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1. Executive summary

In M arch 2000 athreeyear project entitled Collabor ative Agreement for developing remote
sensing techniques for marine SAC monitoring was initiated between English Nature and the
Environment Agency’s Nationd Centrefor Environmenta Dataand Surveillance (NCED S).
After discussion with Engish Nature, arange of proposed habitats were considered to be of
interest to bath parties. These were sdine lagoons, inter-tida mudflats, vegetated coasta
shing e, sdtmarsh and sand dunes. Factors affectingthe status and extent of these habitats
and an explanation of how remote sensing techniques could be employed to measure such
attributes over timewere included within the initiad proposd discussed with Engish Nature
on 4 August 2000; Proposal to develop remote sensing techniques for the measur ement of
environmental changein coastal habitats.

Three main areas of study were identified that are critical for the use of remote sensingin
habitat monitoring:

. Data preparation and accuracy
. Image classification and habitat mapping
. M omphologica change

One of themain factors in accurately convertingremotely sensed datainto habitat maps is
ensuring that differencesin thelighting conditions between images are minimised. M ethods
of normaising imagery were examined and two methods were identified that could be used
in terrestrial and intertidal habitats. A traditiona approach known as edge matching was most
suitablefor terrestrid habitats. In this method the relaionship between the gpectra
characteristic radiance vaues in the overlapping areas between images are used to
compensate for differences in lighting. For intertidal habitats a novel method known as band

ratioing was successfully used to compensae for differences in illumination.

Innovative methods of improving the accuracy of habitat mappingwere developed. Data
mergngwas used to increase the accuracy of intertida vegetation and sand dune mapping by
adding contextual data such as slope and elevation into the classification process. The use of
artificial intelligence based classification methods was examined and these techniques were
also found to increase the accuracy of habitat mapping.

M ehods of monitoring morphologica change in the coasta environment were studied and
techniques were developed for quantifying the volume of erosion and accretion at regular
intervals dongthe coast and for identifying the areas where those changes aretaking place.

M ehods of visudising habitats were examined, particularly with referenceto showing
morphologca changes in three dimensions.

Usingremotely sensed datafor monitoring vegetation change was examined, but there were
issues that remained unresolved. This areawas identified as onethat requires further study.

The operational use of remote sensingfor habitats monitoring is discussed and areas are

identified, particularly monitoring coastd vegetation changes, where this work may be taken
forward.
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2. Introduction

In M arch 2000 athreeyear project entitled Collabor ative Agreement for developing remote
sensing techniques for marine SAC monitoring was initiated between English Nature and the
Environment Agency’s Nationd Centrefor Environmenta Dataand Surveillance (NCED S).

The Nationd Centrefor Environmental Dataand Surveill ance had demonstrated the use of
remotely sensed datafor mapping several habitats in the coastd environment, particularly in
theinter-tidal zone. These techniques are capable of distinguishing saltmarsh, al gee and bare
mud, in addition to water and terrestrial vegetation. Investigations of the requirements for
monitoring of coastal habitats, particularly those within Specia Areas of Conservation, have
suggested amuch wider use for the remote sensing methodolog es. NCEDS identified a
number of habitats based primarily on ther inclusion within the UK Biodiversity Adion Pan
(UK BAP) that would lend themselves to remote sensing techniques.

M aritime habitats are importart for conservation, agriculture, flood def ence and recreation,
and are often protected by European legslation. They are under intense pressure from a
combination of sea level rise and anthropogenic factors, and through increased protection and
regulation, regular monitoringis essentid to inform more strict management of the
environment. Through the implementation of the Habitats Directive, thereis aneed to
monitor and report onthe staus of such habitats, and new assessment methodologes are
required to develop more efficient way s of monitoring changes in these diffi cult and dy namic
habitats.

For this sudy, arange of maritime habitats were considered and sites were chosen to assess
the use of remote sensing methods on saline lagoons, intertida mudflats, vegetated coasta
shing e, saltmarsh and sand dunes. A series of sites were chosen, which have been desi gnated
as candidate Specid Areas of Conservation (SACs) for the rdevant habitats for study.
Location of these sites are given in Figure 2.1.

The operationa use of the methodologies deveoped is discussed and the advantages of such
techniques over traditiona methods is considered. Recommendations are developed for the
optimum use of remote sensing for each of the habitats studied

This report contains adescription of the work carried out over thethreeyears.
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Figure2.1 Project test sites

3. Data gathered

The remotely sensed data collected are summarised in Table 3.1. The 2000 Ainsdde data
were reflown, becausethe LIDAR datafailed the Environment Agency quality assurance.

Table31 Remotey sensed data gathered

Site Date Time CASI LIDAR Notes
(GMT)
Blakeney 08/06/00 [1630- |Cloud shadow + gaps Good CASI okay for visud
WP 1) 1700 between lines interpretation, but gaps between
lines
Ainsdale 10/06/00 |1155- |Poor, doud shadow Faled qudity [CASI okay for visud
(WP 5) 1255 control interpretation
Rye 16/06/00 |1811- |Good Good
(WP 3) 1910
Blakeney 09/09/00 [1430- |No LIDAR attitudedaa |No Manua geocorrection required
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Site Date Time CASI LIDAR Notes
(GMT)
(WP 1) 1500 or GPS, geocorrection for CASI
poor
Rye 11/09/00 |1440- |Good Good
(WP 3) 1230
Blakeney 23/09/00 [0920- |Cloud shadow No
(WP 1) 0955
Tollesbury |23/09/00 [1055- |Good Good Hyperspectra data gathered for
(WP 4) 1140 section of marsh
Ainsdale 17/10/00 |1127- |Okay, some cdoud shadow|Faled qudity
(WP 5) 1240 and low solar angle control
Tollesbury |25/06/01 |0900- |Okay Good Good lighting but grong bi-
(WP 4) 1040 directiond effects
Ainsdale  |28/08/01 |1330- |Good Good
(WP 5) 1400
Blakeney 26/07/02 |1020- |Good Good
(WP 1) 1110
Rye 27/07/02 |1320- |Good Good
(WP 3) 1355
Ainsdale 11/09/02 |0940- [Good but solar angle low [Good
(WP 5) 1010
Budle 11/09/02 1105 |Good Good
(WP 2) 1140
Tollesbury |01/10/02 [1050- | Okay-poor Good
(WP 4) 1220 Vaiablelighting
conditions

4. Data analysis

The purpose of this sudy wasto provide remote sensing methods of monitoring coasta
Foecid Areaof Conservation (SAC). Three mgor areas within remote sensingwere
identified that were rdlevant to achievingthis objective:

. Datapreparation and accuracy
. Image classification
. M omphologica change

Descriptions of the dataanay sistechniques used in this study aregven in Appendix C.

4.1 Habitat classification
4.1.1 Sdtmarsh

A number of studies have shown that remote sensing techniques can make avauable
contribution to monitoring of satmarshes. Remote sensing has been used to non-destructively
estimate the biomass and productivity for anumber of intertidal species. These studies
include the following species; Zostera marina Linnaeus (Budd and M ilton, 1982), Halimione
portulacoides (Jensen, 1980) and avariety of Spartina speciesincluding S alterniflora
(Gross et al., 1987), S. anglica (Gross € al., 1986) and S. foliosa (Zhang et al., 1997).
Donoghue and Shennan (1987) and Thomson et al. (1998) used Landsat TM and CAS
imagery respectively to discriminate between intertidal vegetation types. Donoghue et al.

17




(1994) classified Landsat Thematic M apper (TM ) images to derive thematic maps of
intertidal vegetation and determinetempora change.

The studies above used multispectra imagery to classify satmarsh vegetation. However, the
ecology of satmarsh vegetation provides an opportunity to use ather datalayersin addition to
multispectra data, in order to increase classification accuracy .

All sdtmarsh species aretolerant of saline inundation but the leve of tolerance varies
between species (Adam, 1990; Zedler et al., 1999). The position within thetida cycle and
elevation will determinethe length of timethat inundation occurs and this will in turn
influence intertida species distribution (Adam, 1988, 1990; Gray et al., 1990, Zedler et al.,
1999). Sdtmarsh elevation datawould therefore have the potentid to increase class
discrimination.

Though the mechanisms are not understood (Sanderson et al., 2001), species composition
within and closeto intertida creeks tends to be different from other areas of satmarsh
(Adam, 1990; Zedler et al., 1999; Sanderson et al., 2000, 2001). This spatid pattern provides
amechanism by which remote sensing cl assification accuracy may beincreased. Useof a
fineresolution digta eevation modd (DEM ) and slope derived from it would enable creek
aress to be identified.

Fromthis it may be seen tha eevation and slope data have the potertia to improvethe
discrimination of multispectrd classification of theintertida zone by enabling position
within thetida cycle and the presence of creeks to betaken into consideration.

4.1.2 Sanddunes

Thereare very few studies tha have used remote sensing for sand dune community
classification. These studies have generdly classified to a generad community typerather than
specific species level (Hobma, 1995; Seeliger et al., 2000). The main reason is likely to be
the diversity of gpecies present in most dune systems. Classification requires reasonably large
areas to beidentified for each class used. If the classification is to beto genus or species level
then the number of classes and therefore the amount of ground datarequired could be very
high and may result in low classification accuracies. Dune sygems have avariety of
characteristics that could be used in order to improve classification accuracy using additional
data. M obile dune systemstend to occur at the seaward edge of fronta dunes, and so
contextud information may be used to reduce misclassification errors, particularly asthe
main species of mobile dunes in the UK, Ammophila arenaria, occurs throughout dune
systems. Dune slacks are characteristically flat areas containing different species fromthe
surrounding fixed dunes. However, though species compositions of slack areas are different,
therewill be areas that contain species with similar structuresto those in fixed dunes and so
slope could be used in addition to spectra characteristics to increase accuracy of thefind
classification.

4.1.3 Sdinelagoons

Little or no work using remote sensing has been carried out on these habitats. However, there
isthe patentia to usetechniques developed in other areas for increasing understanding of
lagoon habitats. As well as classifyingthe lagoon areato identify important gpecies, possible
methods include using multispectra datato determine water depth and lagoon area.
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414 Mudflats

Sudies have been carried out that used remote sensingto provide dataon mudflats (M eulstee
et al., 1988; Bgjouk et al., 1998; Guichard et al., 2000). These studies have mainly been
interested in estimating al gal biomass using aerid photography (M eulsee et al., 1988;
Guichard et al., 2000). Identification of a gae and mudflat sediments has also been carried out
using CAS data(Bagjjouk et al., 1998).

4.15 Vegetated shinge

Little previous work has been carried out on these habitats using remote sensing.

4.2 Morphological change

M onitoring coastad morphologca change using remote sensing involves the derivation of a
DEM from some sensor such as aLIDAR and thenthe use of the DEM to monitor the change
of amorpholog cd variable such as elevation.

Using remote sensing for morphologca change detection has become more common,
particularly withthe advent of chegper, quicker methods of coll ecting and processingdatain
recent years. Smplistic gpproaches, such as monitoring the position of shoreline position
using LIDAR have been used (Sockdon d al., 2002). Deriving volume changes or indicating
where change has taken place, provides moreinformation about the whole system. This more
complex form of morphological study has been carried out using LIDAR to monitor beach
movement (Revell et al., 2002) and dliff erosion (Sdlenger et al., 2002). LIDAR and
phatogrammetry have been used to monitor short term change of soft cliffs (Adams and
Chandler, 2002). M onitoring and measurement of fluvia bank erosion has been carried out
using photogrammetry (Barker et al., 1997).

4.3 Ridge characteristics of percolation lagoons

The characteristics of the ridge between open water and percolation lagoons are important
factors in the determiningwhether the systemis changngover time. In apercol aion lagoon
system, such as tha present at Blakeney, the width of the ridge has an impact on the rate of
sdine replenishment. LIDAR data have been used to estimate the width of the shingeridge
a Blakeney at regular intervas. Theridge height can gveindications of whether overtopping
will occur, which aso influences the dy namics of asdine lagoons.

5. Methods and results

5.1 Classification and radiometric correction

511 Sdtmarsh

Of the habitats being classified in this project, the greatest amount of previous work has been
carried out on saltmarsh. Remote sensingis an ideal approach for mapping this habitat, as the
intertidal zone may be difficult to access dueto tides, soft sediments and island areas of
habitat.
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However, thelimitations dueto tida restrictions mean that flying high quality datais difficult
dueto therequirement to wait for the correct sage of the tide and good |ighting conditions.
Theregular inundation of the habitat also makes it morelikey to display bi-directiona
effects, further restrictingthe times when datamay beflown. In this context it may be seen
that expanding survey opportunities and minimising the eff ects of adverselightingare crucid
for this method to become operationd for regular monitoring.

Figure5.1 CASI imagery of Tdlesbury test site, Essex

Maximigngsaltmarsh classification accuracy

Possible techniques for maxi mising classification accuracy weretested using datafrom the
Tollesbury marsh area of thetest site for the 2000 data (Figure 5.1).

A Imresolution CAS image using 5 flightlines was mosaiced using edge matching. A ratio
image was also generated usingthe same 5 flightlines. A slope lay er was generated from the
2mLIDAR DEM. Bahthe LIDAR datalayers were resampled using near est neighbour to a
Imgid. The CAS image and ratio image were combined with the resampled LIDAR data
TheML statistica classifier and M LP neurd network classifier weretested with CAS data
and CAS, LIDAR devation and slopedata. TheM LP classifier was aso tested withthe

20




12 band ratios that were suitable (Appendix D) and with the 12 band ratios and LIDAR
elevation and slope data

The classifiers were tested using two sets of ground data based on slightly different class sets,
Orignd and SAC (Table5.1). Inthe SAC set of classes the Halimione portulacoides,
Puccindlia maritime and Limonium vulgare were merged to form the Atlantic 1 (Atlantic
Sdt M eadow) class.

Table51 Classes used in saltmarsh dasdfication

Cove/ Species Original SAC Class Set
Class Set

Waer Waer Waer

Mud Mud Mud

Green and Brown Algae Algee Algee

Ann. Salicornia spp. Pioneer Pioneer

Suaeda maritime
Aster tripolium

Halimi one portul acoi des Haimione Atlantic 1 (Atlantic Sat Meadow)
Puccindlia maritime Puccindlia Atlantic 1 (Atlantic Sat Meadow)
Limonium wulgare Limonium Atlantic 1 (Atlantic Sat Meadow)

Elymus pycnanthus Elymus Atlantic 2 (Driftline Atlantic Sdt Meadow)
Terrestrid Vegeation Terrestrid Terestrid

From the accuracy assessment results (Table 5.2) it may be seen that theM L classifier has
much lower accuracy than theM LP neurd network for al input combinations. The difference
was staisticaly significant for al combinations of input apart from the CAS only
classification for the SAC classes (Tables 5.3 and 5.4).

