni		1: 63	17 mm	days			
MAIN LIMI	TATION : N	Wetness SOI URY VDLP,	OPTION Aver Accu	i AW age Anni mulated	Pit Numbe ual Rainfal	1 : 63 e : 141	17 mm	days			
MAIN LIMI Site Name	TATION : N	Wetness SOI URY VDLP,	OPTION Aver Accu Fiel Land	AW age Anni mulated d Capac Use	Pit Numbe ual Rainfal Temperatur ity Level	1 : 63 e : 141 : 134 : 011	17 mm 7 degree 4 days 1 seed Rape	-			
MAIN LIMI	TATION : N	Wetness SOI URY VDLP,	OPTION Aver Accu Fiel Land	AW age Anni mulated d Capac	Pit Numbe ual Rainfal Temperatur ity Level	1 : 63 e : 141 : 134 : 011	17 mm 7 degree days	-			
MAIN LIMI Site Name Grid Refe HORIZON	TATION : N : AYLESB errence: SP TEXTURE	Wetness SOI URY VDLP, 78601670 COLOUR	OPTION Aver Accu Fiel Land Slop	AW age Anni mulated d Capac Use e and As ONES >2	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE	1 : 63 e : 141 : 134 : 011 : LITH	17 mm 7 degree 4 days 5 seed Rape degrees	3	CONSIST	SUBSTRUCTURE	C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25	TATION : N e : AYLESB enence: SP TEXTURE HCL	Wetness SOI URY VDLP, 78601670 COLOUR 10YR42	OPTION Aver Accu Fiel Land Slop ST 00	AW age Anni mulated d Capac Use e and As ONES >2 0	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE 2	1 : 63 e : 141 : 134 : 011 : LITH HR	17 mm 7 degree 6 days 1 seed Rape degrees MOTTLES	STRUCTURE			C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25 25- 34	TATION : N e : AYLESB erence: SP TEXTURE HCL HCL	Ketness SOI URY VDLP, 78501670 78501670 20LOUR 10YR42 1 25Y 42 1	OPTION Aver Accu Fiel Land Slop Slop ST 00	AW age Anni mulated d Capac Use e and A: ONES >2 0 0	Pit Numbe ual Rainfal Temperaturn ity Level spect TOT.STONE 2 2	1 : 63 e : 141 : 134 : 011 : LITH HR HR	17 mm 7 degree 4 days 1 seed Rape degrees MOTTLES M	STRUCTURE	FM	Ρ	C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25	TATION : N e : AYLESB enence: SP TEXTURE HCL	Wetness SOI URY VDLP, 78601670 COLOUR 10YR42	OPTION Aver Accu Fiel Land Slop Slop ST 00	AW age Anni mulated d Capac Use e and As ONES >2 0	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE 2	1 : 63 e : 141 : 134 : 011 : LITH HR	17 mm 7 degree 6 days 1 seed Rape degrees MOTTLES	STRUCTURE			C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25 25- 34 34- 70	TATION : N e : AYLESB erence: SP TEXTURE HCL HCL	Ketness SOI URY VDLP, 78601670 2601670 257 42 1 257 51 1	OPTION Aver Accu Fiel Land Slop ST 00 00 00 00	AW age Anni mulated d Capac Use e and A: 0NES >2 0 0 0 0 0 0	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE 2 2 2 2 2	1 : 63 e : 141 : 134 : 011 : LITH HR HR HR	17 mm 7 degree 4 days 1 seed Rape degrees MOTTLES M	STRUCTURE	FM	Ρ	C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25 25- 34 34- 70	TATION : N e : AYLESB erence: SP TEXTURE HCL HCL C	Ketness SOI URY VDLP, 78601670 2601670 257 42 1 257 51 1	OPTION Aver Accu Fiel Land Slop ST 00 00 00	AW age Anni mulated d Capac Use e and A: 0NES >2 0 0 0 0 0 0	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE 2 2 2	1 : 63 e : 141 : 134 : 011 : LITH HR HR HR HR	17 mm 7 degree 4 days 1 seed Rape degrees MOTTLES M	STRUCTURE	FM	Ρ	C
MAIN LIMI Site Name Grid Refe HORIZON 0- 25 25- 34 34- 70	TATION : N e : AYLESB mence: SP TEXTURE HCL C irade : 38	Ketness SOI URY VDLP, 78601670 2601670 257 42 1 257 51 1	OPTION Aver Accu Fiel Land Slop ST 00 00 00 00 Wetn Gley	AW age Anni mulated d Capac Use e and A: ONES >2 0 0 0 0 0 0 ess Cla: ing : ma	Pit Numbe ual Rainfal Temperatur ity Level spect TOT.STONE 2 2 2 2 55 : IV : 25 : 25 MBH :	1 : 63 e : 141 : 134 : 011 : LITH HR HR HR HR	17 mm 7 degree 4 days 1 seed Rape degrees MOTTLES M	STRUCTURE	FM	Ρ	C.

.