Table5.2 Accuracy assessment r esults from saltmarsh dassification testing usngtau accuracy

Original SAC
Inputs ML CASI Ratio ML CASI Ratio
MLP MLP MLP MLP
CASI 0.663 0.764 0.775 0.772 0.811 0.826
CASI+DEM+Slope 0.705 0.810 0.789 0.804 0.896 0.865

As described in Appendix C there are anumber of reasons why theM L classifier may beless
accurate than the M LP neura network. These includetherdatively low number of training
dataused and the difficulty in identifying areas for the classification that are only made up of
oneclass. Thelow classification accuracy was particularly noticeable when the LIDAR data
were added to the classifier, especidly for the SAC classification (Table 5.2). This relatively
low increase in classification accuracy is likely to bedueto theM L classifier’ s limitations
when datafrom different sources are used in aclassification. The consistent lower
classification accuracy showsthat theM L classifier is |ess suitable for satmarsh
classifications than theM LP neura network.
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Table53 Changesin accuracy for saltmarsh original dassset (bottom left) and leves of significance (top
right)

CASI ML CASI+ CASI MLP| CASI+ Ratio ML P Ratio+
DEM+ Slopg DEM+ Slope DEM+ Slope
ML ML P ML P

CASI ML NS p<0.05 p<0.01 p<0.001 p<0.005
CASI+ DEM+ Slope 0.038 NS p<0.01 NS P<0.05
ML
CASI MLP 0.090 0.052 NS NS NS
CASI+ DEM+ Slope 0.130 0.093 0.041 NS NS
ML P
Ratio ML P 0.100 0.062 0.010 -0.031 NS
Ratio+ DEM+ Sope 0.112 0.075 0.023 -0.018 0.013
MLP

Table54 Changesin accuracy for saltmarsh SAC dassset (bottom I€ft) and levds o dgnificance (top
right)

CASI ML CASI+ CASI MLP CASI+ Ratio MLP Ratio+
DEM+ Slopg DEM+ Slope DEM+ Slope
ML ML P MLP

CASI ML NS NS p<0.001 NS p<0.005
CASI+ DEM+ Slope 0.032 NS p<0.05 NS P<0.05
ML
CASI MLP 0.065 0.033 p<0.05 NS P<0.05
CASI+ DEM+ Slope 0.118 0.086 0.052 NS NS
MLP
Ratio ML P 0.079 0.047 0.014 -0.039 NS
Ratio+ DEM+ Sope 0.112 0.080 0.047 -0.006 0.033
MLP

Theinpu of LIDAR eevation and slope dataincreases cl assification accuracy for both
classifiers. However, thisincreaseis only statigicdly significant when the SAC classes were
classified for the neura network (Tables 5.3 and 5.4).

The per-class accuracy of theM LP classifications for the CAS only and the CAS, DEM and
slope classifications were compared (T ables 5.5 and 5.6). The greatest increases in user’s
accuracy arein the agae and pioneer classes. These classes havethe potertia to be mixed, as
the pioneer class may contain ahigh proportion of mud or agaeresultingin confusion in the
classification. The LIDAR DEM and slope gopear to reduce this confusion between classes.
Theincreasein the accuracy of pioneer class isimportant for Habitats Directive monitoring,
asthis class was so inaccuratdy classified using CAS multispectral dataaone (Table5.5).

Asmay beseenin Table5.5, though the overdl accuracy of the satmarsh classification using
the orignal class set was high (tau = 0.76 (Table 5.2)), individual classes had accuraciesin
thelow 60%. The main reason for thisis likely to bethat for each of the Halimione,
Limonium and Puccinel lia classes thereis likely to be asignificant amount of one of the other
classes present, confusing the classifier. By combiningthesein the Atlantic 1 class, this
reduces the errors overdl and increases the minimum class accuracy of the vegetation cl asses
(Tables 5.5 and 5.6)
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Table55 Saltmarsh dassaccuracy usingoriginal dass set

Class CASI CASI LIDAR Ratio Ratio LIDAR
Water 96 100 100 100
Mud 100 100 100 100
Algee 64 81 65 64
Pioner 69 83 85 89
Hdimione 63 62 61 71
Puccindlia 66 67 85 67
Limonium 100 95 94 90
Elymus 89 88 73 89
Terrestrid 84 88 96 91

Table56 Saltmarsh dassaccuracy using SAC dass set

Class CASI CASI LIDAR Ratio Ratio LI DAR
Water 96 100 96 100
Mud 100 95 93 100
Algae 60 73 66 64
Pionear Marsh 79 89 77 82
Atlantic 1 100 96 93 92
Atlantic 2 75 77 83 98
Tearestrid 85 97 93 96

The effect of usingthe band ratio, as opposedto theimage matched data, may beseenin
Tables5.2t0 5.6. Thereis no significant decrease in classification accuracy when the band
ratio dataare used in the classification (Tables 5.3 and 5.4). The class accuracy vaues are
consistent usingtheratio and the CAS data (T ables 5.5 and 5.6).

The activation values obtained from the M LP neural network classifier weretested to
determine what relationship if any there was between the outputs and thepraportion of
correctly classified pixels. Tria results indicated that there was alinear re ationship between
the outputs and theproportion of correctly classified pixels (Figure5.3). The hypothesiswas

testedthat normalised activation was the equiva ent to theprobability of correct
classification. This assumption wastested for all M LP classifications. The results showed tha

therewas asignificant rel ationship between the activation and probability of correct
classification (p<0.001 for dl classifications (T able 5.7)).

This relationship alows an additiona data set to be generated with the classification. The

additiond lay er provides aper-pixe indication of whether the classifi cation was correct
(Figure 5.3) and can be used to determine the most likely alternative classes.
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Figure5.2 ML P neural network cassification and uncertainty map o 2000 Tollesbury data
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Table57 Comparison o activation levels with proportion o correct pixdsfrom MLP dassifier

Original Class Set SAC Class Sea
CASI CASI Ratio Ratio CASI CASI Ratio Ratio
LIDAR LIDAR LIDAR LIDAR
Significance p<0.001 | p<0.001 | p<0.001 | p<0.001 | p<0.001 | p<0.001 | p<0.001 | p<0.001
RMSE 0.0526 0.0317 0.0425 0.0331 0.0536 0.0331 0.0349 0.0416

Proportion correct pixels

0.2

0.4

0.6

Norm alised activation

0.8

Figure5.3 Proportion o correct pixdsasafunction o MLP normalised activation levelsfor original
class set using Tdlesbury ratioed CASI and L IDAR data

Final Tdlesbury classfications

Thefina classifications of the Tollesbury datawere carried out using aM LP neura network
classifier with 20 nodes and trained for 2000 iterations. Input data consisted of 500 pixels
per-class of image ratioed CA S data (Appendix D) and LIDAR derived € evation and slope.
Classifications were carried out of the datagathered in September 2000 and June 2001. The
remotely sensed data gathered in November 2002 was not classified, as the ground data
collection was incomplete. The ground data collection was carried out for Old Hall and
Abbot’ sHall, but access to the Tollesbury M arsh was nat permitted. Two locd wildfowling
groups who ownthe land would not allow access for Hedlth and Saf ety reasons, asthe
shooting season had started. The Tollesbury M arsh areamade up the mgor part of the gudy
site and contained lar ge areas of each of the classes used in the classification. The other areas
did not contain enough of the variation present for certain classes, particularly the Pioneer,
Halimione and Limonium cl asses and so it was decided to omit this classification.
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Table5.8 Final Tollesbury dassificationsoverall accuracy (Tau accuracy)

Year Original dasses SAC dasses
2000 0.788 0.892
2001 N/A 0.752

September 2000 Tollesbury class fication

The 2000 classification of the Tollesbury datawas carried out using both the origina and
SAC class sets (Tables 5.8 - 5.10).

Table 59Confusion matrix for 2000 Tdlesbury dassfication (Original dassset)

Ground Data
Water|Mud|Algae|Pioneer| Haimiong|Puccind ligLimonium| Elymud T errestrid| User’s
Accuracy
Water 25 ] 0 0 0 0 0 0 0 0 1.00
Mud 0 |20] O 0 0 0 0 0 0 1.00
Algee 0 6 | 24 2 0 0 0 0 0 0.75
Classified Pioneer 0 0 1 22 3 1 0 0 0 0.81
Data [Hdimione| O 0 0 0 17 7 2 0 0 0.65
Puccindlia] O 0 0 1 5 15 5 0 0 0.58
Limonium| O 0 0 1 0 0 15 0 0 0.94
Elymus 0 0 0 0 0 0 0 22 3 0.88
Tearestrid 0 0 0 0 0 2 0 3 21 0.81
Producer’s| 1.0010.77] 0.96 | 0.85 0.68 0.60 0.68 0.88 0.88
accuracy
Table510 Confusion matrix for 2000 Tdlesbury dassfication (SAC dass set)
Ground Data
Waer | Mud | Algee | Pioneer | Atlantic 1 | Atlantic2 | Terestrid | User's
Accuracy
Water 50 0 0 0 0 0 0 1.00
Mud 1 39 0 0 0 0 0 0.98
Classified |Algee 0 11 49 3 0 0 0 0.78
Data |Pioneer 0 0 2 43 3 0 0 0.90
Atlantic 1 0 0 0 2 50 0 0 0.96
Atlantic 2 0 0 0 0 0 40 2 0.95
Tarestrid 0 0 0 0 2 6 42 0.84
Producer’s 0.98 0.78 | 0.96 | 0.90 0.91 0.87 0.95
Accuracy

June 2001 Tdlesbury classfication

Test classifications of the June 2001 datawere carried out usingthe original class set.
However, the accuracy of the Halimione, Puccinellia and Limonium classes was less than
50%. The errors were mainly due to the classes being misclassified as one another and so it
was decided to carry out the classification of this dataset usingthe SAC class set. The
inability of the classifier to discriminate between these classes is most likely to be dueto the
time of year that the datawere collected, as previous classifications have been successful.

The Limonium class is likely to be easier to discriminate when in flower.
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The SAC dassification for June 2001 was less accurate than that carried out on the
September 2000 data (T able 5.8). The lowest class accuracy vaues werefor the Pioneer,
Atlantic 2 and Terrestria classes (Table5.11).

Table5.11 Confusion matrix for 2001 Tdlesbury dassfication (SAC dass set)

Ground Data
Wae | Mud | Algee| Pioneer | Atlantic 1 | Atlentic2 | Tearestrid | User’s
Accuracy
Water 48 0 0 0 0 0 0 1.00
Mud 0 45 7 1 0 0 0 0.85
Classified |Algee 0 3 33 2 0 0 4 0.79
Data [Pionesr 0 5 14 35 5 0 0 0.59
Atlantic 1 0 0 0 1 41 0 2 0.93
Atlantic 2 0 0 0 0 2 50 30 0.61
Terrestrid 0 0 0 0 0 1 20 0.95
Producer’s 1.00 0.85 | 061 ] 0.90 0.85 0.98 0.36
Accuracy

It islikely that one of the reasons for the relatively poor classification of the Pioneer classin
June 2001 is dueto the databeing gathered early intheintertida vegetation growing season.
Annua pioneer species such as Salicornia europea and Sueada maritima are still small
compared to ther find size generally achieved by August or September. This means that the
areas where the Pioneer species would be considered dominant are mainly mud from a
percentage cover point of view. In the case of the classifier tested, most of the errors resulted
from mud, a gae and the Atlantic 1 class being misclassified as Pioneer (Table5.11). M ore
than 60% of the Terredria class has been misclassified as Atlantic 2 (Table 5.11).

Thelarge class errors within the June 2001 classification suggest that classification of
intertidal vegetation early in the growing season is not appropriate and that data gathered later
in the year should be more accurate. By comparing the June 2001 and September 2000
classifications it may be seen that datagathered later in the growing season gppears to gve
more accurate cl assification results.

Tollesbury habitat change

M eaningful land cover change analysis for the Tollesbury site was nat possible, as the quaity
of the 2001 classification was so poor. Thelarge class errors, particularly Pioneer and
Atlantic 2 (Table5.11), arelikey to result in large errors when the classifications were
compared and this will bereflected in large percentage change vaues (Table5.12B). It is
highly unlikely that the Pioneer class will increase by 70% over oneyear and the Atlantic 2
will increase by dmost 300%. T hese values amost certainly reflect errors in one or both
classifications.
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Table512 Class areasfor Tollesbury dassification

A 2000 Original classes B 2000 and 2001 SAC classes
Class Area (Ha) Class Area (Ha) % difference
Water 223.54 2000 2001
Mud 235.19 Water 223.54 120.71 -46
Algee 137.14 Mud 235.19 370.34 57
Pioneer 68.70 Algee 137.14 86.00 -37
Haimione 40.02 Pioneer 68.70 117.10 70
Puccndlia 47.10 Atlantic 1 99.87 83.68 -16
Limonium 12.74 Atlantic 2 2.63 10.50 299
Elymus 2.63 Tearestrid 15.52 7.27 -53
Terrestrid 15.52

Satmarsh habitat mapping

Remote sensing is ableto generate high accuracy maps of intertidal vegetation, and
techniques developed here have the potentia to increase that accuracy. Theimageratioing
method of radiometric normaisation appearsto solve many of the lighting problems
associated with remote sensing in theintertida zone, including internd i ghting differences.
However, further tesing of imageratioing in other types of satmarsh, particularly those
dominated by Spartina should be carried out before this method is considered robust.

Thetiming of remotely the data gatheringis critica for the success of thefina classification
accuracy . It wasshown herethat data gathered too early in the season has the patentia to
result in agreatly reduced classification accuracy paticularly of particular classes such as the
annual Pioneer class.

The use of remote sensing for monitoring change in intertida vegetation needs further study
using two accurate classifications, generated using datafrom asuitabl etime of year.

5.1.2 Sanddunes

The classification of the sand dune site was more complicated than the satmarsh work. The
main SAC habitats present at the Ainsdaetest site contain vegetation types tha are similar.
For example the fixed dune areas will have some of the same species present asthe dune
slack areas, but in different prgportions. For this reasonthe classification was carried out in
three stages.

Thefirst part was a classification to determine the vegetation cover type. The classes chosen
were determined by trid and error. Theoriginad classes for which data had been collected
weremerged to the class set in Table 5.13. This class set extracted some of the SAC aress,
but some of the land cover types contained mixed SAC type.

The second stage was the use of an expert sysem to remove errors within theinitia
classification.

Thethird gagein the sand dune classification was to usethe LIDAR datato extract dune
slack areas usingthe topographic characteristics of these aress.
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Toprovidean overall SAC habitat classification, the vegetation cl assification was merged
with the LIDAR based dune slack classification aress.

Vegetation classification testing

Classifications of the 2002 Ainsdde sand dune site were carried out using asimilar method to
the Tollesbury site. A Imresolution CAS image using 5 fli ghtlines was generated by
mosaicingtheimagery using edge matching. A ratio image was adso generated usingthe
same 5 flightlines. A slopelayer was generated fromthe2m LIDAR DEM . TheLIDAR slope
datalayer was resampled using nearest nei ghbour to alm grid. The CAS image and ratio
image wer e combined with theresampled LIDAR data TheM L statistica classifier and M LP
neura network classifier weretested with CAS dataand CAS and LIDAR slopedata The

M LP classifier was aso tested with band ratioed data (Appendix D) and band ratioed and
LIDAR slopedata.

Table5.13 Classes used in sand dune classification

Cover/ Species SAC Class

Waer Wae

Sand Sand

Ammophila arenaria (Maram grass) Mobile dune
Fixed Dune

Grasses Fixed dune

Moss Dune slack

Herbaceous vegetaion

Reeds Dune slack

Wet vegetation

Salix repens (Creeping willow) Fixed dune
Dune slack

Hippophae rhamnoides (Sea buckthorn) Dune woodland

Woodland Dune woodland

Table514 Accuracy assessment results from sand dune dassification testing (tau accuracy)

Inputs ML CASI Ratio
MLP MLP

CASI 0.749 0.795 0.756
CASI+ Sope 0.772 0.826 0.788

Table5.15 Changesin accuracy for sand dune dassfication (bottom left) and leves o significance (top

right)

CASI ML CASI+ CASI MLP |CASI+ Sop€ Ratio MLP [Ratio+ Slgpe

Slope ML MLP MLP

CASI ML NS P<0.05 p<0.001 NS p<0.05
CASI+ Sope ML 0.023 NS p<0.005 NS NS
CASI MLP 0.046 0.023 NS P<0.05 NS
CASI+ JopeMLP 0.077 0.053 0.031 P<0.001 p<0.05
Ratio ML P 0.007 -0.017 -0.039 -0.070 NS
Ratio+ Slgpe ML P 0.039 0.015 -0.008 -0.038 0.032
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Figure5.5 MLP Neural Network Classification of 2001 Aindale data
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The classification accuracy of theM L gatisical classifier was significantly less than the

M LP neura classifier for both the CAS only classification and the CAS and LIDAR slope
classification (Tables 5.14 and 5.15). The consistent lower classification accuracy showsthat
theM L classifier is | ess suitable for sand dune cl assifications than the M LP neura network.

Theratioingmethod of radiometric normalisation was not as successful as the edge matching

technique and was si gnifi cantly less accurate with and without the LIDAR data (Tables 5.14
and 5.15).

Expert system classfication

An expert sysgemisthe use of expert observations combined with aclassified datalayer ina
geog aphic information sy stem (GIS). Thepurpose of the expert system wasto remove errors
in thefirst classification mainly caused by shadowingwithin theimagery. Shadowingwithin
the CAS dataresulted in two main types of error. Aress of the grass and herbaceous
vegetation in shadow were miscl assified as woodland. These were removed by simply
reclassifying these ar eas as the Grass/M oss/Herb class. There were aso problems with
shadowing on the seaward side of the frontal dunes, resultingin miscl assification. This was
particularly aproblem withthe 2002 data, which were gathered when the sun angle was
reatively low (Figure 5.6). As the shadowed areawould be difficult to classify usingspectra
CAS data an dternative LIDAR based approach was used. The seaward boundary of the
mobile dune sy gem was determined usingthe LIDAR slope. A slopevaue of greater than 15
degrees was used as the boundary for bothyears. This vaue was determined by detailed
study of the dune system, usingCAS and LIDAR data.

Figure5.6 Shadowingd Ainsdalefrontal dunesin 2002 CASI data
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Dune dack extraction

The classes used in theinitid classification were unsuitable for extracting dune slack areas
and so an dternative method had to be developed. The most promising method was to usethe
slope characteristics of slack areas as amethod of identification. Using aslack map supplied
by Endish Nature, the slope characteristics of the slack areas of the Ainsdde site were
determined and these were used to optimise amethod of extracting dune slack areas using
LIDAR. Themain physicad characteristic of slacks is an areaof consistently low slope. It
must be noted tha the variables used apply to the Ainsdale site and may not be goplicableto
other sites, though the generd methods should be gpplicable.

TheLIDAR slgpe datawas used to identify areas with slope of less than 3 degrees. As may
be seen from Figure 5.8b this resulted in adatalayer with agreat ded of noise. In order to
remove the noise and identify areas that were most likely to be dune slack aress, atwo part
mer gng al gorithm was used. Thefirst dgorithm known as ‘ clumping identifies conti guous
groups of pixels in onethematic class. The clumped data are then passed through an
‘dimination’ a gorithm (Figure 5.8c). A clump smaller than auser-specified number is
eliminated and replaced by vaues the same as nearby larger clumps. Large numbers of pixels
will have alow slope vaue, but are not in slack aress. For example the tgps of ridges will
have alow slope, but the areas of low slope are unlikely to belarge or contiguous. The clump
and dimination process remove these scattered pixels.

Theresultant layer overestimated slack areaand so further analysis had to be carried out in
order to improvethe discrimination of dune slack areas. It was found tha it waspossibleto
improvethe classification of slack areas by carrying out additional analysis using areas with a
slope of less than 2 degrees. Pixels with aslope of less than 2 degrees were identified. The
clump and dimination al gorithms were carried out using an € imination value of 40 pixels.
The areas identified usingthe | ess than 3 degree slope were poly gonised and poly gons were
rejected as areas of duneslack if they did not contain areas identified in the anaysis with a
slopevaue of lessthan 2 degrees (Figures 5.7 and 5.8). The accuracy of thefind LIDAR
only dune slack classification may beseenin Tableb5.16.

| LIDAR

‘ Slope ‘
Slope<3 Slope < 2
deg deg

\ 4
| Clump3 »| Eliminate3 Eliminate2 l._ Clump2

Remowve
Polygonise l polygons with Dune
» nooverlapto slack

Eliminate2

Figure5.7 Dunedack extraction modd
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Table5.16 Dunedack dassification usingL IDAR data

Fixed dune Slack User’'s Accuracy
Fixed dune 248 23 0.92
Slack 16 50 0.76
Producer’s accuracy 0.94 0.68
a) Slope b Slope less than 3 degrees

o) Merged 1f more than 60 pixels d) Bejected if group of 40 pixelz leszthan

2 degrees not contaned within boundary
{Blue accepted, red rejected)

Figure5.8 Dunedack extraction from 2001 L I DAR data
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Uncertainty and probabilities of correct classfication

The probability measures derived usingthe satmarsh cl assifier are aso gpplicableto the sand
dune classification. These were tested usingthe output of theM LP neurd network classifier
and astatisticdly significant relationship was found between the output and probability of
correct classification (p<0.001, RM SE = 0.0352).

However, as avariety of classification methods were used, it is not possible to derive
probability measures for thefinal output. In order to derive probabilities from an expert
system further work would need to be carried out

Final Ainsdale classifications

Thefinal vegetation classifications of the Ainsdae datawere carried out usingaM LP neura
network classifier with 20 nodes and trained for 800 iterations. Input data consisted of 1000
pixes per-class of CAS dataand LIDAR derived slope. Classifications were carried out of
the datagathered in August 2001 and September 2002. The overd | accuracy of these
classifications was high (Table 5.17), but the 2001 classifi cation was 6.1% more accurate
than the 2002 classification.

From the confusion matrices of the classification (Tables 5.18 and 5.19) it may be seen that
there were considerable diff erences in the accuracy of the different classes between the
classifications.

The 2001 M LP classification had user’s accuracy vaues of greater than 80% for al classes
except the Wet/Reeds class and the Hippophae (Sea Buckthorn) classes (Table 5.18). The
Hippophae was exclusively misclassified as woodland and so these classes weremerged in
thefina analysis.

Table5.17 Final Aingdale dassificationsoverall accuracy (tau accuracy)

Y ear Original dasses SAC dasses
2001 0.879 0.881
2002 0.818 0.907

Table 518 Confusion matrix for 2001 ML P Ainsdaledassification

Ground Data
Water| Sand/ | Ammophilal Grass/|Wet/| Sdix |Hippophae [Woodland/| User's
shinglgarenaria | moss/ | reeds| repens| rhamnoides|scrub Accuracy
herb
Water 4 0 0 0 0 0 0 0 1.00
Sand/shingle 0 18 0 0 0 0 0 0 1.00
Ammophila 0 1 12 2 0 0 0 0 0.80
Classified arenaria
Data |Grassmoss’herb| 0 0 1 48 | O 0 0 0 0.98
Wet/reeds 0 0 0 1 3 1 0 1 0.50
Sdix repens 0 0 0 4 0 17 0 0 0.81
Hippophae 0 0 0 0 0 0 2 3 0.40
rhamnoides
Woodland/scrub] 0 0 0 2 0 1 0 39 0.93
Producer’s 1.00| 0.95 0.92 0.8411.00| 0.89 1.00 0.91
accuracy
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Table519 Confusion matrix for 2002 ML P Ainsdaledassification

Ground Data

Water| Sand/ | Ammophilal Grass/| Wet/| Sdix |Hippophae [Woodland/| User's
shinglgarenaria | moss | reeds| repens| rhamnoides|scrub Accuracy
herb
Water 57 7 0 2 0 0 0 1 0.85
Sand/shingle 0 55 3 5 0 0 0 0 0.87
Ammophila 0 0 26 15| 0 1 0 0 0.62
Classified arenaria
Data |Grassymoss’herb| 0 2 1 220 | 1 22 0 1 0.89
Wet/reeds 0 0 0 4 11| 4 0 1 0.55
Sdix repens 0 0 0 33 4 54 0 0 0.59
Hippophae 0 0 0 0 0 0 7 0 1.00
rhamnoides
Woodland/scrubl O 0 0 17| O 1 0 231 0.93
Producer’s 1.00| 0.86 0.87 0.7410.69| 0.66 1.00 0.99
accuracy

The 2002 M LP classification had anumber of classes that were poorly classified, particularly

the Ammophila, Wet/Reeds and Salix (Creeping willow) classes (T able 5.19). Visua

inspection of the Ammophila class identified that the shadowed areato the seaward side of
the fronta dunes (Figure 5.6) was themain areaof error. Asthis wasto bereclassified using
the expert sysem this error was not considered importarnt tothefina classification. The
errors in the Salix class were more problematic. These resulted from shadowing, particularly
in areas of herbaceous vegetation on the fixed dune sy sem. Experimentation was carried out
to seeif these errors could be remov ed from the cl assification using LIDAR derived slope
and aspect. Initia results have suggested that thiswould be possible, but time constraints
meant that arobust method could not be developed to remove these errors

Figure5.9 Aingale 2002 SAC dassification
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However, oncethe three stage classification had been carried out, the overall accuracy vaues
werevery similar (Table5.17; SAC classes). Theeffect of the expert classification was to
remove many of the errorspresent in the 2002 M LP classification due to shadowing.

Thefind classifications resulted in very similar class accuracy vaues (Tables 5.20 and 5.21).
M ost of the classes for bothyears have User’s accuracy values of grester than 80% (with the
exception of the Dune slack class) indicating a good final cl assification (T ables 5.20 and
5.21).

Table520 Confusion matrix for 2001 Ainsdale SAC dassification

Ground Data
Water Sand | Mobile | Fixed | Dune Woodland/ User's
dune dune | slack scrub Accuracy

Water 18 1 0 0 0 0 0.95

Sand 0 36 1 0 0 0 0.97
Classified | Mobiledune 0 0 7 1 0 0 0.88

Data Fixed dune 0 0 1 51 6 1 0.86

Dune slack 0 0 0 7 20 0 0.74

Woodland/ 0 0 0 1 0 40 0.98

scrub

Produce’s 1.00 0.97 0.78 0.85 0.77 0.98

accuracy

Table521 Confusion matrix for 2002 Ainsdale SAC dassification

Ground Data
Water Sand | Mobile | Fixed | Dune Woodland/ User's
dune dune | slack scrub Accuracy

Water 36 0 0 0 0 0 1.00

Sand 4 40 0 2 0 0 0.87
Classified | Mobiledune 0 1 12 0 0 0 0.92

Data Fixed dune 0 2 3 221 16 0 0.91

Dune slack 0 0 0 18 52 0 0.74

Woodland/ 0 0 1 3 0 237 0.98

scrub

Produce’s 0.90 0.93 0.75 0.91 0.76 1.00

accuracy

Ainsdal e habitat change

When the areavaues for the Ainsdale SAC cl asses are compared, it may be seen that for the
vegetation classes thereis less than 5% difference between years (Table 5.22A). Parts of
some of these differences arelikely to be dueto errors within the remotely sensed data.
However, for longterm monitoringit would be possibleto carry out atrend andysisto
determine whether change was actualy taking place.

When the Salix repens class was combined with the SA C classes, considerably greater
differences occurred (Table 5.22B). These are likely to be dueto thelarge errors within this
class seen in the 2002 cl assification (T able 5.19). These errors were thought to be the result
of shadowing and could possibly be removed with further gudy.

The changes in thewater and sand classes are mainly dueto the different tidal staes between
the 2001 and 2002 data collection (T able 5.22).
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Table522 Areasfor Aingddale NNR dassifications
A SAC classes

Class Area (Ha) % difference
2001 2002

Water 21.6 324 50.2
Sand 36.4 22.8 -37.5
Mobile dune 10.7 10.2 -4.2
Fixed dune 127.1 124.5 -2.0
Dune slack 26.5 27.6 4.4
Woodland/scrub 169.3 173.0 2.2

B SAC classes using Salix repens

Class Area (Ha) % difference
2001 2002

Water 21.6 32.4 50.2
Sand 36.4 22.8 -37.5
Mobiledune 10.7 10.2 -4.2
Fixed dune 105.8 101.7 -3.9
Dune slack 12.7 16.2 27.3
Dune slack (Salix repens) 13.7 11.4 -16.8
Fixed dune (Salix repens) 21.3 22.9 7.4
Woodland/scrub 169.3 173.0 2.2

Sand dune habitat mapping

High accuracy maps of sand dune habitat have been generated using a combination of remote
sensing techniques. Problems were encountered due to shadowing on dunes, resulting in
misclassification errors. This was aproblem that waspartidly resolved using an expert
classification, but further techniques need to be examined in order to derive methodolog es
that are more robust.

A simple change analy sis using class areas appearsto be possible, but care needs to be taken
to ensure that differences seen aretheresult of genuine changerather than artefacts of errors
within the datalay ers used.

5.1.3 Salinelagoons

A classification of generd habitat types was carried out for the 2000 Blakeney datausing
NVC gound data. The ground data supplied appeared to be poor qudity, as areas on the
NVC map did not match the Ordnance Survey 1:10 000 dataor the CAS imagery. Asthe

ground data appeared unreliable it was decided to carry out an unsupervised classification.
Generdly unsupervised classifications are less accur ate than a supervised approach and the
resulting classification was not suitable for this sudy. Classifications were aso attempted on
the 2002 Blakeney databut again accuracies werelow. Thesiteis spaidly complex
containing vegetated shinge, saltmarsh, terrestriad and freshwater habitats. The ground data
gethered did not encompass dl this variation and so cl assification accuracies were low. It was
therefore decided to concentrate on information that could be extracted usingimage
interpretaion.
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Figure5.10 2002 CASI imagery of Blakeney study site

Lagoon areais one of theindicators of salinelagoon health and is required for Habitats

Directivereporting. M anud digtisingof CAS imagery has been used to generatethis
variable.

Table 523 Flight dates of aerial photography and CASI imagery

Sensor Date Ground resolution (m)
CASI 23" September 2000 1

Digitd camera 09" September 2000 0.25
CASI 26" July 2002 1

Digitd camera 26" July 2002 0.15

The areas of the lagoons were estimated using CAS and digta photography in 2000 and
2002 (Table 5.23). The 2000 digital photography datawere not complete asthe camera used
was atest model and did not supply conplete coverage. It should aso be noted that in 2000
the phatography was flown on adifferent date fromthe CAS data

Table524 Area of Blakeney salinelagoons asdetermined from airborneremote sensing

2000 Areas (ha) 2002 Areas (ha)
L agoon CASI Digital CASI Digital
photography photography
Half Moon Pond 0.11 / 0.07 0.07
New Moon Pond 0.10 / 0.14 0.15
Seahorse Pond 1.24 1.13 1.32 1.20
Arnold's Marsh L agoon 5.17 / 4,72 4.65
SalthouseBroad 3.31 / 1.54 1.62
Little Eye 0.05 0.03 0.12 0.12
W. Gramborough Hill 0.13 0.13 0.07 0.06
E. Gramborough Hill 0.10 0.11 0.11 0.11
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Table5.25 Difference between estimated areas of Blakeney salinelagoonsbetween digital photography
and CASI datafor 2002

L agoon Area difference (ha) % Difference
Half Moon Pond 0.002 3
New Moon Pond -0.007 -4
Seahorse Pond 0.123 10
Arnold's Marsh L agoon 0.067 1
SalthouseBroad -0.080 -5
LittleEye 0.005 4
W. Gramborough Hill 0.009 15
E. Gramborough Hill -0.005 -4

Generdly there was good agreement between the areas determined by CAS and digita
phaogaphy, epecidly in 2002 (Table 5.24). There are greater differences in the estimated
lagoon areas from each of the two sensors fromthe 2000 data than the 2002 data. Thisis
likely to be dueto data collection being on different dates and the lagoon area changngdue
to tide, ranfal or evgporation.

Usingthe different methods of determiningthe lagoon areafor the 2002 data (where no
change will have occurred between image col lections), it may be seen that the greatest
absolute difference between the methods is 0.123ha and the lar gest percentage difference was
15% (Table 5.25). Thelargest percentage diff erence occurred for alagoon that was small and
so relatively smal changes in the boundaries could result in a large percentage difference.