,

SOIL PIT DESCRIPTION

Grid R	eference:	SP78701580		-	nnual Rainfa						
					ed Temperatu			e days			
				and Use	acity Level		days				
					A +	: Whe					
			5	lope and	Aspect	:	degrees				
HORIZO	N TEXTUR	e colou	IR	STONES	2 TOT.STON	E LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	E CA
0- 2	e c	10YR42	00	0	2	HR					
29- 3	в с	10YR53	00	0	2	HR	С	MDCSAB	FM	M	
38- 6	3 C	25Y 53	51	0	2	HR	С	MDCAB	FM	Р	
63- 8	5 C	25Y 61	00	0,	10	SLS	r M	WKCAB	FM	Ρ	١
Wetnes:	: Grade :	38	We	atness C	lass : I	11					
				leying		 9 cm					
			SF			8 cm					
Droughi	: Grade :	34		7w/: 104r	· · · · ·	7 ann					
			AF	PP: 106r	m MBP:	2 mm					
	ALC GRADE	Wetness	L PII	DESCRI	PTION						
MAIN LI	MITATION	: Wetness SOI BURY VDLP,	OPTIC Ave	erage Ani	Pit Numbe nual Rainfal	1:63	7 mm				
MAIN L	MITATION	: Wetness SOI BURY VDLP,	OPTIC Ave Acc)N A₩ erage Ana umulated	Pit Numbe nual Rainfal I Temperatur	1 : 637 e : 1417	7 mm 7 degree	days			
MAIN L	MITATION	: Wetness SOI BURY VDLP,	OPTIC Ave Acc Fie)N AW erage Ana cumulated ald Capad	Pit Numbe nual Rainfal	1 : 637 e : 1417 : 134	7 mm 7 degree days	days			
MAIN L	MITATION	: Wetness SOI BURY VDLP,	OPTIC Ave Acc Fie Lar)N A₩ erage Ana umulated	Pit Numbe nual Rainfal d Temperatur city Level	1 : 637 e : 1417 : 134 : Cere	7 mm 7 degree days				
ite Nar	MITATION me : AYLES ference: S	SOI SURY VDLP, P78601630	OPTIC Ave Acc Fie Lar Sic)N AW erage Ana sumulated ald Capad ad Use ope and a	Pit Numbe nual Rainfal d Temperatur city Level Aspect	1 : 637 re : 1417 : 134 : Cerre : 2 d	7 mm 7 degree days aals degrees S	5	CONSTST	SUBSTRUCTURF	CAI
MAIN L ite Nar irid Rei IORIZON	MITATION ne : AYLES ference: S TEXTURE	: Wetness SOI BURY VDLP, P78601630 COLOUR	OPTIC Ave Acc Fie Lar Sic	ON AW erage Ana sumulated ald Capad ad Use ope and a STONES >	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE	1 : 637 e : 1417 : 134 : Cere : 2 o	7 mm 7 degree days bals Segrees S MOTTLES	5	CONSIST	SUBSTRUCTURE	
MAIN L ite Nar irid Rei IORIZON 0- 25	MITATION ME : AYLES ference: S TEXTURE HCL	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42	OPTIC Ave Acc Fie Lar Sic)N AW erage Ana sumulated ald Capad ad Use ope and a	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3	1 : 637 e : 1417 : 134 : Cere : 2 d : LITH HR	7 mm 7 degree days aals degrees S	STRUCTURE	CONSIST	SUBSTRUCTURE	CAI Y Y
MAIN L Site Nar Srid Res IORIZON 0- 25 25- 40	MITATION he : AYLES ference: S TEXTURE HCL C	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53	OPTIC Ave Acc Fie Lar Sic Sic	ON AW erage Ana cumulated ald Capad d Use ope and a STONES > 1	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2	1 : 637 e : 1417 : 134 : Cerre : 2 0 : LITH HR HR	7 mm 7 degree days bals degrees Segrees MOTTLES C	S STRUCTURE WKCSAB			Y Y
MAIN L ite Nar irid Rei IORIZON 0- 25 25- 40 40- 54	MITATION ne : AYLES ference: S TEXTURE HCL C C	EURY VDLP, SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53 25Y 53	OPTIC Ave Acc Fie Lar Slo 00 00 00	ON AW erage Ana sumulated ald Capad d Use ope and a STONES > 1 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2 2 2	1 : 637 e : 1417 : 134 : Cerce : 2 c : LITH HR HR HR HR	7 mm 7 degree days bals begrees S MOTTLES C C	STRUCTURE WKCSAB MDCAB	FM	P P	Y Y Y
MAIN LI Site Nar Srid Rei KORIZON	MITATION he : AYLES ference: S TEXTURE HCL C	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53	0PTIC Ave Acc Fie Lar Slo 00 00 00 00 00	ON AW erage Ana sumulated and Use ope and a STONES > 1 0 0 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2	1 : 637 e : 1417 : 134 : Cerre : 2 0 : LITH HR HR	7 mm 7 degree days sals degrees S MOTTLES C C C M M	S STRUCTURE WKCSAB	FM FM	Ρ	Y
MAIN L Gite Nar Grid Rei KORIZON 0- 25 25- 40 40- 54 54- 76	MITATION MITATION Ference: S Ference: S TEXTURE HCL C C C C	EURY VDLP, 501 80RY VDLP, 978601630 25Y 42 25Y 53 25Y 53 25Y 52	0PTIC Ave Acc Fie Lar Slo 00 00 00 00 00	ON AW erage Ana sumulated and Use ope and a STONES > 1 0 0 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2 2 2 2	1 : 637 e : 1417 : 134 : Cerre : 2 o : LITH HR HR HR HR	7 mm 7 degree days sals degrees S MOTTLES C C C M M	S STRUCTURE WKCSAB MDCAB STCAB	FM FM FM	P P P	Y Y Y Y
MAIN L Gite Nar Grid Rei KORIZON 0- 25 25- 40 40- 54 54- 76 76-120	MITATION MITATION Ference: S Ference: S TEXTURE HCL C C C C	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53 25Y 53 25Y 52 05Y 72	OPTIC Ave Acc Fie Lar Sic Sic Sic Sic Sic Sic Sic Sic Sic Sic	ON AW erage Ana sumulated ald Capad ad Use ope and a stONES > 1 0 0 0 0 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2 2 2 2 20 ass : IV	1 : 637 e : 1417 : 134 : Cere : 2 o : LITH HR HR HR HR HR SLST	7 mm 7 degree days sals degrees S MOTTLES C C C M M	S STRUCTURE WKCSAB MDCAB STCAB	FM FM FM	P P P	Y Y Y Y
MAIN L Gite Nar Grid Rei KORIZON 0- 25 25- 40 40- 54 54- 76 76-120	MITATION he : AYLES ference: S ference: S ference: C HCL C C C HCL	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53 25Y 53 25Y 52 05Y 72	OPTIC Ave Acc Fie Lar Sic Sic Sic Sic Sic Sic Sic Sic Sic Sic	ON AW erage Ana cumulated and Use ope and a STONES > 1 0 0 0 0 0 0 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2 2 2 2 2 20	1 : 637 e : 1417 : 134 : Cerre : 2 of LITH HR HR HR HR SLST	7 mm 7 degree days sals degrees S MOTTLES C C C M M	S STRUCTURE WKCSAB MDCAB STCAB	FM FM FM	P P P	Y Y Y Y
MAIN L Site Nar Sirid Rei KORIZON 0- 25 25- 40 40- 54 54- 76 76-120 ketness	MITATION he : AYLES ference: S ference: S ference: C HCL C C C HCL	SOI SOI BURY VDLP, P78601630 COLOUR 25Y 42 25Y 53 25Y 53 25Y 52 05Y 72	OPTIC Ave Acc Fie Lar Sic Sic 00 00 00 00 00 00 00 00 00 00 00 00 00	ON AW arage Ana cumulated ald Capad ad Use ope and a STONES >: 1 0 0 0 0 0 0 0 0 0	Pit Numbe nual Rainfal d Temperatur city Level Aspect 2 TOT.STONE 3 2 2 2 20 ass : IV : 0 : 25	1 : 637 e : 1417 : 134 : Cerre : 2 of LITH HR HR HR HR SLST	7 mm 7 degree days sals degrees S MOTTLES C C C M M	S STRUCTURE WKCSAB MDCAB STCAB	FM FM FM	P P P	Y Y Y Y

.

SOIL PIT DESCRIPTION

.

	arence: SP7	5101030	A F L	verage Annua ccumulated ield Capaci and Use lope and Asp	Temperat ty Level	tune: 14 I : 134 : Per		-			
HORIZON	TEXTURE	COLOU	2	stones >2	TOT.STO	NE LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CAL
0- 23	MCL.	10YR31	00	0	0						
23- 38	HCL	10YR53	00	0	0		С	MDCSAB	FR	м	
38- 56	С	10YR53	00	0	15	HR	M	MDCAB	FM	Р	
56-85	С	25Y 62	00	0	20	HR	M	MDCAB	FM	Р	Y
85- 95	SCL	25Y 53	00	0	25	HR	м	WKCSAB	FM	Ρ	Y
Wetness (Grade : 3A		W	etness Class	5;	III					
			G	leying	:	23 cm					
			S	PL	:	38 cm					
Drought (Grade : 3A			PW : 105mm	MBW :	-6 mm					
			A	PP : 100mm	MBP :	-4 mm					

.

LIST OF BORINGS HEADERS 07/06/96 AYLESBURY VDLP, OPTION AH

۰.

	LE	A	SPECT				WET!	NESS	-WH	EAT-	-P0	ITS-	М.	.REL	EROSN	FRC	ST	CHEM	ALC	
NO.	GRID REF				GLEY	SPL	CLASS			MB	AP		DRT	FLOOD	I	EXP	DIST	LIMIT		COMMENTS
_																				
1	SP78501680	OSR	N	2	25	25	4.	38		0		0						WE	38	
I P	SP78701640	PEA	SE	2	24	37	3	3A		0		0						WE	3A	BORING 22
2	SP78701680	OSR	Ν	2	20	20	4	38		0		0						WE	38	
🖬 2P	SP78601670	OSR			25	25	4	38		0		0						WE	38	BORING 4
3	SP78401670	OSR	NW	2	28	28	4	38		0		0						WE	38	
3 P	SP78701580	WHT			29	38	3	38	104	-7	106	2	3A					WE	3B	BORING 74
4	SP78601670	OSR			25	25	4	38		0		0						WE	3B	SEE 2P
4 P	SP78601630	CER	S	2	0	25	4	38		0		0						WE	38	BORING 31
5	SP79201670	PGR	Ε	2	0	30	4	38		0		0						WE	3B	
5P	SP79101630	PGR			23	38	3	3A	105	-6	100	-4	3A					WE	34	BORING 35
6	SP79391670			2	0		2	2	68	-43	68	-36	38					DR	3B	IMP 40 A/B BDR
7				2	28	28	4	38		0		0						WE	38	
_	SP78501660		N	1	25	25	4	3B		0		0						WE	38	
	SP78701660				18	18	4	38		0		0						WE	38	
10	SP78901660	PGR			0	35	4	3B		0		0						WE	38	
	SP79101660			2	25	25	4	3B		0		0						WE	38	
	SP79301660		_	2	0	35	4	3B		0		0						WE	38	
	SP78401650		NW	ı	30	30	4	3B		0		0						WE	38	
14	SP78601650	OSR			18	30	4	3B		0		0						WE	3B	
15	SP78801650	PEA	SE	3	0	25	4	3B		0		0						WE	3B	
							_			_									-	
	SP79001650		_	_	23	23	4	38		0		0						WE	3B	
	SP79201650			2	0	30	4	38		0		0						WE	3B	
	SP79401650			2	0	25	4	38		0		0						WE	3B	
	SP78301640		NH	2	25	25	4	3B	~ ~	0	~~	0						WE	38 24	
- 20	SP78401640	PEA			28		2	3A	81	-30	83	-21	38					WD	3A	IMP 55 SEE 5P
1	0070001000		05	~	25	0 5		20				~						WE	3B	
	SP78501638			2	25	25	4	38		0		0						WE		SEE 1P
22				2	0	50	3	3A 20		0		0							38	SEE IF
	SP78801640		2	2	0	28	4	38		0		0						WE	38	
	SP78921640					25	4	38		0		0						WE	38	
25	SP79101640	РБК			25	25	4	38		U		U						ML	30	
26	SP79201640	000			^	23	4	38		0		0						WE	38	
	SP79201640					2.5 40	3	3A		0		ŏ						WE	3A	
	SP78301630		N	2	23	-	4	38		0		ō						WE	38	
	SP78401630			1		20 55	2	3A		0		ō						WE	3A	
	SP78501630			3	0	30	4	38		0		ō						WE	38	
0.0	3876301030	PEA	3	2	U	30	*	20		U		Ŭ						n.,	50	
- 11	SP78601630	ር የ D	ç	2	25	25	4	38		0		0						WE	38	SEE 4P
	SP78501630			2		23 28	4	38		0		0						WE	38	
	SP78801630			2		28	4	38		0		ō						WE	38	
	SP79001630		5	۲.	25	20 25	4 4	38		0		0						WE	38	
	SP79001630					25 45	4	38 38	113		109		3A					WE	3A	IMP 95 SEE 5P
	GF75101030	FOR			23	7.7	5	<u> </u>	11.5	4	109	5							~~~	
36	SP79201630	PCP			25	50	3	3A		0		o						WE	3A	
	SP79401630					40	3	3A	88		94	-10	3B					WD		IMP 60 SEE 5P
.	3				•															

LIST OF BORINGS HEADERS 07/06/96 AYLESBURY VOLP, OPTION AW

۰.

SAMP	LE	A	SPECT				WET	NESS	-WH	EAT-	-P0	TS-	м	REL	EROSN	FR(OST	CHEM	ALC		
NO,	GRID REF			GRONT	GLEY	SPL		GRADE		MB		MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS	
38	SP78311621			1	28	28	4	38		0		0						WE	38		
39	SP78401620			2	20	20	4	38		0		0						WE	3B		
40	SP78501620			1	0	35	4	38		0		0						WE	38	BORDER 3A	
41	SP78701620			1	0	30	4	38		0		0						WE	38		
42	SP78901620	CER	S	1	0	30	4	3B		0		0						WE	3B		
					-					-		_									-
43	SP79101620				0	20	4	3B		0		0						WE	38		_
44	SP79111618				0	45	3.	3B		0		0						WE	38	BORDER 3A	
45	SP79281618				20	40 45	3	3A 24		0		0						WE	3A		-
46	SP79401620 SP79521619				25 30	45 30	3 4	3A 3B		0		0						WE	3A 20		
47	3879321019	UER			30	50	4	30		v		0						WE	3B		
48	SP78401610	CFR			30	30	4	3B		0		0						WE	3B		
49	SP78601610				28	28	4	38		ō		õ						WE	38		
50	SP78801610				0	28	4	3B		ŏ		0						WE	38		
51	SP79031611				25	33	4	38		0		ō						WE	38		
52	SP79031611				0	35	4	3B		Ő		Ō						WE	3B	IMP FLINTS 65	
					-					•		-									
53	SP79301610	PGR			0	45	3	3A	99	-12	111	7	3A					WD	3A	IMP 70 SEE 5P	
54	SP79401610	PGR			25	50	3	3A		0		0						WE	3A		-
55	SP79501610	CER			28	28	4	38		0		0						WE	38		-
56	SP79601610	CER			25	35	4	3B		0		0						WE	38	BORDER 3A	
57	SP79801610	CER			18	18	4	3B		0		0						WE	38		-
																					_
58	SP78501600	CER			25	25	4	38		0		0						WE	38		
59	SP78701600	CER			28	28	4	38		0		0						WE	38		
60	SP78901600	CER			28	28	4	38		0		0						WE	38		
61	SP79161600				23	55	3	3A	99	-12		6	3A					WD	3A	IMP 70 SEE 5P	
62	SP79151600	CER			45	45	3	3A	100	-11	112	8	3A					WD	3A	IMP 70 SEE 5P	
											•••										
63	SP79301600				25	37	3	3A	88	-23	94	-10	38					WD		IMP FLINTS 60	
64 CF	SP79401600				32	32	4	38		0		0						WE	3B		
65	SP79501600				20	20 25	4 4	38 20		0		0						WE	3B		-
66 67					25 30	25 30		38 38		0		0						WE	38 20		-
07	SP78601590	ULK			50	50	4	30		U		U						WE	3B		
68	SP78801590	CER			30	30	4	38		0		0						WE	38		-
69	SP79001590				30	30	4	3B		ŏ		õ						WE	38	IMP FLINTS 95	-
70					0	25	4	3B		0 0		0						WE	3B		
	SP79201590				0	25	4	3B		0		0						WE	38	IMP FLINTS 55	
	SP79401590				28	40	3	3A	114	3	107	3	3A					WD		IMP 95 SEE 5P	
																		-			
73	SP79601590	CER			25	25	4	3B		0		0						WE	3B		
74	SP78701580	CER			28	40	3	3A		0		0						WE	3A	SEE 3P	
75	SP78901580	CER			30	30	4	38		0		0						WE	38		
76	SP79101580	CER			28	42	3	3A		0		0						WE	3A		
77	SP79211580	CER			65	65	2	2	133	22	111	7	2					₩D	2	SL GLEY 30	
	SP79301580				28		4	38		0		0						WE	38		
79	SP79501580	CER			23	23	4	38		0		0						WE	38		_

.