Problems arosetryingto distinguish a gal plant matter lying on the surface of the water,
which should be included in lagoon areaand land based plant matter, which shouldn’t. Other
problems were encountered trying to distinguish between shalow waters and mud. LIDAR
datawere used to compare heights in order to determine if atone or huewas likely to be part
of thewater body. Thiswas achieved by comparingthe height of pixels known to be water
with pixels that were unknown.

One method used to determine the colour boundaries of the water bodies was to pick 25
random LIDAR pixds from the known water body part of theimage and 25 random LIDAR
pixels from the part where there was some doubt (in the same lagoon). Students’ T-tests were
then performed on the two resulting data sets to seeif there was asignificant differencein

hel ght between the two sample sets. Figure 5.11 shows an areawhere such atest was
performed. Section “ A” is known to bewater, but “B” may be shalow water or mud. Note
thedifferinghuein “B” compared with“A”.

In this case, there was shownto be asignificant difference in he ghts between the random
hel ght pixds pulled out of A and B (Figures 5.11 and 5.12)
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Figure5.11 Example d uncertainty in whether area is water

Water has ard atively low reflectancein near infrared compared with bare ground and
vegetation. These characteristics enabl e visud isation of the water/land boundary using CAS
imagery. Air photos with agéaia resolution of 0.25m and 0.15m (CA S is 1m) were aso
used to estimate the extent of lagoons. T he finer spatid resolution enabl ed easi er
interpretaion of the lagoon extent in most cases. However, shalow lagoons, with light
sediment proved difficult to interpret and in those cases CAS imagery was essier to interpret
or LIDAR was used as an additiona data source.

aEIF

Figure5.12 Plot of thet-test, showing thedifferencein mean heghtsbetween the sample areas A and B
(Figure5.11)
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5.1.4 Mudflats

The Budle Bay datawere scheduled for collection duringlow water springtides of thefirst
year of theproject. However, these coincided with poor weather in both 2000 and 2001. The
CAS, LIDAR and agrid photography daawerefinaly gathered in September 2002.

The datawere collected in good lighting conditions close to solar midday . However, there
were problems radiometricaly normaisingthe CAS usingthe edge matching technique and
so image ratioingwas used (Figure 5.15). Ground datawere collected in the same week as the
remotely sensed data, but avisua inspection of the datareveded that there were problems
with the suitability of the ground datafor image classification.

The ground data appeared to gve a sy noptic overview of the cover, but did not seem to
identify thefull spatid complexity of the classes used. This was aparticular problem for the
Mytilus edulis class, as may be seen from Figure 5.16. On the basis that the ground datawere
sy noptic, rather than a ecific identification of |and cover boundaries, an unsupervised
classification was carried out. The ground data supplied were used to determine the general
positioning of the cl asses used. The unsupervised classification was carried out usingthe
ISODATA dgorithm (Campbell, 1996) and 20 classes. Classes that belonged to more than
oneland cover typewerereclassified and split further until they could be discriminated.

Figure5.14 2002 CASI imagery of Budle Bay
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Figure5.16 Example d Mytilusedulisground data (blue outlin€) not matching remotey sensed data
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Figure5.17 Unsupervised dassification of Budle Bay ratioed CASI data

The unsupervised gpproach to image classification is likely to result in aclassification
accuracy well below that obtained using a supervised gpproach. This goproach was only
carried out as the ground datadid not match the remotely sensed data. Sy noptic ground data
arenot suitablefor use as training datain asupervised cl assification. Ground dataused in a
classification should clearly identify the boundaries between land cover types.

The problems encountered with the ground data also meant that an accuracy assessment
could not be carried out. Therefore no conclusions can be made about the suitability of
remotely sensed datafor mapping intertidal habitats from this sudy . Other gudies have used
remote sensingto map cover and biomass of mudflats (M eulstee et al., 1988; Bajjouk et al.,
1998; Guichard et al., 2000) and so remote sensing is likely to be able to make acontribution
to monitoring this habitat.
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5.1.5 Vegetated shinge

Figure5.18 2002 CASI data of Ryesite

Vegetated shinde is adifficult habitat for CAS to provide a comprehensive vegetation map,
as many of the gpecies present occur in very low densities surrounded by shinge. The
remotely sensed signa from the shingle can mask out the smdler signd from the vegetation
and theresulting pixd is likely to be classified as shingle. This meant that gpecies such as
Crambe maritima (Searkale) are unlikely to bediscriminated at 1m resolution.

A study was carried out using 2000 Ry e datato determine which classes could be detected
usingthe CAS sensor. The classes chosen for the CAS classification arelisted in Table 5.26
and were based on those classes that could be discriminated usingthe CAS sensor. The non-
shing e sediment class included mud, tarmac and concrete. These cover types were merged,

as the classifiers had difficulty in discriminating between them. It should be noted that the use
of digita photography has thepatentia toprovide information that the CAS sensor can not
duethelargeimprovement in spatia resolution (Figure 5.19)

Table526 Classes used in Rye dassification

Water

Non-shingle sedi ment

Shingle
Sdtmarsh
Grasses/moss/herb

Arrhenatherum datius low density

Arrhenatherum datius high density

Reeds/rushes

Centranthus ruber
(Red vderian)
Scrub

45



A CASI

"z

B Photography

F

Figure5.19 Exampled CASI and photography o Ryesite showingdetail visiblein photography

TheM L classifier was compared with the M LP neurd network for the 2000 Rye
classifications (T able 5.27). The M LP classifier was more accuratethan theM L classifier
dataand so was used for the 2002 data

Table527 Overall accuracy for Rye dassifications

Year 2000 2000 2002
Classifier ML MLP MLP
Accuracy 0.761 0.809 0.856
Table 528 2000 Rye dassification
Ground data
Wateq Non- ShinglgSal tmarsh|Grassed| A rrhenatherun] Reeds| Centranthug Scruj User’s
shinge moss/ rushes accuracyf
Sediment herb
Low [High
density| densityl
Water 22 |1 0 0 0 0 0 0 0 0 0.96
Non-shingle |1 25 2 0 0 0 0 0 0 0 0.89
sedi ment
Shingle 0 4 35 0 0 1 0 0 0 0 0.88
Saltmarsh 0 1 0 34 2 0 0 0 0 0 0.92
Clasdfied| Grassed moss/| 0 0 0 2 28 2 3 0 0 0 0.80
herb
Data Arrhenatheruni 1 1 1 0 2 31 4 0 3 0 0.72
low density
Arrhenatherun] 0 0 0 0 1 6 12 1 0 0 0.60
high densty
Reeds 1 0 0 0 0 1 0 30 |0 4 0.83
Centranthus |1 3 0 0 1 3 0 0 31 0 0.79
Scrub 0 0 0 0 0 0 0 5 0 32 |0.86
Producer’s ]0.85 |0.71 092 [0.94 082 ]0.70 |0.63 [0.83 [0.91 0.89
accuracy
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Generdly the class accuracy vaues of the classifications for both years were high, but the
classifier had difficulty discriminating between low and high density Arrhenatherum (T able
5.28 and 5.29). Visual inspection of these errors indicated that these errors generally occurred
in medium density Arrhenatherum and so are not indicative of amagor problem with the
classification

Table 529 2002 Rye dassification

Ground data
WatefNon-  [ShinglgSaltmersh|Grassed| A rrhenatherun] Reeds/|Centranthug Scrulj User’s
shingle nmoss/ rushes accuracyf
sedi ment herb
Low |High
densit i
Water 30 0 0 0 0 0 0 0 0 0 1.00
Non-shingle 0 21 2 0 0 0 0 0 0 0 0.91
sediment
Shingle 0 0 37 0 0 1 0 0 0 0 0.97
Saltmersh 0 2 0 35 2 0 0 0 0 0 0.90
Classfied| Grasses moss/| 0 0 0 1 42 1 3 0 0 0 0.89
herb
Data Arrhenatherun] O 0 2 0 2 30 5 0 3 0 0.71
low density
Arrhenatherun] O 0 0 0 3 6 14 0 1 0 0.58
high densty
Reeds 0 0 0 0 0 0 0 34 0 1 0.97
Centranthus 0 0 0 0 7 0 0 0 32 0 0.82
Scrub 0 0 0 0 0 0 0 2 0 20 091
Producer’s | 1.00| 091 | 0.90 0.97 0.75 | 0.79 | 0.64 | 0.94 0.89 0.95
accuracy

The Rye classifications indicate that multispectra remote sensing has the potentid to
discriminate between some of the general habitat typespresent on vegetated shingle.
However, it has difficulty in discriminating between some species, particularly those that
cover small proportions of the shinge.

Digta photography does provide a higher resolution solution to mapping vegetated shinge,
but would probably require manud interpretation, which would require specidists with
experience of both the habitat, and mappingit using photography .

5.2 Morphological changes

M orphologica changes are an important indicator of the satus of ahabitat, particularly if
there are erosion or accretion changes. Some of these changes are pertinent at loca levels and
indications of where changeis taking place may be used to improve management of asite.
The main advantage that aremote sensing approach has over a ground based study isthat it
provides continuous data. T he ground-based transect approach used previously cannot
provide information dongawhol e coastline and may miss important areas of change. These
ground-based approaches are aso unsuitable for surveillance. If change suddenly takes place
in an areawithout prior warningit may not be possibleto establish abaseline. Remote
sensing datamay be gathered that provide genera indicators of the changes taking place

Research was carried out on multiple LIDAR data sets from the Ry e shinge and Ainsdale
dunessites in order to examine methods of detecting and quantifying morphological change.
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5.2.1 LIDAR data preparation

Sy stematic differences between LIDAR surfaces can occur dueto avariety of reasons and are
likely to result in errors in morphologica change detection. Removal of these offsetsis
crucial if morphologcd andysisisto be as sensitive aspossible to change. The easi est
method of caculatingthese offsetsisto identify areas withinthe LIDAR daathat areflat,
unlikely to have changed between the times of data collection and are unvegetated. Elevation
dataare extracted from both LIDAR surfaces and compared (Figure 5.20). The offset

between the datamay be cacul ated and applied to one of the surfaces (T able 5.30; Figure
5.21). Thedataare then ready for change analysis.

Table530 Offsets between LIDAR surfaces

Site LIDARy LIDAR,, Offset (m)
(LIDAR,, — LIDARy;)
Ainsdale August 2001 September 2002 0.05
Rye September 2000 July 2002 0.185
Blakeney June 2000 July 2002 0.105
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Figure5.20 Ryeharbour LIDAR datafrom 2000 and 2002 over aflat, unchanged area
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Figure5.21 Ryeharbour LIDAR datafrom 2000 and off set 2002 over aflat, unchanged area (of fset
calculated from Figure MC1; 0.185m)

5.2.2 Volume changes

Volume change estimates were made for the Ainsdale, Ry e and Blakeney sites. In dl of these
sites the following procedure was followed:

1.

A mask was created that removed areas that were not to beincluded in the analyssis.
This included areas with trees and scrub vegetation.

A lower limit of analysis was determined. For example: for Ainsdae site thiswas
approximately the high water mark, as calcul ated from locd tide estimates.

An upper limit of andysis was determined. The more pixes that areincluded in the
andysis that havelittle or no change occurring, the lower the sensitivity of the
andysis.

The masks were applied to remove areas that should not be analy sed.

The volume changes were determined for gpproximately rectangular conti guous
quadrats (Figure 5.22).

A 95% confidence interva for volume change was determined usingthe following
method. Areas wereidentified that were unlikely to have undergone change. The
difference between the datasets for thetwotimes was cacul ated for every pixd and
the vauefor each pixel was extracted. Pixes were randomly grouped together and the

49



average difference caculated for each group. The groups werethen placed in order of
absolute difference and the value of the group a the 95 percentile was found. It may

be seen from Figure 5.23 that as the number of pixels grouped together is increased
the 95% confidence interval decreases and reaches an asy mptote. It is the confidence

vaue a the asymptate that was used in the volume andy sis.

Figure5.22 Quadrats used for Ainsdde volume changeanalyds
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5.2.3 Areaof change

In order to identify areas in which morpholog ca change is taking placeit isimportant to
consider the errors and imprecision within the data sets being used. Though the vertica error
within LIDAR is understood, its impacts when change detection is being carried out have not
previously been documented. The effects of horizonta errors aredso crucid in determining
changes that have actudly taken place and thosethat are artefacts of the data sets being used.

The horizontd errors within LIDAR andthe way that the data are processed can result in
complex errors within the fina changelayer that are partidly functions of the surface being
studied. As slope incresses, the effect of horizonta errors will incresse (Figure 5.27). Thisis
borne out by Figure 5.28, which shows the standard deviation of the error between two
surfaces in an areawhere no change has taken place increasingwith slope.

Vertical Vertical
Error Error
<+
Horizontal «—>
Error Horizontal
Error
A 32° B 68°

Figure5.27 Effects of varyingslope on vertical error of changedetection

A sygem was devised that accounts for the horizontd errors that occur duetothe LIDAR
system error and the resampling carried out on the raw data (Figure 5.29).

The sysgem uses afilter with varying size to generate minimum and maximum values within
aspecified distance of a given point for two LIDAR datasets. Thefiltering reduces the
combined effects of slope and horizonta error when LIDAR change detection is carried out,
as can be seen in Figure 5.30. In fla areas the minimum and maximum filter have very
similar vauesto theorigind LIDAR (Figure 5.30). In areas with high slope the minimum
and maxi mum values account for the patentid variation in vertical vaues dueto horizonta
erors (Figure 5.30).
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Figure5.29 LIDARfiltering system for identifying areas of significant change
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The filtered minimum and maxi mum values of thetwo LIDAR datasds are then overlad and
the minimum difference between them is estimated (Figure 5.31). If there is overlap between
thefiltered data (Figure 5.31A) then it is assumed that there is no difference between them. If
thereis no overlap then the differenceis the minimum eevation between them (Figure 5.31B
and C)
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— LIDAR elevation — Min filter — Max filter

Figure5.30 Effect of minimumand maximumfilter on simulated L IDAR transect

The 99% confidence intervad is estimated empirica ly using aseparate areawhere no change
has taken place. To do this, the absolute pixel values are ordered and the vaue at the 99
percentileis assumed to be the confidence interva. Thisis gpplied to thefiltered imageto
provide areas where the differenceis greater than the 99% confidence interval. This could be
carried out for any confidenceinterval.

Usingthe difference surface, error statistics are generated for an areawhere no change has
taken place. Difference surface and slope surface values are extracted for an area of no
change. A regression is applied to the datawith slope asthe independent variable and
standard deviation of the difference values as the dependent variable (Figure 5.32). If the
number of pixels with agven slopeis less than 50 these values are removed from the
regression stage to reduce the possibility of noise. The correct filter sizeis assumed to occur
when the slope of the regression lineis approximately zero. Thefiltering and regression
stages arerepeated until the correct filter sizeis found. Oncethe correct filter sizeis found,
thefilter is gpplied to the whole of the area of interest.
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Figure5.31 Calculating differences between filtered LIDAR data
(Red minimum filter, blue maximum filter)
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Figure5.32 Error statistics generated from filtered difference layer in area of nochange
(Rye Harbour; September 2000 to July 2002)
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Figure5.33 Areas of dgnificant evation change (Rye Harbour; September 2000 to July 2002; 95%
confidence interval)
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Figure5.34 Areas of dgnificant devation change (Blakeney; June 2000to July 2002; 95% confidence
interval)
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5.24 Combining eevation datasets for long term morphol ogical change

Though LIDAR is useful for determining morpholog cal change it is ardatively new
technique. However, thereis the potertia to use other datasets combined with LIDAR to
detect change over longer timescales.