LIST OF BORINGS HEADERS 07/06/96 AYLESBURY VDLP, OPTION AN

.

.

.

SAMPL NO.		A USE	SPECT	GRDNT	GLEY	SPL		NESS Grade	-WH Ap	eat- Mb	-PO AP	mb Mb	M.F Drt	rel Flood	erosn E)	FROST (P DIST	CHEM LIMIT	ALC	COMMENTS	
	SP78601570 SP78801570	. –			28 28	28 28	4 4	38 38		0 0		0 0					we. We		IMP FLINTS	70
83	SP79001570 SP79101570 SP79201570	CER			0 25 35	30 25 35	4 4 4	38 38 38		0 0 0		0 0 0					WE WE	38 38 38	IMP 50 BDR	3A
86	SP79301570 SP79401570	CER			28 28	28	2 4	2 38	70	-41 0	70	-34 0	38				DR WE	38	IMP 45 A/B	BDR
88	SP79601570 SP78701560 SP78901560	CER	ΝЫ	2	24 30 28	24 55 35	4 3 4	38 3A 3B	88	0 -23 0	96	0 8 0	38				WE WD WE	-	IMP 65 SEE BORDER 3A	5P
91 92	SP79101560 SP79201560 SP79301560	CER CER			35 28 28 0	45 55	3 2 2. 3	3A 2 2 3A	133 70 81 105	-41 -30	110 70 83 110	6 -34 -21 6	38				WE DR DR WD	3A	IMP 45 A/B IMP 55 SEE IMP 80 SEE	5P
94	SP79501560 SP79201550 SP79401550	CER			28 25	55 28	3 4 2	зя 3в 2	90	0	95	0	-				WE	38	IMP 60 SEE	
96 97 98	SP79601550 SP79601550 SP79311540 SP79501540 SP79501530	pgr pgr pgr				45 55 50 22	3 3 3 4	3A 3A 3A 3B	100 103 109	-11 -8		3	3A 3A				WD WD WD WE	3A 3A 3A	IMP 80 SEE IMP 80 SEE IMP 90 SEE IMP FLINTS	5P 5P 5P
							•			-		-								

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

.

page 1

					MOTTLES	·	PED			_51	ONES.		STRUCT/	SU	25				
SAMP	LE	DEPTH	TEXTURE	COLOUR	COL ABUN								CONSIST			IMP	SPL	CALC	
				002000					-										
	1	0-25	с	25Y 42 00	10YR58 00 F				0	0	HR	3							
		25-60	c	25Y 53 63	10YR56 00 M			Y	0	0	HR	2		Ρ			Y		
									•	•		~							
	1P	0-24 24-37	c		10YR56 00 F 10YR56 00 C			Y	0 0		HR HR	3	MDCSAB F	о м				Y Y	PSD AT BORING 22
		37-60	c c		107R58 00 C			Y	0		HR	10		мр	Y		v	Ŷ	PIT TO 80
		60-80	c		107R56 00 C			, Y	õ	o			WKCAB F					Ŷ	+3% CALC FRAGS
			-	201 01 00				•	•	-		-						•	
	2	0-20	hc]	25Y 42 00	10YR58 00 F				0	0	HR	2							BORDERLINE C
		20-45	с	25Y 51 52	10YR58 00 M			Y	0	0	HR	2		Ρ			Y		
		45-60	c	25Y 52 00	10YR56 00 M			Y	0	0	СН	2		Ρ			Y	Y	CALC FRAGS
												_							
i	2P	0-25	hcl	10YR42 00					0	0		2							AT BORING 4
		25-34	hcl		10YR56 00 M			Y	0		HR			MP	Y		Y		PLASTIC/HEAVY
		34-70	с	254 51 00	75YR56 00 M			Ŷ	0	U	HR	۷	MDCAB F	۳P	Ŷ		Ŷ		PIT TO 70
	3	0-28	hcl	25Y 41 00					0	0	HR	2							
	-	28-70	c	-	10YR56 66 M			Y	-	0		2		Р			Y		
			-																
	ЗP	0-2 9	с	10YR42 00					0	0	HR	2							PSD AT BORING 74
		29-38	с	10YR53 00	10YR56 00 C	1	0YR52	00 Y	0	0	HR	2	MDCSAB F	MM					PS0
		38-63	с	25Y 53 51	10YR58 00 C	2	25Y 52 (00 Y	0	0	HR	2	MDCAB F	ΜP	Y		Y		PIT TO 85
_		63-85	с	25Y 61 00	10YR58 00 M	2	25Y 42	52 Y	0	0	SLST	10	WKCAB F	ΜP	Y		Y	Y	+27 FLINTS
	_			40.000					_	•		_							055 00
	4	0-25	hc1		10YR56 00 F				0	0		3							SEE 2P
-		25-32 32-60	hc] c		10YR56 00 C) 00mn00	Y No V	0 0	-	HR	3 2		P P			Y Y		
		32-00	C	231 01 33					Ŭ	Ŭ		L		F			•		
	4P	0-25	hc]	25Y 42 00	10YR56 00 C			Y	1	0	HR	3						Y	AT BORING 31
-		25-40	с	25Y 53 00	10YR58 00 C	2	25Y 52 (00 Y	0	0	HR	2	WKCSAB F	ΜP	Ŷ		Y	Y	
		40-54	с	25Y 53 00	10YR58 00 M	2	25Y 52 (00 Y	0	0	HR	2	MDCAB F	ΜP	Y		Y	Y	
		54-76	c	25Y 52 00	10YR58 00 M	2	25Y 41 1	51 Y	0		HR		STCAB F	ΜP	Y		Y	Y	
-		76-120	hc1	05Y 72 51	10YR68 00 M			Y	0	0	SLST	20	WKCAB F	ΜP	Y		Y	Y	PIT 85 AUG 120
•	_		_					- 4		-									
	5	0-20	mcl		10YR46 00 C			Y	0	0		0							
-		20-30 30-65	hcl		10YR46 00 M			Y Y	0	0	uъ	0 2		M P			Y		CALC FROM 55
		30-03	c		10YR46 00 M			T	Ű	U	nĸ	٤		F			T		CALC FROM 33
	5P	0-23	mcl	10YR31 00					0	0		0							AT BORING 35
		23-38	hc1		10YR56 00 C	1	OYR52 (00 Y		0			MDCSAB F	RM					
		38-56	с	10YR53 00	10YR56 00 M	1	0YR52 (20 Y 00	0	0	HR	15	MDCAB F	ΜP	Y		Y		
		56-85	с	25Y 62 00	10YR58 00 M	2	SY 61 (00 Y	0	0	HR	20	MDCAB F	ΜP	Y		Y	Y	
•		85-95	scl	25Y 53 00	10YR58 00 M			Ŷ	0	0	HR	25	WKCSAB F	MP	Y		Y	Y	PIT 90 IMP 95
				.						_		-							
6		0-25	mcl		75YR58 00 M	1	OYR51 (0		0		• •					
-		25-40	hcl	IUYR41 42	75YR58 00 M			Ŷ	U	0	нK	5		M					IMP FLINTS 40
• •	,	0-28	hcl	25Y 42 00					n	0	HP	2							
			nci c		10YR56 66 M			v	0			2		Р			Y		
			-	-0, 02,00				4	•	•	•	-					•		

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

.

								070					- MICC			CUDC				
	DEDTU	TEXTUDE													STRUCT/				CNIC	
SAMPLE	DEPTH	TEXTURE	COLOUR	C	ωL	ABUN	CONT	ωι.	GL	.E.Y	>2	>0	LIIH	101	CONSIST	SIKM	UK IM	' SPL	CALC	
8	0-25	hcl	25Y 42	52	DOMINOO	00 F					0	0	HR	2						
	2555	с	25Y 61	00	10YR66	68 M				Y	0	0		0		Ρ		Y		
	55-70	с	25Y 61	00	75YR58	00 M		000000	00	Y	0	0	HR	2		Р		Y		
9	0-18	hc]	10YR42	32							0	0	HR	3					Y	BORDERLINE C
	18-45	с	25Y 53	00	10YR56	52 M				Y	0	0	HR	3		Ρ		Y	Y	
	45-70	c	25Y 52	51	10YR56	61 M				Y	0	0	HR	3		Ρ		Y	Y	
10	0-18	ແລ	10YR41							Y	0	•		0						
	18-35	hcl	25Y 52							Y	-	0		0		M				
	35-60	с	25Y 53					00MN00				0		0		P		Y		
	60-70	с	25Y 53	00	10YR56	00 M		00MN00	00	Y	0	0		0		Р		Ŷ	Y	
11	0-25	hcl	25Y 42	ഹ							٥	0		0						
	25-50	c	25Y 52		100058	00 0				Y	-			ŏ		Ρ		v	Y	
		c	25Y 52					10YR51			ŏ			ō		Р			Ŷ	
	30-70	C	231 36	55	101840	00 0		IVINJI	00	I	Ŭ	Ŭ		Ũ		•		•	•	
12	0-19	mcl	10YR41	42	10YR46	00 C				Y	0	0		0						
	1935	hc1	10YR52	53	75YR58	00 M				Y	0	0		0		м				
	35-50	с	25Y 51	52	10YR46	00 M		25Y 53	00	Y	0	0		0		Ρ		Y		
	50-70	c	25Y 52	53	10YR56	00 M				Y	0	0		0		Ρ		Y	Y	
13	0-30	hc]	25Y 42	00							0	0	HR	2						BORDERLINE C
	30-55	c	25Y 52	00	10YR56	00 C		00MN00	00	Y	0	0	HR	2		Ρ		Y		
	55-70	с	05Y 41	00	10YR56	00 M		00MIN00	00	Y	0	0	SLST	5		P		Y	Y	
											_	•								
14	0-18	hc1	10YR42									0		3						
	18-30	hc]	25Y 53							Y		0		5		M				
	30-60	c	25Y 53	51	10YR56	68 M				Ŷ	0	0	HR	5		Р		Y		
15	0-25	с	10YR42	00	10YR56	00 C				Y	0	0	HR	3					Y	
		Č,	25Y 52							Ŷ		0		2		Р		Y	Ŷ	
	20.00	Ÿ								•	•	Ť		-		•				
16	0-23	നറി	10YR42	00	10YR46	00 F					0	0		0						
	23-65	с	25Y 53	00	10YR56	00 C		0011100	00	Y	0	0		Û		ρ		Y		
	65-85	с	25Y 63	00	10yr68	00 M		00MIN00	00	Y	0	0	HR	20		Р		Y	Y	
	85-100	с	05Y 51	61	75YR68	00 M		0011100	00	Y	0	0	HR	10		Ρ		Y	Y	
																				I
17	0-15	mcl	10YR42							Y	0	0		0						l
	15-30	hc1	10YR43	00	10YR46	00 C				Y	0	0		0		м				
	30-40	с	10YR53	00	10YR46	00 M				Y	0	0		0		Р		Y		
	40-65	с	25Y 52	00	10YR46	00 M				Y	0	0		0		P		Y		
10	0-25	mcl	10YR41	00	100044					Y	0	n		0						
18	25-32	mci hcl	10YR51							т Ү		0		õ		P		Y		PLASTIC BORDER C
	25-32 32-70	c	25Y 52							Y Y		0		0		P		Ý		LASTIC DORDER V
	32-70	-	237 32	00	201 30					'	0	J		0		•		ſ		
19	0-25	hc1	25Y 42	00							0	0	HR	2					Y	,
••	25-70	c	25Y 52		10yr58	00 M		0011100	00	Y		0		5		Р		Ŷ	Ŷ	
		-								-	-	-		-		-			-	

.

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

page 3

۰.

.

-																		
				!	OTTLES	S	PED			-STO	NES-		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN		COL.	GLEY					CONSIST		≀ IMP	SPL	CALC	
20	0-28	hcl	25Y 42 00						0	он	R	2						
	28-38	hc1	10YR52 53	10YR58	3 00 C		00MN00	00 Y	0	0 н	IR	2		м				
	38-55	hc1	25Y 64 00	10YR50	5 00 M			Y	0	ОН	R	20		м			Y	IMP FLINTS 55
21	0-25	с	10YR41 00						0	он	IR	2					Y	PSD
•	25-50	С	25Y 42 00	10YR56	5 00 C			Y	0	0 H	IR	2		Р		Y	Y	
)	50-80	c	25Y 61 00	10YR60	576 M			Y	0	0 S	LST	10		Ρ		Y	Y	
22	0-25	hc1	10YR42 00	10YR50	500 C			Y	0	ОН	IR	3					Y	BORDERLINE C
	2550	с	25Y 53 00	10YR58	3 00 M			Y	0	0 н	R	3		м			Y	SEE 1P HCL TO 37
	50-70	с	25Y 51 00	10YR58	3 00 M			Y	0	0 Н	IR	3		Ρ		Y	Y	
23	0-28	hc)	25Y 42 00	10YR56	5 00 C			Y	0	он	R	2					Y	BORDERLINE C
1	28-60	с	25Y 52 00	10YR60	5 00 M			Y	0	0 н	R	2		Ρ		Y	Y	
24	0-25	mcl	10YR41 42	10YR40	500 F				0	0		0						V FIRM
_	25-33	hcl	25Y 42 52					Y	0	0		0		Р		Y		BORDERLINE C
	33-55	с	25Y 52 00	10YR58	3 00 M			Y	0	0		0		Р		Y		
5	55-70	с	05Y 51 61	75YR68	8 00 M			Y	0	0 S	LST	10		Ρ		Y	Y	
25	0-25	നലി	10YR41 00						0	0		0						
	25-45	c	25Y 52 00	10YR6	3 00 M		001100	00 Y	-	ОH	IR	3		Р		Y		
	45-70	c	25Y 56 63	10YR6	5 00 M		00MN00	00 Y	0	0 н	IR	5		Ρ		Y	Y	
26	0-23	mcl	10YR42 00	10YR4	5 00 C			Y	0	0		0						
	23-70	c	25Y 53 52				0011100		0	ОН	IR	3		Ρ		Y		
27	0-23	mcl	10YR42 00	10784	5 00 F				٥	0		0						
	23-40	hc]	10YR53 00				00MN00	00 Y	-	0		0		м				
-	40-70	c	25Y 52 00				001100		-	он	IR	5		Ρ		Y		SPL NOT CONVINCING
28	0-28	hcl	25Y 42 00	107854	5 00 C			Y	n	0 н	IR	2					Y	
20	28-55		25Y 52 53							ОН		2		Ρ		Y		V FIRM
29	0-28	hcl	10YR42 41						•	0 н	D	2						
	28-55	c	25Y 42 00		00 C					0 H		2		м				NO MOTS VISIBLE
	55-80	c	25Y 52 62				DOMNOO	00 Y		0 н		2		P		Y	Y	
30	0-30	hc1	25Y 42 00	104864	. 00 C			Y	•	он	Ð	2					Y	
30	30-50	c	25Y 42 00					Ý		0 H		2		P		Y	Ŷ	
1	50-70	c	257 52 50 257 52 51				00MN00			0 H		2		P		Ŷ	•	NON CALC
	A 45		201 40 00							<u> </u>		-					v	
31	0-25	c	25Y 42 00	10000			00MN00	00 V		он он		2		Б		Y	Y Y	PSD SEE 4P
	25-90 90-100	c mzcl	25Y 53 52 25Y 71 00				UUMNUU	γ		0 5		2 10		P P			Y Y	
32	0-28	hc1	25Y 42 00							0 H		2		~			Ŷ	
	28-40	C	25Y 52 00				00000	Y AD V		0 H		2		P		Y	Y	
1	40-70	c	25Y 52 51	IUYR6	S M C		0011100	00 Y	U	0 H	ĸ	2		Р		¥	Y	