Sefton Council provided 21982 DEM generated using photogrammetry, enablinglongterm
change monitoring of the Sefton coast to be carried out. The DEM was supplied as a series of
points representing 2m verticd intervals. Additional points werepresent for areas where the
topography was flat. In order to compare the datasd withthe LIDAR data, araster grid had to
be constructed. This was carried out by interpolatingthe point datasd to a2m horizonta
spacingraster using amethod known as kriging (Swales, 2002).

Elevation changa

-26--10
-10--5
5--3
3-5
;-0
Bl -2

Figure5.35 Elevation changesbetween 1982 and 1999 for AingdaleSand Dunes NNR
(NNR boundary marked in black)
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This dlowed acomparison of & evations to be made between 1982 and more recent data sets.
It was decided that using 1999 LIDAR would adlow acomparison to be made dong much of
the Sefton coast, as amore extensive survey was carried out inthis year. Asthe 1982
phaogrammetry datais na asprecise asthe LIDAR data, the find comparison cannot be as
precise and so the changes are assumed to occur when the diff erences between the LIDAR
and the phatogrammetry are greater than 2m, the spacing of the contours of the
phatogrammetry data Thisresulted in adatalayer that is insensitive to change (ie
underestimates change). Despite thisthe resulting € evation change lay er shows clearly the
goss longterm changethat is occurring dongthe Sefton coast (Figure 5.35).

525 Profiles

LIDAR datadlow multi date profiles to be generated for change detection (Figure 5.36).
These may betargeted at areas where change has been identified as taking place usingthe
methods above, or a regular intervals. The main advantage of usingLIDAR to gather these
transects isthat they may berevisited if the transect position is unsuitable. Thisis one
considerabl e advantage of using LIDAR datafor generating profiles rather than ground based
approaches.
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Figure5.36 2000L IDAR Profiles, Rye Harbour, East Sussex

5.2.6 Ridge characteristics

The characteristics of the ridge between open water and percolation lagoons are important
factors in the determiningwhether the system is changingover time.

Ridge width

In order to plat the width of Blakeney ridge as afunction of distance along coast, areference
linewas set up from which to create transects of the landward extent of the dune. The
intersection of these transects and the landward extent line would form the basis for
measuring the minimum distance to the line of the mid water mark

A basdinefor the ridge width was required. On the seaward side the baseline was mean
water height (M WH). For each year this was deermined by the following technique:
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1. Twenty-five sample LIDAR heights were taken over the sea.

2. The height difference between M WH and thetide a the time of data gathering over
the seawas then estimated.

3. TheM HW was esimated usingthe value calcul ated in (2) and the mean LIDAR sea
vaue.

4. Large diff erences in the position of theM WH between 2000 and 2002 were examined
usingtheraw LIDAR imagery.

Figure5.37 Techniquefor determining ridge width

Theridge width was determined using the fol lowing method (Letters refer to Figure 5.37):
a TheM WH linewas estimated from the LIDAR. 2000 (green) and 2002 (red)

b. Line of landward side of ridge extent as determined from 2000 LIDAR data

C. Sraight distancereferenceline, pardld to ridge direction.

d. Transect lines pependicular to distance reference line ().

e Points at intersection of perpendicular transect lines(c) and ridge extent line (b)

f. Thelines of shortest digance from points (e) toM WH line (a) were calcul ated.
Ridge height

TheLIDAR devation data had amaximum vaue filter customised to the direction of the

shing eridge (Appendix E). Thefilter consisted of akerndl, organised perpendicular to the
direction of theridge. This enabl ed the maxi mum value across theridge to be estimated.
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6. 3D visualisations

In order to educate people of the effects of coasta change or to provide an dternative
pergective of an areait is possibleto provide three dimensional (3D) visudisations using
CAS, digtd photography and LIDAR daa. The visuaisations may be generated in specidist
softwaretha usesthe devation datato generate a3D model. Thedigta photogaphy or
CAS datamay then be draped over the devation model to provide ared world 3D view
(Figure 6.1).

The 3D visudisation techniques may be used to provide an dternative agrid perspective of a
habitat. Theseperspectives may be generated using acamera in an aircraft. However, as the
origind digtd elevation and multispectrad dataare available, the perspective may be changed
and emphasis placed on dternative areas depending on requir ements.

T ane gt

Figure6.1 3D LIDAR and CASI visualisation o Blakeney salinelagoons

Additiona datamay be added to the 3D world in order to visuaise morphological changes. It
is possible to highlight areas of change by adding dataderived from multi tempord LIDAR
data(Figures 6.2 and 6.3). The LIDAR datamay be used by itsdlf to provide visudisations
of the morphological changes taking place (Figure 6.4). These methods can bevery
successful in conveying an impression of the dynamics occurring a these sites.

Any form of similar resolution DEM may be used in avisualisation. Using 1982
phatogranmetry datawith 2002 LIDAR datait ispossible to seethelarge changesin the
Ainsdae dune sy stem (Figure 6.5). All of the visua isations described can be presented as
static images or as flythroughs. These simulate abird eye or plane eyeview of the habitat and
may be used toprovide aparticularly dynamic view of the area of interest.
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Figure6.2 3D LIDAR and CASI visualisation with significant changebeween 1999 and 2001 overlaid,
AinsdaleSands

Figure6.3 3D LIDAR and CASI visualisation with significant change2000-2002 overlaid, Rye Harbour
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A 1982 photogrammetry data

B 2002 LIDAR data

Figure6.5 3D Visudisation of changeat Aingdale Sands Merseyside 1982-2002
(View from end of Fisherman’s path facing approximately north)
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7. Conclusions and recommendations

7.1 Image normalisation

Preparingtheimagery for classification is one of the most important gages in a successful,
accurate classification. Using edge matching is generally appropriate when terrestrid habitats
arebeing classified, aslongas careis taken when sd ectingthe areas that can be matched.

The use of imageratioing is an interesting development for intertida sites and can be used to
increase classification accuracy when there are variations in lighting due to bi-directiona
effects or variations in overall lighting levels.

The technique may aso be used to expand the window of opportunity for collection of data
over intertida sites, by collecting datawhen bi-directiond eff ects are high such as early
morning. By expandingthetimethat data can be collected by 1 hour either side of low water
the number of monitoring opportunities per month can be increased by between 3 and 4 day s
per month. This equates to a 25%-35% percentage increase in the number of days that data
can potentialy be collected.

Thisis an areathat will continueto be developed by the Environment Agency, as the success
or otherwise of amonitoring program can be dependent on the qudity of the image
normalisation.

7.2 Classification

7.2.1 Alternative classfiers

This gudy has conclusively shown tha the use of traditiond statistica based approaches for
classification can be less accur ate than more modern technigues. Remote sensingis a
reatively new science and hardwar e and software are improvingrapidly. The development of
dternative classification methods will continue both for commercial and academic use, and as
methods are developed, it is essentid that they be considered in the context of habitat
monitoring.

7.2.2 Use of additional datasetsin clasd fication

The use of additiona datasets in classification has been shown to be successful, particularly in
the case of satmarsh and sand dune sy stems. The data used in the classifications in this study
were LIDAR derived, but thereis no reason why other datasets could not be used, including
those derived from non-remote sensing sources, such as soil type.

7.2.3 Probability and uncertainty

Thederivation of per pixd probabilities enables two main types of change detection to be
carried out more accurately, estimates of class areaand identification of the areas where
changeis occurring.

Estimates of the area of each class may beimproved by accounting for probability of correct
dlocation and deriving confidence intervas to these aress. Thisis paticularly useful for the
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reporting of the staus of habitats, as it may be determined whether the leve of changeis
significant.

When classifications from diff erent years are compared, the probability of correct
classification for each pixel may be used to determine the probability of changefor each pixel.
This will enable the areas of changeto beidentified, combined with aprobability that the
changeis occurring, enabling management decisions to be made on the basis of where change
is occurring and what the change is.

7.3 Morphological monitoring

This gudy has examined methods of monitoring the morphology of coastd habitats. Thisis an
area of remote sensing that has advanced a great ded in recent years. LIDAR sysems have
improved to gage where high precision DEM generation over large areas has become routine.
Usingthe high qudity DBEM s availabl e offers amethod of monitoring habitats that was
previously unavailable. Datamay be used for targeted monitoring of specific aress, or
surveillance of whole habitats. This goproach is avast improvement on the one or at best two
dimensional ground based methods that had the patentia to miss large areas of changein a

dy namic environment such as the UK coast.

7.4 Obtaining remote sensing ground data

Remote sensing off ers a broad-brush approach to land cover mappingand is ableto map the
main species present and may be used to detect generd trends in species composition. It is not
possibleto detect singe plants of arare or infrequent species.

The accuracy of maps derived from remotely sensed datahas in the past been compromised
by ground datathat do nat meet the requirements of image analysis. Thisis largely dueto lack
of communi cation between image anay sts and ground survey teams. In order to improvethe
accuracy of dataderived from remotely sensed imagery it is essentid that collaboration occur
between the personnd carrying out ecologca ground data collection and those carrying out
image anadysis. In remote sensingterms, it is better to gather lar ge quantities of what may be
considered broad-brush datathan attemptingto map each individual plant on the ground.
Difficulties were found during this study where ecologsts wereinterested in individud rare or
unusual species, increasingthe time taken for data gathering and reducing the amount of
usable data gathered.

Problems may aso occur when sy noptic data are coll ected as in the Budle Bay section of this
study. Areas of agiven class must be clearly identified, so that any pixe within a gven
polygon will belongto that class.

This report recommends that a consistent method of obtaining ground datafor classifications
is derived and used to provide standard operating procedures for future work.

7.4.1 Image resolution/ground resolution

The gatid resolution (the pixd size) of aCAS image is generally somewhere between 1-
10m. To maximise classification accuracy, the training sites need to be as pure as possible.
This has two implications from the poirt of view of image andy sts. This means that there
should only be one class of vegetation present. In an areasuch as saltmarsh this may be
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difficult or impossible. Some ar eas of satmarsh are intermedi ate communities that are made
up of anumber of species, such as Puccinellia lawns, that contain Aster, Limonium, etc.

Whereit is not possibleto identify pure aress, then the gpproximate amount of coverage by
each species should be recorded. This should include the amount of bare ground and what
surfacethisis e.g. mud, shinge or sand. Remote sensingis not ableto distinguish coverage at
avery smadl leve and so unless specificadly required cover of | ess than 10% should be

ignor ed.

7.4.2 Classes

It is essentid that the classes presert in ahabitat be known prior to ground data coll ection. A
classifier cannot know whether an areabelongs to a class other than the ones tha data have
been col lected for and will misclassify any areas that belongto classes that ground data have
not been collected for. Knowledge of the land cover typespresent in asudy areaprior to
ground data collection will enable surveyors to ensure that sufficient dataare collected for all
classes.

7.4.3 Traininggtes

Areas should beidentified of each of the classes used in the classification. It is essentid that
enough pixels be identified for use in the classification. Selecting point samplesis not an
option unless large numbers of points are sampled (See 7.4.4 below).

Stes should be as large as possible. The classification is most accur ate when the range of
variation in the class is represented in the training data. This means that low and high
productivity areas should be represented, as well as the variation in the dominance of the
species making up the class.

The effects of mixingat boundaries can severely reduce the quality of training dataand
therefore the accuracy of the subsequent classification if astatistica classifier is used (Foody,
1999). However, for non-parametric classifiers such as neurd networks thisis less
importance,

During processing the training sites have to be identified on theimage. This creates problems
between data obtained and requirements for image processing. GPS or other accurate position
datafrom the fidd may be of less use than mapping straight to an image. When an imageis
obtained it is distorted. The process of fittingtheimageto amap is not perfect and sothere
will be positiond errors in thefina map. Even though the ground datamay be perfect, the
image datamay not be.

This means that areas of vegetation marked on an image are easier to identify. If theimagery
is not available a sketch map may be of useto theimage analyst. This may show positions
relativeto roads, streams or creeks. A map is particularly useful when the areas identified are
small patches of vegetation. The pasition of apoirnt will be of use as well, but a sketch map
will tiedown geographic position with more accuracy than many commercidly available GPS
systems.
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Even with adifferential GPSthere may be problems associated with pog processing and
fidddwork may be of little use unless simple maps are obtained. Photographs of the generd
position may aso help.

Data should be gathered for al of the classes beingused. A particular problem with
classification of intertida vegetation is a gae, but alot of ground survey s do not includethis
class. It isthen up totheimage analy st to identify areas of d gae from theimagery, atask
many are not qualified for. It is therefore essentia that al classes are included in the ground
datacollection.

7.4.4 Number of pixelsgathered

The number of pixels gathered per class is an essentid factor in the accuracy of fina
classification. It is critica that enough pixds are gathered per class and that the areas gathered
cover the variation within the class. For example, for a mixed woodl and cl ass, it would not be
acceptableto gather ground datathat does not include deciduous woodland. There arerules
for the number of pixels used, but these generdly apply tostaistical classifiers. Work was not
carried out to identify the correct number of pixels per class. However, for the habitats
classified here, between 500 to 1000 pixels per class were adequate to provide ahigh accuracy
classification.

7.4.5 Ground survey teams

Throughout this sudy it was found tha havingan image analy st involved in data gathering
was very useful. It aided the classification process for two main reasons:

. Ensuring the correct datawere gathered.

. An understanding of the site was helpful duringthe QA of the classification stage and
reduced errors in thefind product.

7.5 Remote sensing for monitoring coastal SACs

The use of remote sensingwill not remove the need for ground based studies, but can provide
additiond information that may not be obtained using ground studies. There are a number of
differences to aremote sensing gpproach to monitoring the environment that may be used
positively to provide additiona information that may be difficult or impossibleto gather using
agound based gpproach.

Remote sensing provides a continuous coverage. Thisis aparticular advantage with e evation
data. Ground surveys are generdly points or transects and cannot represent thethree
dimensional complexity of the landscapes being examined.

A ground based approach to mapping habitats cannot completely cover the entire areabeing
mapped unless it issmall. For this reason the boundaries between habitats may beincorrectly
mapped, particularly when the areamay be difficult to reach, such as intertida vegetation

Thismay beaparticular problemif |arge areas are to be monitored, as the distance between
survey points may beincreased dueto time constraints. As coasta habitats are gatidly
heterogeneous, much of the variation within these habitats is nat accounted for. Boundaries
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aredrawn by ey e between sampling points. This goproach is necessarily limited dueto the
discontinuous nature of these sampling strateges.

When ground based mappingis carried out the map lay ers used to record on may not be up to
date. Thisis aparticular problemin dy namic habitats such as theintertida zone where
mapping occurs less frequently than in terrestria environments (Collier et al., 1995).

Access to intertidal habitats can be very difficult or dangerous. On satmarsh and mudflats
deep mud can create access problems, as well as being dangerous for surveyors. The foot and
mouth outbreak in 2001 aso hi ghli ghted the access problems with ground-based surveys.

As atool for monitoring coastd habitats, epecidly theintertidal zone, remote sensing can
provide information that may be difficult or impossibleto gather using ground based studies.
Thick layers of saturated sediments and water can make intertida or offshore areas
inaccessible without goecidist equipment. Comprehensive surveys may be difficult, especialy
a areas low in thetidd range.

7.5.1 Operationd use of remote senangin SAC monitoring

Thisproject has developed aseries of operationa methodolog es for the application of remote
sensing techniques to the monitoring of marine Specid Areas of Conservation (MSACs).
Thesetools may now beimplemented by qualified remote sensing staff either within the
Environment Agency or within Engish nature.

Further developments are still to be made to these tools, making use for example of the new
generation of satellite sensors. Smilarly, it may be appropriate totransfer thetechnologies
used to other environments, for exampleterrestrids SACs. All the methodolog es suggested
arecompletely transferable, but their success will depend on the spectral characteristics of the
habitat being survey ed.