.

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

۰,

----STONES---- STRUCT/ SUBS ---- MOTTLES----- PED SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC Y 0 0 HR 22 0-28 25Y 42 00 10YR66 00 C 2 С ٧ 28-70 с 25Y 52 00 10YR66 00 C Y 0 0 HR 1 Ρ Y Y 10YR42 00 10YR46 00 F 34 0-25 mc1 0 0 D Ρ 25-60 С 25Y 53 52 10YR58 68 C 00MN00 00 Y 0 0 0 Y 60-75 25Y 62 61 10YR68 00 M 00MN00 00 Y Р c 0 0 HR 20 Y Y 75-100 c 05Y 61 00 10YR68 00 M 0 0 SLST 10 Ρ Y Y Y 35 0-25 mcl 10YR42 00 10YR46 00 F 0 0 0 SEE 5P 25-45 10YR53 00 10YR56 00 C hc1 Y 0 0 0 м 25Y 52 00 10YR58 00 M Ρ 45-65 0 0 n С v ۷ D 65-75 C 25Y 63 62 10YR68 00 M Y 0 0 HR 10 Y Y 75-95 scl 25Y 63 62 10YR68 00 M Y Û 0 HR 20 D v Y **IMP FLINTS 95** 0-25 10YR42 00 36 mcl. 0 0 0 25-50 10YR52 00 10YR56 00 C 0 0 hc] Y 0 м 50-80 25Y 53 00 10YR58 00 M 00MN00 00 Y 0 0 HR 5 Ρ Y С 0-20 37 mcl 10YR41 42 75YR46 00 M Y 0 0 0 20-40 hc] 10YR51 52 10YR58 00 M Y 0 0 0 М 40-60 25Y 53 52 10YR58 00 M 0 0 Ρ Y IMP 60 GRAVELLY DOMNO0 00 Y 0 С 38 0-28 25Y 41 00 0 0 HR 3 С 28-70 05Y 51 61 10YR58 00 M 00MIN00 00 Y 0 0 HR 2 Ρ С 25Y 42 00 39 0-20 hc1 0 0 HR 1 Y 20-50 С 25Y 62 63 10YR66 00 C Υ 0 0 HR 1 Ρ Y V HARD & DRY 50-70 25Y 52 51 10YR68 00 M 0 0 0 Ρ Y C 10YR42 00 10YR66 00 C ΔΩ 0-35 നവി Y O D HR 1 35-60 25Y 52 00 10YR66 00 M 0 Ρ С ¥ 0 ٥ ¥ 10YR42 00 10YR66 00 C BORDERLINE C 41 0-30 0 0 HR 2 Y hc1 v 30-58 25Y 52 00 10YR66 00 M Y 0 0 HR 10 Р Y С 25Y 61 00 10YR58 00 M Ρ 58-75 Y 0 0 HR 2 ۷ Y С 10YR42 00 10YR66 00 C 42 0-30 hc1 Y 1 0 HR 2 Y 30-45 25Y 52 00 10YR66 00 C Y 0 0 HR 2 Ρ Y Y С 00MIN00 00 Y 45-60 25Y 63 00 10YR68 00 M 0 0 HR 15 Ρ Y С 25Y 71 00 10YR58 00 M Ρ 60-80 0 0 SLST 5 Y hc1 Y 43 0-20 hc1 10YR41 42 10YR46 00 C Y 0 0 D 25Y 52 53 10YR58 00 M 20-80 00MN00 00 Y Ρ 0 0 0 Y С 0-32 10YR42 00 10YR58 00 C 0 0 44 hc1 Y 0 SOFT 32-45 c 25Y 44 00 75YR58 00 C Y 0 0 HR 1 м Р 45-80 10YR53 00 75YR58 00 M 0 0 HR С Y 2 ٧

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VOLP, OPTION AW

۰.

										51	TONES.		STRUCT/	SUBS			
SAMPLE		TEVTHOR											CONSIST			CALC	
	UEPIN	TEXTURE	COLOUR	ωL	ABUN	CUNT	ωι.	GLET	» <i>C</i>	>0	LIIN		CUNSISI	STR FUR	INP SPL	CALC	
45	0~20	mcl	10YR42 00	75YR4	6 00 F				0	Ó		Ó					
-	20-40	hc1	10YR53 00	75YR5	9 00 C			Y	0	0		0		М			
	40-70	c	25Y 53 00	75YR5	8 00 M		0011100	00 Y	0	0		0		Ρ	Y		
46	0-25	mcl	10YR42 00	10YR4	6 00 F				0	0		0					
	25-45	hc1	10YR53 00	10YR5	6 00 C			Y	0	0		0		м			
	45-80	с	25Y 53 00	10YR5	B 00 M		OOMNOO	00 Y	0	0	HR	5		Р	Y		
	80-90	c	25Y 51 61	10YR6	8 00 M		0011100	00 Y	0	0	HR	10		Ρ	Y		
4 7	0-30	hc]	10YR42 00						0	0		0					
	30-70	c	25Y 53 00	75YR5	B 00 M			Y	0	0		0		Ρ	Y		
	0-30	hc1	10YR41 00						0	0	HR	2				Y	
	30-70	с	25Y 52 53	10YR5	5 00 C			Y	0	0	HR	2		Р	Y	Y	
•	70-80	hc1	25Y 61 00	10YR6	5 00 M			Y	0	0	SLST	10		P	Y	Y	
4 9	0-28	hc)	10YR42 00						0	0	HR	2					
	28-70	c	25Y 52 51	10YR5	B 00 M		000000	00 Y	0	0	HR	2		Ρ	Y		
50	0-28	hc1	10YR42 00	10785	а no c			v	0	0	HR	2					
	28-70	c	25Y 52 00			I	OOMNOO					0		Ρ	Y		
-	0.75								•			~					
51	0-25	mc]	10YR42 00							0		0					
	25-33 33-65	hc1	10YR53 00				004000		0			0 0		M P	v		
		с с	25Y 52 00 25Y 61 62				oomnoo oomnoo					20		P	Y Y		IMP FLINTS 70
			_							_							
52	0-25	mcl	10YR42 00					Y				0					
	25-35 35-65	c c	10YR42 00 25Y 53 00						0			0 2		M P	Y Y		SOFT NOT SPL
	55-05	L L	237 33 00	/3/830	5 00 11			•	v	Ŭ							
53	0-30	mcl	10YR42 00					Y		0		0					
_	30-45	hc1	10YR53 00						0			0		M			
	45-70	c	25Y 52 00	75YR5	300 C	I	OOMNOO	00 Y	0	0		0		Р	Ŷ		
54	0-25	mc1	10YR42 00	10YR4	5 00 F				0	0	HR	2					
	25-50	hc1	10YR53 00	10YR56	5 00 C			Y	0	0		0		м			
	50-70	с	25Y 53 52	10YR5	5 00 M	I	00mn00	00 Y	0	0	HR	5		Р	Y		
-	70-80	hc1	10YR52 00					Y			HR	20		Р	Y	Y	
•	80-100	scì	10YR63 00	10YR5	8 68 M			Y	0	0	HR	25		Ρ	Y	Y	
55	0-28	mcl	10YR41 00						0	0	HR	2					
_	28-80	c	25Y 52 51	10YR56	5 58 M	(DOMNOO	00 Y	0	0	HR	5		Ρ	Y		
56	0-25	mcl	10YR43 00						0	0	HR	3					
-	25-35	hc1	10YR53 00	10YR5	5 00 C			Y	0	0	HR	2		м			BORDERLINE C
-	35-40	с	25Y 53 00					Y	0	0	HR	2		Ρ	Y		
	40-60	c	25Y 52 00	10YR68	3 51 M		0011100	00 Y	0	0		0		Ρ	Y		