A number of key poirts are vaid for each of the habitat types:

. Remote sensing methods offer the ability to conduct large scale survey s with limited
ground datathus reducing the impact on the environment being monitored and
improving the monitoring of areas which have poor access

. Thedigtd nature of the data mean that anaysis of change between y ears and seasons
isared possibility
o The use of terrain information derived from LIDAR dataresults in athree-dimensional

view of the site, which has huge benefits in planning, education and demonstration of
monitoringto the wider public

75.2 Sdtmarsh

This gudy in conjunction with previous gudies (ABP 2000) hasshownthat it ispassibleto
derive accurate vegetation maps using CAS or CAS and LIDAR data. Theuse of dternative
neura network classifiers was extensively tested and found to be an improvement on
previously used classification methods. The gudy did not successfully use the satmarsh
classification for monitoring change due to the inaccuracy within the 2001 classification. This
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was dueto the databeing col lected too early within the growing season. A classification of
the 2002 datawas not carried out dueto incomplete ground data.

Remote sensing methods offer the following capabilities:

. Classification of main SAC habitats
. Classification of dominant species (athough with greater uncertainty)
. Hydrologcad modelling of creeks (usingLIDAR)

A combination of CAS and LIDAR datais recommended, with a ground resolution of Imto
2m.

75.3 Sanddunes

This habitat type has been monitored over each of the three years leading to some clear
findings.

Remote sensing datafrom this habitat have been found to be suitablefor:

. Identification of main SAC habitats
. M onitoring of dune development and erosion
. Production of a3D visuaisation

A combination of CAS and LIDAR datais recommended, with a ground resolution of Imto
2m.

7.5.4 Sdine lagoons

The areaconsidered for this habitat was complex, with amix of fresh water, sdt water and
terrestrial vegetation.

The remote sensing deliver ables from this habitat are:

. Lagoon areaat oneinstant (rememberingthat it is highly tempord variability)
J Ridgewidth
o Ridge hei ght

In terms of monitoring of status, the remote sensing methods offer no clear advantages over
traditiona methods.

However, the remote sensing methods can offer athree-di mensional view of the
environmenta system. Thistype of visudisation is becomingincressingy important in the
education of the public in environmenta matters, in addition to demonstrating monitoring in
action and enabling clear planningto be carried out.

M oreover, DEM datawill aid in the monitoring of percolation barrier width.
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755 Mudflats

No conclusions could be drawn for this habitat type due to problems with ground data capture.

However previous gudies and qualitative results indicate that remote sensing methods can:

. M onitor the extent of algae
. M onitor the extent of mussel beds
. Distinguish different surfacetypes

The environment is typicdly difficult to monitor dueto access problems and the wide areas
requiringcoverage. This means that remote sensing techniques areidedly suited. The use of
satellite datawould probably beprecluded by problems associated with cloud cover, but
should be further investigated as current sensors offer the required spatia resolution and may
offer sufficient spectrd information for this habitat type.

If using airborne data, CAS datacoll ection is recommended with full spectra classification.
A satid resolution of 4m would offer the required differentiation and would alow higher
dtitudeflyingand areduced survey cost. Although datacollection has proved difficult for the
Budle Bay site, the techniques being developed, including band ratio methods, will most
probably extend the weather window of gpportunity .

Further investigations are aso being conducted under contract to the EC Life Ythan Project to
measure the biomass of dgd in estuarine and mudflat environments. This would offer a
substartial increasein the value of the CAS data col lected.

7.5.6 Vegetated shinge

Whilst the multispectrd CAS methods are able to classify the presence of coarse vegetation
they are unableto detect thepresence of some of the most important species in this habitat due
to the small areas over which they grow. Assumingthat species cannot be differentiated, it is
recommended that digital photography databe gathered. Theincreased spatid resolution of
these datawould alow abetter identification of the presence of vegetation.

The collection of LIDAR datahas proven of high vaue in the monitoring of erosion and
accretion at thefront of the shinge system. Examples of this have been seen a both the Rye
Harbour site and at the shinge ridge offshore of Blakeney.

Thus athough the remote sensing methods cannot replace the traditiona sampling for the
monitoring of key oecies the data can offer added valuein terms of the wider environmental
management of ashingeridge system.

7.5.7 Costs of remote snsing

If useis to be made of remote sensing for monitoring marine SA Cs some decisions need to be
made on the data col lection and processing model to be adopted.
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Table7.1 Recommended sensorsfor coastal monitoring

Habitat LIDAR CASI Digital Photos
Sdtmarsh v v

Sand dune v v

Mudflats v

Vegeta ed shingle

Sdinelagoon v v

To datethe work has been carried out by the Environment Agency Nationa Centrefor
Environmental Dataand Surveillance. This has involved the development of methodologes
that could in theory now be gpplied either by Environment Agency staff or by staff within
English Nature. For thework to be carried out within EN, the followingwould be required:

. Hardware set up cogs equivalent to £3000 per saff member
. Software set up cogs equivaent to £5000 per saff member
. SQuitably qualified remote sensing staff

If thework wereto continue withNCEDS then a char ge would be made to cover staff time,
which in the Table 7.2 has been worked out on aper square kilometre basis.

Table 7.2 Costs of coastal SAC manitoring using remote sensing

Data collection Ground data Classification *
CASI LIDAR Digital Photos *

Sdtmarsh £200 £200 N/A £50 £200
Sand Dunes £200 £200 N/A £50 £200
Mudflats £150 N/A N/A £30 £150
Vegetated £300 £50 £50 N/A
shingle

Sdine lagoons N/A £200 £50 £30 N/A

Alternatively, the work could be carried out within the NCEDSby one or anumber of staff
funded directly by Endish Nature, which may alow for some cost savings.

7.6 Future areas of study

Though this study took gperationa remote sensing of the coasta zone forward in terms of
image preparation, classification and morphological change detection, there are still areas that
require further study.

7.6.1 Satdlite data

This sudy only examined the use of airborne remote sensingfor monitoring coasta SACs.
However, satdlites are now capable of producing fine spatia resolution multispectra data
(Table7.3). There arethree main factors to be considered when selecting a multispectra
sensor to monitor vegetation; ground resolution, waveband avail ability (wavelength and
width) and monitoring opportunities. M uch of the variation within UK coagd habitats
particularly saltmarshes, occurs at scaes of afew metres and so coarse spatid resolution data
would beingppraopriate for monitoring the diversity of pecies within theintertidal zone, even
if sub pixd classifications are carried out. Of the satellite datareadily available, SPOT HRV
and Landsat TM aretherefore ingppraopriate as they have multispectra patid resolution of
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20m and 30m respectively (Table 7.3). Inthelast 4 years, three high spatia resolution
satellites have been launched that provide the spaia resolution that is suitable for coasta
monitoring in the UK and two more are duein the next twoyears.

Table 7.3 High spatid resolution imaging satdlites

Satdlite Resolution (m) Resolution (m) Operational
(panchromatic or black and white) (multispectral)

L andsat 15 30 Yes

Enhanced TM

(ETM+)

SPOT HRV 10 20 Yes

IKONOS 1 4 Yes

EROS-Al 1.8 N/A Yes

QuickBird-2 0.6 2.5 Yes

Orbview-3 1 4 Lae 2003

EROS-B 0.9 4 Late 2004

The classification and erosion monitoringtechniques developed in this study could be directly
applicableto satdlite remote sensing. Radar datamay be of useto provide DEMs for
monitoring coasta morphological changes.

Satellite dataare chegper and provide greater coverage than airborne data, but there are other
limitations. The satdlites only overpass a certain times of the day and in most cases do nat
overpass every day and so are more weather dependent than airborne sy sems.

7.6.2 Habitat change detection

Change detection is an area of remote sensing that needs to be examined further. Any further
work should study overal habitat area estimates and identifying areas of change. Though
these areas were examined during this study, there was insufficient timeto carry out afull

study.
7.6.3 Other habitats

The use of remote sensingis gpplicable to monitoring other habitats. All of the techniques
developed here havethe potertia to be transferable. Other habitats in which remote sensing
may be of considerabl e use include:

. Grazing marsh: habitat monitoring

. M aritime cliffs and slopes: erosion monitoring
. Reed beds: habitat monitoring

. M oorland areas: habitat monitoring

7.7 Logistical changes

One of thelimitations with theproject plan for this sudy wasthe short time between thefina
flights and project delivery (approximately 6 months). This meant that alarge amount of
work, including ground data collection and col lation, classifications, morphological change
detection and report writing had to be carried out over arelatively short timeframe. This
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resulted in certain areas not being studied as fully as was required, particularly the crucid area
of habitat change detection.

Idedlly,, more time would have been dlocated for each classification. However, this timewas
not availabl e and so cl assification accuracy may be reduced from the optimum achievable. In
future studies it is essential that enough time be gven for technique development.

Therewere aso problems with the ground data coll ection for the Tollesbury sitein 2002. This
was because certain areas belongto locd wildfowling groups who were unwillingto let a
survey team onto their land during the wildfowling season. This resulted in incomplete ground
datacollection for the site. Idedly the sites chosen for developing techniques should be
accessiblefor as longaperiod as possible for ground data coll ection, so that theseproblems
do not arise again.
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Appendix A. Original work packages

Al Work Padkage 1. Saline lagoons

Over the praoposed three year period, combined LIDAR and CAS datawill be collected on
two occasions a atwo-year or gregter separation. The use of CAS datain additionto LIDAR
is justified on the need to identify the vegetation of the surrounding areas in order to establish
thelikelihood of lagoon cregtion.

The study site will be confined to asmall area, approximately 2km by 5km to alow intensive
study of the ground cover types. Datawill be coll ected a 2m resolution to adlow operationa
use of techniques developed.

Initia research will investigate the spectrd signatures associated with each of the ground
cover types surrounding the lagoon sites to establish whether they will or will not be
spectrdly diginguishable. Theresults of these investigations, to include discussion of the
relevant literature, will be presented in thefina report for this habitat type.

The CAS and LIDAR imagery will then be processed and an unsupervised classification
carried out onthe CAS data. This classification will be provided to ground staff from
English Nature who will be asked to verify the composition of ectraly differentiated classes
within the gudy site. Thisinformation will be used to fine tune the classification. Theresults
of this classification will beincluded in thefina report including pictoria representation of
the study site.

The LIDAR datawill be used to derive athree-dimensional digta eevation mode of the
study site. Investigations will then be carried out into the patentia for flooding using
specidist techniques developed within the Nationa Centrein association with expert
information from English Nature scientists. Various techniques for three-dimensional change
detection anaysis will also need to be explored. All thetechniques developed within this
study will beincluded within thefinal report.

A2 Work Pakkage 2 Inter-tidal mudflats

The scientific requirements for this habitat type do nat ask for any assessment of change.
Datawill therefore be collected on only one occasion, which will be in September. This
period coincides with the pesk in growth of the musse beds, one of the sub-habitats which is
beinginvesti gated, and will precede the die off of macro-a gae.

Both CAS and LIDAR datawill be collected. The CAS datawill be used in association with
detailed ground truth data, to classify the various ground cover ty peswithin the inter-tida
mudflat. Attempts have been made previously to diginguish between sediment types within
mudflats, including the diff erentiation of sand, silt and mud. These have had limited success
dueto the similarity in gpectra signature between the sediment types. The different sediment
types have clearly distinguished particle size which will result in the establishment of
differing slopes on the beach profile. It is proposedthat this sudy will investigate the use of
LIDAR derived slope as afurther information source to improve the qudity of the
classification.
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The study site will again be confined to asmall areato enabl e the groundcover typesto be
surveyed in detail. Currently thepreferred study siteis Lindisfarne, although the areawithin
this would need to be discussed in detail to dlow each of the ground cover typesto be
encompassed.

Initia research will investigate the spectrd signatures associated with each of the ground
cover typesto establish whether they will or will not be spectrally distinguishable. The
expected variaion in sediment type and consequent variation in anticipated beach profile will
aso require investigation. Theresults of these investigations, to include discussion of the
relevant literature, will be presented in thefina report for this habitat type.

The CAS and LIDAR imagery will then be processed and an unsupervised classification
carried out onthedata This classification will be provided to ground staff from Engish
Nature who will be asked to verify the composition of sectraly differentiated classes within
the study site. Thisinformation will be used to finetunethe classification. The results of this
classification will be included in thefinal report including pictorid representation of the udy
site.

A3 Work Padkage 3. Coastal shingle

Ry e Harbour has been chosen for this study, as it comprises areas in which shingleis both
eroding and accreting. Both CAS and LIDAR datawill be collected as two survey sseparated
by at least oneyear to alow the detection of changes in the morphology. Datawill be
collected a 2m resolution to dlow an assessment of the operationa use of these techniques to
be made.

The CAS datawill be used to establish the ability to classify vegetation on the shingeridges.
It is anticipated that the narrow nature of this habitat type may make this difficult, with
problems of mixed pixels. Initidly the spectrd signatures of the vegetation types will be
investigated, through review of current literature as well as investigation of new data An
unsupervised classification will then be carried out, and the ground cover types identified will
be verified by Endish Nature ground staff to alow fine tuning of the classification. The
results of this analysis will beincluded in thefinal report for this habité type.

The LIDAR datawill be used to derive adigita € evation model. The modds derived from
the two surveys will be compared using three dimensiona change detection andy sis which
will be developed by the Naiona Centre as part of thisproject. Theresults of this analysis
will beincluded in thefind report including pictorid representation of the sudy site,

A4 Work Padkage 4 Saltmarsh

Recent investigations have shown that the ability to diginguish satmarsh species may depend
on acombination of the amount of timethat the vegetation is submerged and the d evation of
thesite. In order to exablish the ability of remote sensingto ad in the investi gation of
individual species it will be necessary to collect acombination of CAS and LIDAR datafrom
four different seasons.

The CAS datawill be used to derive aclassification of vegetation with information from the
LIDAR beingused as an extraclassification tool. Thiswork is experimental and has not been
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attempted previously, but it is anticipaed that acombination of the two techniques will
greatly enhance the classification of satmarsh vegetation.

The LIDAR datawill dso be used to investigate the development of creeks within the
sdtmarsh. In order to allow areasonabletime scale over which to monitor creek
development, an areawith historic data should be used. The Blackwater estuary hastherefore
been sdected as both historic CAS and LIDAR dataexist for this site.

A sitewill be selected within the Tollesbury M arsh (Blackwater Estuary) approximatey 2km
by 5km. Datawill be collected a 2m spatia resolution to alow tesing of the operationd use

of the techniques developed. The study areawill be overflown with both CAS and LIDAR
data

The CAS datawill initially be used to derive an unsupervised classification of the vegetation
types withinthe marsh. This will be provided to Endish Nature ground staff who will check
the composition of the pectra classes derived from the classification. This information will
then be combined with the dataon eevation fromthe LIDAR datato improve the quadity of
the classification. It is anticipated that the addition of the LIDAR datawill enablethe
differentiation of more spectra classes a certain seasons which may necessitate further
ground datacollection. Comparison of the datacollected at differing seasons will enable
decisions to be made on the optimum time of year for future data collection exercises. It is
possiblethat differing seasons will be recommended depending upon the fina information
required, for example whether the extent of annua speciesis required. Theresults of this
andy sis and recommendations for future monitoringwill be included within thefinal report.

A5 Work Padkage 5. Sand dune morphology and vegetation change

This section of theproject will investigate the use of LIDAR to monitor erosion and accretion
of sand dunes and to measure volumetric changes. In addition, the use of CAS to monitor
changes in the vegetation types found within dune systems will also be examined.

The site chosen is Ainsdae, which forms part of the Sefton coast mentioned above. A small
areagpproximately 2km by 5km will be sel ected within this dune system. Theman
requirement for this habitat type is the measurement of change. Datawill therefore be
collected twice, once early in thethreeyear project plan and once within the third year to
alow for maximum changeto take place.

Thefirst datasd will be used to produce athree-dimensiond digta elevation modéd of the
dune sysem within the sudy area. Techniques will then be developed to dlow accurate
measurement of changein three dimensions. This work will obviously be carried out in
pardld with thework carried out on shingleridges. When the second data set is gathered
change anaysis will be carried out and the results of this, including the techniques used, will
beincluded within the fina report for this habitat type.

The CAS datawill dso be used to produce an unsupervised classification of vegetation types
within thedune area. This classification will be provided to Endlish Nature ground staff to
identify the classes withinthe classification. The datafrom this ground survey will be used to
fine-tune the classification. Theresults of this classification will beincluded in the fina
report for this habitat type.
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Appendix B. Instrumentation

Bl LIDAR overview

LIDAR (Light Detection and Ranging) is an airborne mapping technique which uses alaser to
messure the distance between the air craft and the ground. T his technique results in the
production of acost-effective terrain map suitable for assessing flood risk.

Theaircraft is positioned and navigated using global positioning (GPS) corrected to known

ground ref erence points.

Sweep

two-way
slant range
Laser

Earth’'s
Surface

FigureB.1 Principleof operation o theLIDAR

Theaircraft flies a aheight of about 800 metres above ground level and ascanning mirror
dlows aswathe width of about 600 metresto be surveyed during aflight (Figure B.1), with
individual measurements made at 2 metreintervas. Highly accurate attitude data and pos-
processed differential GPS enable the direction of the laser pulse and the position of the laser
head to be accurately determined, alowingahighly resolved modd of theterrain to be
generated.

The Agency’s Flood Defence function has arequirement under the Water Resources Act 1991
to monitor the flood plain. LIDAR is being used to measure land topography and assess
coastd erosion and geomorphology. The Conservation function requires information on |and
being set aside for managed retreat of seadef ences. Thereis also aneed to obtain datafor a
model linkingland use, soil type and the patentia for erosion prediction.

The Nationa Centre has generated routines to alow for the remova of surface features from
the data sets including vegetation and buildings. Products that can be generated from the
LIDAR datainclude colour coded eevation modes, height contour plats and three-
dimensional perspective views alowing easy visudisation of surveyed aress.

B2 CASI overview

The CAS (Compact Airborne Spectrographic Imager) is apassive sensor, which generates
imagery by detecting visible and near infrared eectromagnetic energy that is reflected from
theearth’s surface. CAS is designed to provide aflexible sy stem which is easy to trangort
and straightforward to instal and operatein smdl aircraft. The sysem operatesina
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‘pushbroom’ configuration, mapping out aswath tha lies directly below the aircraft (Figure
B.2). By ingantaneously imagingthe full swath width at repditive intervas, afull image is
built up line by line.

e 1
1 I|I IIlI .r:::|;.l-
P — 'illl 7T

i
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-

FigureB.2 Principle of operation of theCASI

Imagery produced by the CAS consists of up to 512 pixels across the swath and the atia
resolution (arearepresented by one pixd) can be varied from ten metres down to less than a
metre by adjustingthe dtitude of the aircraft and the CAS imagnglens. The maximum
operationd dtitude of the aircraft is 10,000 feet, restricting the maximum swath width to
gpproximately 5.2 km. If theareato beimaged is larger than the swath width available at the
desired resolution, it is possible to obtain anumber of adjacent flight lines and join thesein
order to generate asinge large image, or mosai C.

The CAS uses aCharge Coupled Device (CCD) detector to produce hyperspectra imagery
which can comprise of up to 288 gpectra bands (wavelengths), coveringthe eectromagnetic
spectrum from 430 nm (visible blue light) to 900 nm (near infrared). The number and width
of wavdength channels recorded is flexible with more channels providing more detailed
spectrd profiles of the different ground cover types.

The CAS has three operational modes, which are suited to different gpplications and should
be selected accordingto the spatia and spectra resolution required of thedata. The
operational modes are;

Spatid mode: All 512 swath pixels are recorded in up to 19 wavebands. Thewavelengths
covered by al the bands and the width of the bands are configurable.
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Spectral mode: Daafrom al 288 bands are recorded from 39 pixels across the swath.

Enhanced spectral mode: This flexible mode allows a compromise between spatid and
spectra modes to be achieved. The exact combination of pixes and bands that is achievable
is determined by the amount of ambient light a the time of imagng.

B3 Dataanalysis
B3.1 Data preparation and accuracy

In order for accur ae reproducible infor mation to be obtained from remote sensing datathere
has to be an understanding of the inaccuracies within the data. These inaccuraci es then need to
be reduced. Theinaccuraci es of the sensors used in this gudy areinherently different and the
implications of these errors are therefore diff erent. Theinaccuracies inthe LIDAR sysem are
inthex, y z planes. The CAS system has inaccuracies in the x and y planes and caused by
changes in therdative leves of lighting or the radiometric eff ects.

B3.1.1 LIDAR accuracy

The accuracy of the Environment Agency LIDAR sysem and the errors incurred when
convertingthe LIDAR datato OSGB co-ordinates has been independently assessed
(Ashkenazi, 1999). Errors are cal culated using Root M ean Square addition and are not strictly
additive. The quoted error is + one standard deviation which means that 66% of the vaues lie
within the defined error bands. This complies with the gandard practice for error cal culation
in surveying.

Height accuracy of point measurements (z).

The LIDAR sysgem accuracy for aWGSB84 product (including instrument errors, cdibration
errors and GPSerrors) may be stated as + 9 — 15 cm.

The accuracy after transformation to OSGB36 (inclusive of LIDAR sysem errors) may be
stated as + 11 — 25 cm.

Plan accuracy of point measurements (x,y)

TheLIDAR sysem accuracy for aWGS34 product (including instrument errors, cdibration
errors and GPS errors) may be stated as + 40 cm.

Theaccuracy after transformation to OSGB36 (inclusive of LIDAR sygem errors) may be
stated as + 45 cm.
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B3.1.2 CASI Geometric accuracy
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FigureC.1 Estimated Positional Standard Deviation

(Estimaes from GPS processing software)
(Red: X, Green: Y, Blue 2)

The current CAS system uses high accuracy, high precision positiona and attitude datato
georeferenceimagery . Each timethe CAS isinserted into the planeacd ibration is carried
out, to etimate positiona and angular offsets between the CAS sysem and the navigation
data Thisisthen goplied a the georef erencing stage.

The sysgem uses differentiad GPSto providetheincreased accuracy paositional data. The
positiona accuracy of the GPSsysem is better than 5cm at 1 gandard deviation (ie 66% of
the dataare within 5¢cm or better). This means that the positiond errors caused by the GPS are
less than 10 % of 1 pixel a 1m resolution. The GPS processing provides an indication of this
error (Figure C.1).

Tests have been made of the CAS sysem positional accuracy using atest site at Coventry
arport. Theresults indicate that the RM SE (66% of the dataare within 1 RM SE) is better than
1.6mif the base station GPSis within 120km of the survey site and if topographic errors are
ignored. Asthe paositiond dataare so precise, it is likely that the GPS causes asmal |
proportion of the error. The main errors are therefore likely to bein the caibration stage and
theinertid measurement unit (IM U) that providesthe attitude data. The cdibration stage is
only accurateto the nearest pixd and so errors of 50cm (in 1m resolution data) can result from
this dage.
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However tapographic errors need to be incorporated in any consideration of the CAS errors
(Figure C.3). Topographic errors will be dependant on the accuracy of the digitd d evation
model (DEM ) used and theterrain being surveyed. In areas in which the slopes are high the
tapographic errors will tend to be greater. Usingthe CAS system currently in gperation at the
Environment Agency, an error inthe DEM of Imwill produce an x, y error of gpproximately
26cm, at the edge of theimagery. In the sites being studied for thisproject, topographic errors
will generdly berd atively low, as most of the gudy sites areflat and even in the sand dune
siteahigh accuracy LIDAR DBEM was used in the geocorrection process.

Radiometric normalisation

The CAS datacollected for this project consig of multipleflightlines gathered over time
periods of up to 2 hours. Within thistime period it is possible for the lighting and atmospheric
conditions to change considerably, resultingin large variaions in light levels on the ground.
Eveninrelatively stable atmospheric and li ghting conditions, the effects of lighting changes
may severdly reduce the accuracy of any land cover output (Figure C.4).

Theremay aso be variations dueto the surfaces being viewed. For example wet mud will
exhibit what is known as bi-directionad reflectance. The amount of light reflected from the
surface is dependant on the angd e of the sun and the viewing and e (Figures C.5 and 4.6). Bi-
directiond reflectance can have effects within asingle image, resulting in changes within the
imagery dueto theang ethat asurfaceis viewed from. These variations can result in avery
lar ge decresse in the accuracy of the classification.

Thesewill result in variations within any gven image and are very difficult to remove using
conventiona techniques. Therefore two types of variations within lightingneed to be
considered:

. Between image differences dueto changesin lightingleves or atmospheric conditions
. Within image differences due to changes in lighting l evels or bi-directional effects

FigureC.4 Example mosaic showing differences in lighting between images
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FigureC.5 Bi-directional effectsin remote sensing imagery

In order to reduce the effects of changesin lightingand atmospheric conditions and minimise

bi-directional effects, radiometric correction has to be carried out. The simplest form of

radiometric correction normalises theimagery in order to reducelighting differences. Errors

in classifi cation due to radiometric changes are minimised and the possibility of havingto
classify CAS flightlines individud |y, rather than as amosaic, is avoided.

There are numerous radiometric normal isation methods that are used in remote sensing.

However, many are not practica for this form of study, asthey require specidised equipment,

fieldwork simultaneous to flights or sophigicated modelling. Three gpproaches were
identified that are gpplicableto theimagery gathered in this study and have potertia for
operationa usein airborne remote sensing studies:

. Edge matching
. Imageratioing
. On-board irradiance measurements
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FigureC.6 Bi-directional effectsin CASI imagery
(Left hand edge of image: vegetation- high radiance, mud-low radiance
Right hand edge of image: vegetation- |ow radiance, mud-high radiance)

Edge matching

Edge matching is ard atively common approach when overlapping images are to be mer ged
(ABP, 2000). In this method the relationship between the radiance vaues in the overlapping
aress between images are used to compensate for differencesin lighting.

The technique can use specificaly selected cdibration areas where bi-directional effects are
minimd (iethereis little directiond reflection), or match the whole of the area of overlap.
Theuse of cdlibration sitesin asceneto calibrateimagery to reflectance or normal ise images
has been rd aively common in remote sensing studies. Studies identify that care must be
taken to sdlect surfaces with wide ranges of reflectance, or the relationship obtained is liable
to be skewed. Specifically sdectingareas is time consuming and difficult especialy where
there arefew areas that have the required surface characteristics, such as concrete and tarmac.
This wasthe casein this study.

The second approach where the whole of the overlap areais used is much essier, and the
gpproach may be modified slightly to remove obvious problem areas. Areas that should be
omitted include; mudflats, water with gint and woodland. This gpproach can work well when
thereis very little variation within the images due to bi-directional effects or clouds.
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However, when theimagery has been flown over awet surface or theflightlines are across the
sun azimuth angethis gpproach may be unsuccessful. One mgor limitation is that smal bi-
directiond effects may result in asysematic error beingintroduced into the imagery (Figure
C.7).

The most common reasons for adirectional component to imagery are when images are flown
a an offset tothe solar azimuth ange, particularly when the surface being survey ed is wet.
This limits the approach for intertida habitat monitoring. Directional imagery is also common
when the sun ange is low.

FigureC.7 Effect of bi-directional lighting on edge matching techniques
(using sameimagery as Figure C.6)

Image ratios

The principle behind image ratios is that though there may be differencesin thelevd of
lighting, therelativelight levels in different wavel engths remain relatively constant. Thiswill
not apply over long time periods as aamospheric conditions change, but the gpproach is a
possible method of compensating lighting variations. This method aso has the patentid to
reduce within image diff erences dueto bi-directional effects.

There arelimitations with this gpproach, as the assumptionthat therelativelightinglevels
remain constant may nat be met, especidly if aamospheric changes occur. Another limitation
of this gpproach is tha information may belost by the ratioing process, reducingthe
separability of classes and therefore reducing classification accuracy . The effectiveness of
ratioing as amethod of radiometrically correctingimagery is likely to be dependant on the
habitats being examined.
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(W and E o Figure C.6)

Theratioingmethod was tesed by creating consecutiveratios (egband 3 and band 4) for all
the CAS bands. This results in anumber of ratio layers equa to one minus the total number
of bands (eg 14 datalayers from the 15 band coastal bandset). Ratios were aso generated
using all combinations of blue, green, red and NIR, providingup to 6 moredatalayers

depending on the bandset (Table C.1).
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TableC1 Additional ratios based on colour combinations

Colour combinations Coastal Bandset Vegetation Bandset
(15 bands) (14 bands)
Ratio No. CASI Band Ratio No. CASI Band
Combinations Combinations
BluegGreen 15 2/4 14 2/4
BluegRed 16 2/7 15 2/5
Blug/Near Infrared 17 2/15 16 2/14
Green/Red 18 a/7 17 4/5
(dl ready generaed)
Green/Near Infrared 19 4/15 18 4/14
Red/Near Infrared 20 7/15 19 5/14

Table C2 Grades and descriptions for ratioing

Grade Description
1 Mostly noisdlittleland cover information
2 Noise greatly reducing usefulness of land cover information
3 Noi se reducing useful ness of land cover information
4 Some noise
5 Little or no noise

Theratios were dl inspected visudly to ascertain whether they contained artefacts from
lighting differences or noise. Each ratio was graded from 1 to 5 using adescriptive scae
(TableC.2 and Figures C.9 and 4.10). Any ratios with agrade of less than 4 werenot used in

the classification.

FigureC.9 Example of grade 2 ratio

(T ollesbury 2001 data)
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Figure C10 Example of grade5 ratio
(Tollesbury 2001 data)

On board irradiance measurements

The CAS system includes an incident light sensor (ILS) that provides ameasure of irradiance
a thelevd of thearcraft in the same wavebands as those viewingthe ground. This has the
patentia toprovide estimates of changes in light on the ground and therefore may be used to
normalise imagery. The Geodata Ingitute at Southampton University has examined this
method previously in 1999 and 2000 in ajoint project between the Agency, Geodataand ABP
for the Engish Nature Hampshire and Isle of Wight office in 1999-2000 (ABP, 2000).
However, at thetime the approach did not work, as it was nat possibleto accurately estimate
thelook direction of the LS. Sncethat timethe CAS has been integrated with the LIDAR
alowingaccurate attribute datato be obtained. This has enabled arobust method of
estimating asky radiance model from IL Sdatato be developed (Choi and Milton, 2001). The
Agency commissioned Geodatato produce asoftwarepackage that would normdise CAS
imagery usinglLSdata This software was ddlivered in 2002. T he software has shown
promise, but issueswith cdibrating the sy stem have meant that the software has not been
properly commissioned.

Testing radiometric normali sation
The most effective method of testing the various approaches to operationd radiometric

normalisation is to compare cl assification accuracy vaues. Theresults of thesetests arein the
classification section.
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B4 Classification

Classification is the process by which remotely sensed data are converted to thematic data
layers generdly representingland cover or land use. This process may be carried out by
manud digtisation of the boundaries or usingautomated computer based methods.

The manua approach has advantages in that it may be carried out on datawhere thelighting
conditions vary and requires less specidist software than automated classification. The
limitation with this gpproach is thd it istime consuming and requires specidist knowledge of
the habitats being cl assified. It is also not suited to habitats tha are continuums (ie where the
boundaries are not sharp), as drawing lines between land cover types will dways be arbitrary .