.

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

۰,

					MATTI ES	_	PED			C	TONES		STRUCT/	SURS			
SAMPLE	DEPTH	TEXTURE	COLOUR										CONSIST		IMP SPL	CALC	
57	0-18	hzc1	10YR41 42						0	0		0					
	18-60	zc	05Y 51 00	75YR40	556 M			Y	0	0		0		Р	Y		
58	0-25	hc1	10YR41 42						0	n	HR	2					
		c	25Y 53 52	10785	3 00 C	6	OMMNOO	ωv				2		P	Y		
	20 /0	-	201 00 02	101110				vv i	Ť	v	7.113	-		•			
59	0-28	hc1	10YR42 00						0	0	HR	2					
	28-80	c	25Y 53 51	10YR56	300 C			Y	0	0	HR	2		P	Y		
C0	0.00	L . 1										~					
60	0-28	hc1	10YR42 00								HR	2		~	.,		
	28-55	c	25Y 53 00						0			2		P	Y		
	55-70	c	25Y 52 61	10YR6	3 00 M			Ŷ	0	0	HR	2		P	Ŷ		
61	0-23	สตะไ	10YR42 00	10YR40	5 00 F				0	0		0					
	23-55	hc1	25Y 52 00	10YR58	3 00 M	C	DOMNOO	00 Y	0	0		0		M			
	55-70	с	25Y 51 61	10YR68	3 00 M	C	DOMINOO	00 Y	0	0	HR	10		Р	Y		
62	0-35	mcl	10YR43 00						0	0		0					
	35-45	hc1	10YR53 00							0		0		M			
	45-70	с	10YR53 00	75YR58	300 C			Ŷ	0	0		0		Р	Ŷ		
63	0-25	mcl	10YR42 00						٥	0		0					
	25-37	hc1	10YR42 41	75YR50	5 00 C			Y	0			0		M			
	37-60	с	25Y 53 00	75YR58	3 00 C			Y	0	0		0		Р	Y		
64	0-32	hcl	10YR32 33								HR	2		_			
	32-55	с	25Y 52 53				DOMNOO				HR	2		P	Y		
	55-65	c	25Y 52 53	10YR40	5 00 C	(DOMNOO	00 Y	0	0	HR	2		Ρ	Ŷ	Ŷ	
65	0-20	hc1	10YR32 00						0	0	HR	3					
	20-35	с	25Y 52 00	10YR56	5 00 M			Y	0	0	HR	3		Р	Y		
	35-45	¢	25Y 62 00	10YR58	3 00 M	(DOMNOO	00 Y	0	0	HR	3		Ρ	Y		
	45-55	c	25Y 62 00	10YR58	3 00 M	(DOMNOO	00 Y	0	0	HR	8		Ρ	Y	Y	
~~									_	-		_					
66	0-25	hcl	10YR42 00	75.004							HR	5		~			
	25-60	c	25Y 51 00	/51841	58 M			Y	0	0	нк	5		Ρ	Y		
67	0-30	hcl	10YR42 00						0	0	HR	2				Y	BORDERLINE MCL
	30-65	с	25Y 53 52	10YR58	368 M	C	DOMINOO	00 Y	0	0	HR	2		Р	Y	Y	
	65-80	с	25Y 61 00	10YR68	3 00 M			Ŷ	0	0	SLST	10		Ρ	Y	Y	
68	0-30	b _1	10VD61 42						~	~	HR	2					BORDERLINE MCL
08	0- <i>3</i> 0 30-80	hc1 c	10YR41 42 25Y 53 52		2 00 M			v	0			2 2		Ρ	Y		DURDERLINE MUL
	JU-00	- -	231 33 32	TUTKO				ſ	U	U	nĸ	2		r	T		
69	0-30	hcl	10YR42 00						0	0	HR	2					BORDERLINE MCL
	30-75	с	25Y 53 00	107858	368 M			Ŷ	0			2		Ρ	Y		
	75-95	с	25Y 61 00						Ó			20		P	Ŷ	Y	

.

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VOLP, OPTION AW

.