The automated gpproach to classification has limitations in that the remote sensed data need to
bewsel radiometricaly normalised and ground data arerequired for each classification.
However, no specidist knowledge of the habitat is required by theperson processingthe data,
automated approaches can berelatively quick and therefore cheaper than manua methods.
This approach is aso suitable for continuums.

The supervised approach to classification involves three stages:

1 Traning
2. Allocation
3. A ssessment

Thetraining process involves identifying pixels within theimage that belongto the classes to
be used in classification. The spectra characteristics of the pixd arethen determined by the
classification a gorithm used.

In the alocation stage the characteristics of each class as determined in the training process
are used to alocate the most likely class to each pixd.

The assessment gage determines the accuracy and therefore usefulness of the classification.
The accuracy of each classification can be derived usingthe tau coefficient, aso known as the
modified kappa (Foody 1992, M aand Redmond 1995). Tau variance was used to estimate Z
scores and test for asignificant increase in classification accuracy when tesing for the most
appropriate method of classification (M aand Redmond 1995).

This sudy will consider two main gpproaches to classification:

. Traditiona statigica methods
° Neura networks.

B4.1 Traditional dasdfication

The most common of thetraditiona parametric approaches to classification is maximum
likelihood (M L) classifier (Campbell, 1996). The M L classifier provides an approach for
classifying remotely sensed datathat is relatively easy to undergand and to carry out.
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In theM L approach, mean vectors are generated for each class and the variances about these
means are generated from training data. Probability density funaions for al classes arethen
derived from these statistics. Theprobabilities of class membership are estimated for each
pixd and the pixd is then dlocated membership to the class that it has the greatest probability
of membership to.

If the dataare normal ly distributed, this approach can produce high classification accuracies.
The analy st does nat haveto se any parameters for the classification to run, just select
suitabletraining dataand classes. To an andy st who has aminima amount of statisica
knowledge, the M L classifier is rel atively simpleto understand and most image processing
packages (e.g ERDASImagine, ENVI, IDRIS) have an easy to useM L classifier.

However, inthelast ten to fifteen years, sudies have shown that there are other non-
parametric classifiers that classify more accurately than theM L under certain conditions
(Kandlopoulos et al., 1992; Peddle et al., 1994; Yool, 1998).

TheM L classifier assumes normd distribution of the spectra data (Campbel, 1981,
Benediktsson et al., 1990). This is often not the case, especidly when aclass contains a
number of different surfaces. For example, awoodland class may contain avariety of ecies,
with mixtures of coniferous and deciduous species, resultingin multi-modal distributions.

TheM L classifier is also very sensitivetothe form and quality of ground data. There should
be enough samplingpointsto represent the full variety within each class. Accordingto Swan
(1978) the amount of trainingdatarequired for the M L classifier is linked to the
dimensionality of the data se being classified. The greater the number of dimensions, the

lar ger the sample size of training points needs to be. Therefore, if thetrainingset is too small
M L classification accuracy may be reduced as the number of datalayersisincreased (Leeand
Langrebe, 1993). Accordingto thestudy by Swain (1978), the sample size for each class
should be at least 30 times and preferably 100 times the number of dimensions. Carryingout a
ML intertida classification usingthe 15-band bandset recommended by Thomson et al.
(1998) and additional LIDAR data, it may beimpractica to gather the required amount of
trainingdatafor each class.

If the training data do not incorporate the variation within the classes used, the accuracy of the
classification may bereduced, even if the required numbers of pixels are used for each class
(Campbdll, 1981). In many cases, training data are sampled in blocks of contiguous pixels. As
these pixels may exhibit autocorreation, the class statigics (means, variances and
covariances), may inadequately represent the classes, leadingto areduced classification
accuracy (Campbell, 1981). A requirement for statistica classification gpproachesis that the
training data need to be pure (Paolaand Schowengerdt, 1995). However, in the case of
intertida vegetation thisis very difficult, as certain species rarely exist in pure gands. Thisis
particularly true of the mid and upper marsh species

The use of datafrom multiple sources has the patentia to reduce M L classification accuracy
(Peddle et al., 1994). Data sources are not equally redliabl e or useful in discriminating between
classes and the M L classifier does not have amechanism for wel ghting data accordingto
importance (Benediktsson et al., 1990). Thematic data, such as soil class, may havethe
patentia to increase class discrimination, but as they are non-parametric, they should nat be
used in M L dassification. If thematic dataare used, they may result in reduced classification
accuracy .
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Though the M L classifier may be of use under certain conditions, in this study therearea
number of factors that may makeits useingppropriate. Theseinclude the use of rdatively
high dimensionality multisource dataand smd | training data sets.

B4.2 Neurd networks

Neura networks (NN) are the computing equivaent of avery simple biologca brain. They
provide apossible solution to avariety of problems in remote sensing including cl assification
and biophysica property extraction.

Neurd network and statisica methods of classification are fundamenta ly different in
gpproach. The non-parametric properties of neura networks mean that the underlying
assumptions made for statigica classification, such as the dataare normaly distributed and
datalayers are not correlaed do not need to be met.

Asweél as beingdistribution free, neural networks areimportance free (Zhou, 1999), meaning
that the network will model the relative importance of the input data surfaces duringthe
training process without requiring operator input. This characteristic is particularly critica
when considering multisource data, as prior knowledge of the level of importance of data
layersis not required. A neura network will set weightings to account for adatalayer’s
importance during the training process (Zhou, 1999).

The most commonly used neurd network in remote sensing is the multi-lay er perception
(M LP). Thefollowing sections offer abrief description of its characteristics.

Structure of the Multi Layer Perceptron (MLP)

The basic unit of theM LP is the node, which mimics abiolog ca neurone. The node sums the
inputs and performs afunction on the summed input. TheM LP consigs of three types of
layers; input, hidden and output (Figure C.11). Theinput layer has as many nodes asthere are
input daalayers. There may be one or more hidden lay ers withthe number of layers and
nodes specified by the user. The output lay er contains as many nodes asthere are output
classes. Every nodein the hidden and output layers is connected to al nodes in the previous
layer. Asthe signa passes between nodes it is modified by weights specific to each node-node
connection

Input signals are passed through the M LP, being modified by the weights associated with the
connection between nodes and the functions of each node. The movement of input signals and
their modification through the network from input to output isthe ‘feed-forward’ stage of the
M LP. The outputs of theM LP are activation levels at each output node. These activation
levels may belinked to abiophysicd property or land cover class.
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Input layer Hidden layer Output layer

FigureC11 Multi Layer Perceptron Neural Networ k

Training the MLP

Trainingdataare entered into the NN and the activation leve of each of the output nodes is
compared with the vadidation vaues, generdly ground data, and an error function is
caculated. A learningd gorithmis applied that dtersthe weightings within the network to
minimisethe error. Thewhole process is then repeated urtil aspecified number of iterations
have taken place, or the error is minimised or reduced below a predetermined levd.

Thisprocess dlows the network to ‘learn’ the characteristics of the training data set.

The number of iterations used in training can strongly influence the accuracy of thefina
classification. If too few iterations are carried out, the network will not be ableto mode the
full complexity of the data set. If too many iterations are carried out, the network may become
very good at classifyingthetraining data but may be much poorer at classifyingthe main data
set. This effect is known as over-training and results in aloss of the network’s ability to
classify datait has not seen before.

Network architecture

The ability of aneurd network to accurately classify datatha are not used in thetraining
process is known as generdisation. Thisis an important consideration when constructing and
training the network. There are anumber of factors that affect the ability of anetwork to
generdise and therefore optimise cl assification accuracy . These include the architecture of the
network, thetraining set and trainingtime.

The strudure of anetwork can becrucia to its success as aclassifier. Generdly thelarger the
network the more accurateit is a classifyingthetrainingdata (Kavzoglu and M ather, 1999),
but it may beless ableto generalise. Subjectivity has been identified as an issue when setting
up the struaure, ecifyingthetraining parameters and the starting conditions of aneural
network (Peddle et al., 1994). However, astudy by Paolaand Schowengerdt (1997) found that
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the number of nodes in asing e hidden layer could be varied a great deal with only minimal
effects on classification accuracy . This would suggest that though there may be subjectivity in
the determination of network architecture, this may have little effect on thefina classification.
However, thisis likely to be datadependant and should be tesed with each new habitat
classified.

There have been avariety of goproaches for empirically determiningM LP architecture
(Hirose et al., 1991; Kavzodu and M ather, 1999; Foody et al., 1995; Paolaand
Schowengerdt, 1997). Trids to determine the optimum network are auseful operationa
gpproach for determining network architecture. However, exactly the sametrainingand
accuracy assessment datases should nat be used as for the main study, as this may bias the
final results creating the optimum network to classify the accuracy assessment datase, rather
than one that will classify general datawell.

Training data

Aswith mog classifiers, one critical factor in sel ectingtrainingdatais that they are
representative of classes (Gonget al., 1996). Classification accuracy may be reduced if
training datado not represent the variation within classes. Neurd networks are morelikdy to
misclassify pixdsthat are not similar to thosein the training samples (Benediktsson et al.,
1990). Unlike statistica approaches, neura networks are ableto cope with mixed pixesin
training data (Paolaand Schowengerdt, 1995). Indeed when training pixels from border
regions are used, neura network classification accuracy may be increased compared with
trainingusing pure pixels (Foody, 1999).

A study by Aroraand Foody (1997) foundthat classification accuracy usinganeurd network
related to training set size and waveband combination.

MLP outputs

TheM LP provides an activation level for every outpu class of each pixel. In ahard
classification the pixd is allocated the class with the highest activation level. However, the
activation levels for al classes may be used to provide additiona information for each pixe.
Outpu activation levels have been used to provide estimates of theprobability that agven
pixd is correctly classified.

B4.3 Classifier summary

Satistica gpproaches havetraditionally been used in remote sensingand are wel |
documented. M og commercidly avai labl e image processing packages offer this form of
classifier. In many cases these gpproaches work well. However, there are anumber of
limitations to this goproach and so other techniques are being assessed, in order to maximise
the patentid for accurate cl assification of coastd habitats.

TheM LP neurd network is anon-parametric classifi cation method that complements the aims
of this gudy as it can provide high accuracy classifications using high dimensiondity,
multisource datawith complex distributions. Aswell as providing classifications, additiond
datamay be derived from neura networks tha may be used to provide indications of correct
classification on aper-pixe basis. Neural networks are simple artificia intel ligence sy stems
and have been shown by anumber of studies to provide accurate classifi cations of avariety of
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habitats. In recent years neura network sy sems suitable for classifying remotely sensed data
have become commer cially avail able, makingthis more than just an academic approach to
classification. The operationa use of neura networks for classification is being examined
within thisproject.

B4.4 Classification uncertainty and probability of error

As use of remote sensing increases, there has been an increasein the redisation that
estimations of error are an important part of remote sensing studies, both for awhole study
areaand a thepixd or locd level. A doba measure may provide estimations of the overdl
classification error, but it does not indicate where those errors are occurring. The error at the
pixd leve, or the uncertainty associated with correct categorical alocation has recently
generated consider able academic interest (Ediriwickrema and Khorram, 1997; de Bruin and
Gorte, 2000; M clver and Friedl, 2001).

Oneam of this study istoprovideamethod of classification that is gppropriate for
monitoring change in coasta habitats. If pixd level categorical uncertainty is not accounted
for, classification errors have the potentia to be magnified in the change detection process.
Per-pixd thematic uncertainty measures would alow probabilities of changeto be derived,
increasing informational content of the change surface and its usefulness for reporting and
management purposes. They may also be used to increase the accuracy of estimates of habitat
area. Normalised M LP activation levels have been used as indicators of membership on aper-
pixd basis, where apixel with ahigh normalised activation is assumed to have ahigh
probability of correct class dlocation (Gong et al. 1996).

B4.5 Testing clasdfication accuracy

In order to compare classifications, accuracy measures were required. Comparisons of
classifiers are generdly carried out using a globa accuracy measure. Of thetwo gobal
accuracy measures most commonly used in remote sensing, the overdl accuracy (Po;
proportion of correctly classified pixels) fails to take into account the correct dlocation of
pixes by chance and kappa overestimates chance agreement and therefore underestimates
accuracy (Foody 1992, M aand Redmond 1995). The accuracy of each classification was
therefore derived using the modified kappa or tau coefficient, which considers correct
dlocation of pixds by chance, but does not overestimate chance agreement (Foody 1992, M a
and Redmond 1995).

Tau variance (M aand Redmond 1995) was used to estimate Z scores and test for significant
differences in classification accuracy .
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Table C1 Example confuson matrix

Ground Data

Classes A B C D Correct | Total User's
Accuracy

A 54 3 3 3 54 63 0.86
Classified B 5 20 2 1 20 28 0.71
Data C 2 1 65 2 65 70 0.93
D 0 0 5 11 11 16 0.69

Corr ect 54 20 65 11

Total 61 24 75 17

Producer’s | 589 | 083 | 087 | 065

Accuracy

Other methods of providing measures of accuracy may be used that further describethe
classification. The confusion matrix may be used to provideindications of what

misclassifi cations occur within the data (T able 5.1). The confusion matrix may be used to
show how classes are misclassified and provide overall indications of the class accuracy. The
matrix may be used to determine the suitability of thefina classification for the purpose for

which it is required.
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Appendix C.

Band ratios used in study

Table D1 Ratioing for Tollesbury Data
CASI Band Central wavdength (nm) Information content rdativeto noise
content of ratio
(1 = low, 5=high)
A B A B 2000 2001
1 2 443 490 2 2
2 3 490 512 1 3
3 4 512 555 1 2
4 5 555 600 5 5
5 6 600 626 5 4
6 7 626 663 5 5
7 8 663 673 3 1
8 9 673 684 2 5
9 10 684 692 5 5
10 11 692 703 5 5
11 12 703 712 5 5
12 13 712 751 5 5
13 14 751 857 1 1
14 15 857 881 1 1
2 4 490 555 1 2
2 7 490 663 5 2
2 15 490 881 5 3
4 7 555 663 5 4
4 15 555 881 5 2
7 15 663 881 5 3
Table D2 Orignd ratiang for Ainsdale Data
CASI Band Central wavdength (nm) Information content rdativeto noise
A B A B content of ratio
(1 = low, 5=high)
1 2 445 471 2
2 3 471 490 2
3 4 490 550 5
4 5 550 671 5
5 6 671 682 1
6 7 682 701 5
7 8 701 710 4
8 9 710 720 4
9 10 720 750 3
10 11 750 762 1
11 12 762 780 1
12 13 780 860 1
13 14 860 880 1
2 4 471 550 3
2 7 471 701 3
2 14 471 880 3
4 7 550 701 2
4 14 550 880 3
7 14 701 880 4
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Table D3

Final ratioing for Ainsdale data

CASI Band Central wavdength (nm) Information content reativeto noise

content of ratio
(1 = low, 5=high)

A B A B 2001

4 5 550 671 5

5 6 671 682 4

6 7 682 701 5

8 9 710 720 5

9 10 720 750 5

10 11 750 762 5

11 12 762 780 5

12 13 780 860 5

4 7 550 701 4

4 9 550 720 4

9 11 720 762 5

9 14 720 880 5

Table D4 Ratioing for Budle Bay Data
CASI Band Central wavdength (hm) Information content rdativeto noise

A B A B content of ratio
(1 = low, 5=high)

1 2 443 490 2

2 3 490 512 3

3 4 512 555 5

4 5 555 600 5

5 6 600 626 4

6 7 626 663 4

7 8 663 673 3

8 9 673 684 1

9 10 684 692 5

10 11 692 703 5

11 12 703 712 5

12 13 712 751 5

13 14 751 857 3

14 15 857 881 3

2 4 490 555 5

2 7 490 663 3

2 15 490 881 5

4 7 555 663 3

4 15 555 881 5

7 15 663 881 5
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Appendix E.
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