											_							
						10TTLES								STRUCT/	SUBS			
S#	MPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT	CONSIST	STR PC	JR IMP SP	L CALC	
	70	0-25	hc1	10YR52 00	75YR56	3 00 C			Y	۵	0		0					
		25-70	с.	25 Y52 00					Ŷ			HR	2		P	Y		
			-							÷								
	71	0-25	hc1	10YR42 00	75YR46	5 00 C			Y	0	0	HR	3					
		25-55	с	25Y 53 00	75YR58	8 00 M			Ŷ	0	0		0		Ρ	Ŷ	,	IMP FLINTS 55
	72	0-28	wcj	10YR43 00						0	0	HR	2					
		28-40	hc1	10YR53 00					Y	0	0	HR	2		M			
_		40-75	с	10YR53 00				DOMNOO		0	-	HR	2		P	Ŷ		
		75-85	c	10YR53 52	10YR46	5 00 M	(DOMNOO		0		HR	5		P	Ŷ		• · · · · · · · · · · · · · · · · · · ·
		85-95	scl	10YR53 00					Ŷ	0	Q	HR	10		M	Ŷ		IMP 95 GRAVELLY
-	73	0-25	h-3	104042 00						^	•	un	5					
	/3	25-60	hcl c	10YR42 00 25Y 53 00	757044	M			Y			HR HR	5		Р	Y		
		23-00	C	201 00 00	751840	0 00 M			ſ	Ű	U	rux.			r	1		
-	74	0-28	mcl	10YR41 00						0	0	HR	2					SEE 3P
		28-40	c	10YR53 54	10YR56	5 00 C			Y	0		HR	2		M			
		40-70	c	10YR53 00	10YR58	3 00 M	C	DOMNOO	00 Y	0	0	HR	2		Ρ	Ŷ		
		70-90	с	25Y 52 00	10YR58	3 00 M	(DOMINOO	00 Y	0	0	SLST	10		Ρ	Ŷ		
_																		
	75	0-30	hc1	10YR42 00						0	0	HR	2					
		30-45	с	10YR53 00					Ŷ	-	-	HR	2		Ρ	Y		
_		45-90	c	25Y 52 00	10YR58	3 00 M	C	DOMN00	00 Y	0	0	HR	2		Р	Y		
	76	0.20		10/042 00						~	~	00	1					
	70	0-28 28-42	mcî hcî	10YR42 00 10YR53 54		. oo c			Y	-	-	HR HR	2 2		м			
_		42-120		25Y 61 52				OMNOO				HR	2		P	Y		
			C	201 01 32	10 mag				00 1	Ū	v		••		•	•		
	77	0-30	mcl	10YR43 00						1	0	HR	5					
		30-45	mcl	10YR54 00	10YR56	5 00 C			s	0	0	HR	5		M			SLIGHTLY GLEYED
		45-65	hc1	10YR54 00	10YR56	5 00 C			S	0	0	HR	5		м			SLIGHTLY GLEVED
		65-120	с	25Y 52 00	10YR51	68 M	C	DOMNOO	00 Y	0	0	HR	5		Ρ	Y		
	78	0-28	mc]	10YR43 00								HR	3					
		28-60	с	25Y 51 00	75YR58	8 00 M			Ŷ	0	0	HR	5		Ρ	Ŷ		
	79	0-23	1	10/042-00						•	^	110	5					
	/9	23-60	ຫວ່ c	10YR42 00 25Y 51 00	757046	-			Y			HR HR	5 10		P	Y		
		23-40	C	251 51 00	731840) 30 m			,	Ŭ	Ŭ	пк	10		r	T		
	80	0-28	hcl	10YR42 00						0	0		0					
		28-60	c	10YR42 52	10YR58	00 C			Ŷ	0			Ō		P	Y		
		60-85	c	25Y 53 00					Y	0	0		0		Ρ	Y		PLASTIC C
	81	0-58	hcl	10YR42 00						0	0	HR	2					
		28-70	с	25Y 53 00	75YR58	00 M			Y	0	0	HR	2		Ρ	Y		
	~~	0								-	_		-					
	82	0-30 20-30	hc1	10YR42 00					Ŷ			HR	2		•	.,		
		30-70	c	25Y 53 00	701858	UU M			Y	U	0		0		Ρ	Y		

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

---- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 10YR43 00 1 0 HR 5 83 0-25 wc) 25Y 52 00 10YR58 00 M 0 0 HR 5 ρ 25-45 Y Y С 25Y 53 61 75YR58 00 M р 00MN00 00 Y 0 0 HR 5 Y 45-70 С 10YR42 00 0-35 0 O HR 2 84 hc] IMP FLINTS 50 25Y 53 52 75YR58 00 M Y 0 0 HR Ρ Y 2 35-50 С 10YR43 00 2 0 HR 85 0-28 mcl 8 IMP FLINTS 45 25Y 52 00 10YR58 51 M Y O O HR 15 м 28-45 hc] 10YR32 00 1 0 HR 86 0-28 hc] 5 25Y 52 00 10YR68 51 M Y 0 0 HR 5 Ρ Y 28-60 С 0-24 10YR41 42 0 0 HR 2 87 mc1 25Y 41 42 10YR58 00 M 00MN00 00 Y ₽ 24-55 0 O HR 5 Y c 25Y 61 71 10YR68 00 M 0 0 SLST 10 ρ 55-90 Y С 10YR43 00 1 0 HR 5 88 0-30 നറി 30-45 10YR41 00 75YR58 00 C 0 0 HR 15 М V. hc1 10YR53 00 75YR58 00 C 45-55 hc1 Y 0 0 HR 25 м IMP FLINTS 65 55-65 С 10YR53 00 75YR58 00 M Y 0 0 HR 30 Ρ Y 10YR43 00 O O HR 0-28 2 89 mcl 10YR53 00 10YR58 00 M 28-35 Y O O HR 2 м hc] 25Y 51 61 75YR58 68 M 0 0 HR 35-60 С Y 2 Ρ Y 0 0 HR 10YR43_00 2 90 0-35 mc1 10YR53 00 75YR58 00 M Y 0 0 0 35-45 mc1 м 45-70 25Y 61 00 75YR68 58 M Y 0 0 0 ρ Y С 10YR43 00 91 0-28 mcl 1 0 HR 8 IMP FLINTS 45 28-45 25Y 53 00 10YR66 00 M Y O O HR 15 Μ hc1 10YR43 00 1 0 HR 5 92 0-28 mcl 10YR53 00 10YR56 00 M Y 28-40 hc) OOHR 10 м 40-55 10YR53 00 10YR68 56 M 00MN00 00 Y 0 0 HR 30 Μ IMP FLINTS 55 hc] 10YR41 42 10YR46 00 C 93 0-22 Y 0 0 HR 2 mc] 10YR53 00 10YR58 00 C 0 0 HR 22-40 hc1 Y 2 М 10YR53 00 10YR58 00 M Y 0 0 HR 2 40-55 м hc1 25Y 53 63 10YR58 68 M 0 0 HR 55-70 Y 2 Ρ С 25Y 61 62 10YR58 00 M 0 0 HR 20 Y Y +20% SLST 70-80 Y м hc1 94 0-28 mc1 10YR43 00 0 0 HR 3 28-60 25Y 51 53 75YR68 00 M 00MN00 00 Y 0 0 HR 8 Ρ Y с 10YR42 43 10YR46 00 F 0 0 HR 0-25 2 95 mcl 0 0 HR 10YR53 00 10YR56 00 C Y 25-45 hc1 2 Μ 45-55 hc1 10YR53 00 10YR56 00 C 00MN00 00 Y 0 0 HR 10 м 25Y 63 53 10YR58 68 M Y OOHR 40 м IMP FLINTS 60 55-60 hc1

COMPLETE LIST OF PROFILES 07/06/96 AYLESBURY VDLP, OPTION AW

۰.

SAM	PLE	DEPTH	TEXTURE	COLOUR	MOTTLE: Col Abun		GLEY					STRUCT/ CONSIST		IMP SPL	. CALC	
	96	0-22 22-45 45-70 70-80	mcl hcl c c	10YR53 00 10YR53 52	10YR45 00 F 10YR56 00 C 10YR56 00 C 10YR58 68 M	DOMINOO DOMINOO		0	0 0 0 0	HR HR	2 2 2 30		M P P	Y Y		IMP FLINTS 60
ł	97	0-22 22-55 55-70 70-80	mcl hcl c scl	25Y 52 00	10YR56 00 C 10YR56 00 M 10YR68 00 M	Domnoo Domnoo		0	0 0 0	HR HR	2 5 10 30		M P M	Y Y		IMP FLINTS 80
	98	0~25 25-50 50-75 75-90	mc1 hc1 c c	10YR53 00 25Y 53 00	10YR56 00 C 10YR58 00 C 10YR56 00 M 10YR68 00 M	Comnoo Comnoo		0 0	0 0 0 0	HR HR	2 2 5 20		M P P	Y Y		IMP FLINTS 90
	99		mcl c c c	25Y 53 00	10yr58 00 C 10yr58 68 M 10yr58 68 M	Comnoo Comnoo		0	0 0 0 0	HR HR	2 2 10 20		P P P	Y Y Y		IMP FLINTS 90

.

.